### 63094 results for qubit oscillator frequency

Contributors: Eugene Grichuk, Margarita Kuzmina, Eduard Manykin

Date: 2010-09-26

**qubit** simulates the behavior of electric field of
polarized light beam...**qubit** model has been designed as a
stochastic **oscillator** formed by a pair...**qubits** that is
exploited as a computation resource in one-way quantum
...**oscillators** is
proposed for modeling of a cluster of entangled **qubits** ...**oscillators** with chaotically modulated limit cycle radii and
**frequencies**...one-**qubit**
gates are suggested. Changing of cluster entanglement degree...**qubit** cluster, is designed, and system of equations for
network dynamics...**oscillators**...**qubit** model has been designed as a
stochastic oscillator formed by a pair ... A network of coupled stochastic **oscillators** is
proposed for modeling of a cluster of entangled **qubits** that is
exploited as a computation resource in one-way quantum
computation schemes. A **qubit** model has been designed as a
stochastic **oscillator** formed by a pair of coupled limit cycle
**oscillators** with chaotically modulated limit cycle radii and
**frequencies**. The **qubit** simulates the behavior of electric field of
polarized light beam and adequately imitates the states of two-level
quantum system. A cluster of entangled **qubits** can be associated
with a beam of polarized light, light polarization degree being
directly related to cluster entanglement degree. Oscillatory network,
imitating **qubit** cluster, is designed, and system of equations for
network dynamics has been written. The constructions of one-**qubit**
gates are suggested. Changing of cluster entanglement degree caused
by measurements can be exactly calculated.

Files:

Contributors: Yoshihara, Fumiki, Nakamura, Yasunobu, Yan, Fei, Gustavsson, Simon, Bylander, Jonas, Oliver, William D., Tsai, Jaw-Shen

Date: 2014-02-06

**oscillation**, $1/f$ noise...parallel to the qubit’s energy eigenbasis; this component is not averaged...**oscillation** curves with different Rabi **frequencies** Ω R measured at different...** qubit’s** energy eigenbasis; this component is not averaged out when Ω R...

**frequency**δ ω (black open circles) and the Bloch–Siegert shift δ ω B S...

**qubit**'s level splitting of 4.8 GHz, a regime where the rotating-wave approximation...

**oscillations**due to quasistatic flux noise. “Optimal" in the last column...

**oscillation**measurements, a microwave pulse is applied to the

**qubit**followed...

**oscillation**decay at ε = 0 , where the quasistatic noise contribution ...

**qubit**noise spectroscopy using Rabi oscillations under strong driving ...

**qubit**and its strong inductive coupling to a microwave line enabled high-amplitude...

**frequency**of ω m w / 2 π = 6.1 GHz, has a minimum of approximately ω ...

**frequency**range decreases with increasing

**frequency**up to 300 MHz, where...

**frequencies**up to 1.7 GHz were achieved, approaching the

**qubit**'s level...

**frequency**Ω R 0 at the shifted resonance decreases as ε increases, while...

**frequency**, and cal: Γ R s t δ ω m w stands for the calculation to study...

**oscillations**under strong driving conditions. The large anharmonicity ...

**qubit**by studying the decay of Rabi oscillations under strong driving ...the qubit followed by a readout pulse, and P s w as a function of the ...to the qubit followed by a readout pulse, and P s w as a function of the... qubit by a mutual inductance of 1.2 pH and nominally cooled to 35 mK....high-

**frequency**flux noise spectrum in a superconducting flux

**qubit**by ...

**qubit**by a mutual inductance of 1.2 pH and nominally cooled to 35 mK. ... We infer the high-

**frequency**flux noise spectrum in a superconducting flux

**qubit**by studying the decay of Rabi

**oscillations**under strong driving conditions. The large anharmonicity of the

**qubit**and its strong inductive coupling to a microwave line enabled high-amplitude driving without causing significant additional decoherence. Rabi

**frequencies**up to 1.7 GHz were achieved, approaching the

**qubit**'s level splitting of 4.8 GHz, a regime where the rotating-wave approximation breaks down as a model for the driven dynamics. The spectral density of flux noise observed in the wide

**frequency**range decreases with increasing

**frequency**up to 300 MHz, where the spectral density is not very far from the extrapolation of the 1/f spectrum obtained from the free-induction-decay measurements. We discuss a possible origin of the flux noise due to surface electron spins.

Files:

Contributors: Saito, Keiji, Wubs, Martijn, Kohler, Sigmund, Hanggi, Peter, Kayanuma, Yosuke

Date: 2006-03-07

**qubit** and the oscillator, and can be written as...**qubit**, being independent of the frequency of the QED mode. Possible applications...**qubit** flip, the resulting dynamics is restricted to the states | ↑ , 2...**qubit** and the **oscillator**, and can be written as...**frequencies** Ω . The dashed line marks the Ω -independent, final probability...individual qubit-oscillator states for a coupling strength γ = 0.6 ℏ v...large **qubit**-oscillator coupling γ / ℏ Ω = 0.5 , reliable single-photon...**frequency** Ω = 0.5 v / ℏ ....**oscillator** **frequency**, P ↑ ↓ t resembles the standard LZ transition with...**frequency** Ω and the **qubit**-**oscillator** coupling γ are determined by the ...**qubit**, being independent of the **frequency** of the QED mode. Possible applications...**qubit**-**oscillator** entanglement....**qubit**-**oscillator** states for a coupling strength γ = 0.6 ℏ v and **oscillator**...**qubit** comes into resonance with the **oscillator** sometime during the sweep...**qubit** undergoing Landau-Zener transitions enabled by the coupling to a...**oscillator** **frequency** Ω , despite the fact that this is not the case for...**qubit** is in state | ↓ is depicted in Fig. fig:one-osc. It demonstrates...the **qubit** comes into resonance with the oscillator sometime during the...**qubit**-oscillator entanglement....**oscillations** that are typical for the tail of a LZ transition are averaged ... We study a **qubit** undergoing Landau-Zener transitions enabled by the coupling to a circuit-QED mode. Summing an infinite-order perturbation series, we determine the exact nonadiabatic transition probability for the **qubit**, being independent of the **frequency** of the QED mode. Possible applications are single-photon generation and the controllable creation of **qubit**-**oscillator** entanglement.

Files:

Contributors: Liberti, G., Zaffino, R. L., Piperno, F., Plastina, F.

Date: 2005-11-21

**qubit** is coupled to a single **oscillator** mode. 99 weiss U. Weiss, Quantum...**frequency** and the level asymmetry of the **qubit**. This is done in the adiabatic...**qubit**. This is done in the adiabatic regime in which the time evolution...of a qubit with an ohmic environment was numerically analyzed. It turns...of the **qubit** tunnelling amplitude D . One can appreciate that the result...**oscillator** in the lower adiabatic potential, for D = 10 and α = 2 and ...**qubit** is much faster than the oscillator one. Within the adiabatic approximation...**oscillator** defined in Eq. ( due1), centered in Q = ± Q 0 , respectively...**qubit** ( W = D = 0 ) would have given a pair of independent parabolas instead...the qubit is coupled to a single oscillator mode....**qubit** tunnelling amplitude D . One can appreciate that the result of Eq...**qubit** strongly interacting with an oscillator mode, as a function of the...asymmetry in the qubit Hamiltonian. As mentioned in section sect2 above...**qubit** coupled to a resonator in the adiabatic regime...**qubit** and the environmental **oscillator**. Unfortunately, the coupling strength...to the reduced qubit state. For example, for a large enough interaction...**oscillator** localizes in one of the wells of its effective potential and...**qubit** is much faster than the **oscillator** one. Within the adiabatic approximation...the qubit and the environmental oscillator. Unfortunately, the coupling...**qubit** strongly interacting with an **oscillator** mode, as a function of the ... We discuss the ground state entanglement of a bi-partite system, composed by a **qubit** strongly interacting with an **oscillator** mode, as a function of the coupling strenght, the transition **frequency** and the level asymmetry of the **qubit**. This is done in the adiabatic regime in which the time evolution of the **qubit** is much faster than the **oscillator** one. Within the adiabatic approximation, we obtain a complete characterization of the ground state properties of the system and of its entanglement content.

Files:

Contributors: Greenberg, Ya. S.

Date: 2003-03-04

**oscillations** in a phase **qubit**. The external source, typically in GHz range...**qubit** states, nevertheless the voltage across the tank **oscillates** with...**qubit** coupled to a dissipative tank circuit. The evolution of A exhibits...**qubit**). We explicitly account for the back action of a tank circuit and...**oscillations** with lower **frequency**. Deterministic case (a) together with...L...destroys the phase coherence between qubit states, nevertheless the voltage...**qubit** levels. The resulting Rabi **oscillations** of supercurrent in the **qubit**...speaking, consider qubit as having definite wave function. However, if...P...**qubit**. The external source, typically in GHz range, induces transitions...of qubit evolution as the coupling between the qubit and the tank is increased...loss-free qubit coupled to the dissipative tank circuit. The system is...loss-free **qubit** coupled to a loss-free tank circuit. Oscillations of A...**oscillates** with a high **frequency** which is about 10 GHz in our case. As...**qubit** loop. As is seen from the Fig. fig4a, A **oscillates** with Rabi **frequency**...case....**qubit** levels. The resulting Rabi oscillations of supercurrent in the **qubit**...**qubit**. Computer simulations...**oscillations** correspond to Rabi **frequency**....**oscillates** with gap **frequency**, while the **frequency** of A is almost ten ...**oscillates** also with Rabi **frequency** which is equal to 50 MHz in our case... to show the effect of qubit evolution as the coupling between the qubit... **qubit** coupled to a dissipative tank circuit Q T = 100 . The voltage across...**qubit** coupled to a loss-free tank circuit. **Oscillations** of A. Deterministic... A and B for **qubit** without dissipation....**qubit** without dissipation....**frequency**. Deterministic case (a) together with one realization (b) are...**oscillations** in MHz range can be detected using conventional NMR pulse...**oscillations** between quantum states in mesoscopic superconducting systems...**qubit**. Here we present the results of detailed computer simulations of ... Time-domain observations of coherent **oscillations** between quantum states in mesoscopic superconducting systems have so far been restricted to restoring the time-dependent probability distribution from the readout statistics. We propose a method for direct observation of Rabi **oscillations** in a phase **qubit**. The external source, typically in GHz range, induces transitions between the **qubit** levels. The resulting Rabi **oscillations** of supercurrent in the **qubit** loop are detected by a high quality resonant tank circuit, inductively coupled to the phase **qubit**. Here we present the results of detailed computer simulations of the interaction of a classical object (resonant tank circuit) with a quantum object (phase **qubit**). We explicitly account for the back action of a tank circuit and for the unpredictable nature of outcome of a single measurement. According to the results of our simulations the Rabi **oscillations** in MHz range can be detected using conventional NMR pulse Fourier technique.

Files:

Contributors: Fedorov, Kirill G., Shcherbakova, Anastasia V., Schäfer, Roland, Ustinov, Alexey V.

Date: 2013-01-22

flux qubit....through** the **qubit corresponds to** the **changing of** the **persistent currents i...embracing a flux qubit, as shown in Fig. AJJ+Qubit. The current induced...the** flux** qubit with a coupling loop (yellow loop) and control line (green...**frequency** versus magnetic flux through the **qubit** corresponds to the changing... the qubit corresponds to** the **changing of** the **persistent currents in the...**oscillations**, we have performed systematic measurements of the dependence...**frequency** deviation from equilibrium δ ν / ν 0 of the fluxon **oscillation**...**qubit** as a current dipole to the annular junction, we detect periodic ...the** flux** qubit loop....the flux qubit....**oscillation** **frequency** from the unperturbed case δ ν = ν μ - ν 0 , where...**qubit**...**qubit**, **qubit** readout...**qubit**. The time delay of the fluxon can be detected as a **frequency** shift...**oscillation** **frequency** due to the coupling to the flux **qubit**. Every point...current in** the **flux qubit. Thus, the persistent current in** the **qubit manifests...flux qubit. Every point consists of 100 averages. Bias current was set...**frequency** versus bias current. Black line shows the result of perturbation...**oscillation** **frequency** for μ = 0 . Black line in Fig. FD shows the dependence...flux qubit versus magnetic frustration (black line). Red line shows the...**qubits** by using ballistic Josephson vortices are reported. We measured...**qubit**. We found that the scattering of a fluxon on a current dipole can...**oscillation** **frequency** versus magnetic flux through the **qubit**. We found...**qubit** loop....**qubit**. ... Experiments towards realizing a readout of superconducting **qubits** by using ballistic Josephson vortices are reported. We measured the microwave radiation induced by a fluxon moving in an annular Josephson junction. By coupling a flux **qubit** as a current dipole to the annular junction, we detect periodic variations of the fluxon's **oscillation** **frequency** versus magnetic flux through the **qubit**. We found that the scattering of a fluxon on a current dipole can lead to the acceleration of a fluxon regardless of a dipole polarity. We use the perturbation theory and numerical simulations of the perturbed sine-Gordon equation to analyze our results.

Files:

Contributors: Grajcar, M., Izmalkov, A., Il'ichev, E., Wagner, Th., Oukhanski, N., Huebner, U., May, T., Zhilyaev, I., Hoenig, H. E., Greenberg, Ya. S.

Date: 2003-03-31

**frequency** ω T . Then both amplitude v and phase shift χ (with respect...**qubit**, inductively coupled to a Nb LC tank circuit. The resonant properties...**the** **qubit** vs external flux. The dashed lines represent **the** classical potential...probing field to **the** **qubit**, and detects its response....**qubit**, which changes drastically as its flux states pass through degeneracy... **qubit** temperature has been verified [Fig. fig:Temp_dep(b)] to be **the**...**3JJ** **qubit**....** qubit’s** quantum properties, without using spectroscopy. In a range 50 ...

**oscillator**are sensitive to the effective susceptibility (or inductance...

**qubit**anticross [Fig. fig:schem(a)], with a gap of 2 Δ . Increasing ...

**qubit**states. Thus, the tank both applies the probing field to the

**qubit**...

**frequency**due to the change of the effective

**qubit**inductance by the tank...

**the**

**qubit**can adiabatically transform from Ψ l to Ψ r , staying in

**the**...

**qubit**...

**b**) Phase

**qubit**coupled to a tank circuit....

**qubit**vs external flux. The dashed lines represent the classical potential...saturation of

**the**effective

**qubit**temperature at 30 mK. (c) Full dip width...

**qubit**....

**qubit**temperature at 30 mK. (c) Full dip width at half the maximum amplitude...

**qubit**coupled to a tank circuit. ... We have observed signatures of resonant tunneling in an Al three-junction

**qubit**, inductively coupled to a Nb LC tank circuit. The resonant properties of the tank

**oscillator**are sensitive to the effective susceptibility (or inductance) of the

**qubit**, which changes drastically as its flux states pass through degeneracy. The tunneling amplitude is estimated from the data. We find good agreement with the theoretical predictions in the regime of their validity.

Files:

Contributors: Higgins, Kieran D. B., Lovett, Brendon W., Gauger, Erik M.

Date: 2012-03-27

**qubit** design but with an **oscillating** voltage applied to the CPB bias gate... qubits. The criterion for the single term approximation to be valid is...**qubit** and **oscillator**, thus requiring a theoretical treatment beyond the...**qubit** and oscillator, thus requiring a theoretical treatment beyond the...the qubit frequency Ω with temperature. The upper inset shows the dependence...**qubit** thermometry of an oscillator....**qubit** dynamics in this regime, based on an **oscillator** correlation function...**qubit** thermometry: T i n is the temperature supplied to the numerical ...**oscillations** with **frequency** ( eqn:rho3) to it. The blue line is the data...**qubit** thermometry of an **oscillator**....**qubit** dynamics. We obtain a new expression for the ac Stark shift and ...**qubit** dynamics in this regime, based on an oscillator correlation function...**oscillations** are also shown as a reference (green). Left: the population...**oscillator** Hilbert space at a point where the dynamics have converged ... the** qubit**. These parameters can be achieved experimentally using the

**sam**...

**frequency**of the

**qubit**dynamics is still adequately captured by our single...

**qubit**dynamics is still adequately captured by our single term approximation...

**qubit**

**frequency**Ω with temperature. The upper inset shows the dependence...

**oscillator**on the

**qubit**. These parameters can be achieved experimentally...

**oscillator**represents a ubiquitous physical system. New experiments in...

**frequency**domain. The full numerical solution was Fourier transformed ...the

**dynamics analytically unwieldy, because the rational function...**

**qubit****qubit**dynamics are not greatly perturbed by the presence of the

**oscillator**... the

**dynamics are not greatly perturbed by the presence of the oscillator...of qubit thermometry: T i n is the temperature supplied to the numerical ... A quantum two level system coupled to a harmonic**

**qubit****oscillator**represents a ubiquitous physical system. New experiments in circuit QED and nano-electromechanical systems (NEMS) achieve unprecedented coupling strength at large detuning between

**qubit**and

**oscillator**, thus requiring a theoretical treatment beyond the Jaynes Cummings model. Here we present a new method for describing the

**qubit**dynamics in this regime, based on an

**oscillator**correlation function expansion of a non-Markovian master equation in the polaron frame. Our technique yields a new numerical method as well as a succinct approximate expression for the

**qubit**dynamics. We obtain a new expression for the ac Stark shift and show that this enables practical and precise

**qubit**thermometry of an

**oscillator**.

Files:

Contributors: Wubs, Martijn, Kohler, Sigmund, Hanggi, Peter

Date: 2007-03-15

**the** **qubit** would be measured | ↑ . fig:photon_averages...**the** **qubit** would be measured in state | ↓ ; **the** dash-dotted blue curve ...**qubit**-**oscillator** coupling γ . Parameters: γ = 0.25 ℏ v and ℏ Ω 2 = 100...**oscillator** depend on the state of the **qubit**....**qubit** coupled to one oscillator, far outside **the** RWA regime: γ = ℏ Ω =...the qubit. In general not much can be said about this final state, but...**qubit** coupled to two cavities, we show that Landau-Zener sweeps of the...**oscillator** **frequency**. In Fig. fig:photon_averages we depict how for a...**qubit** coupled to two **oscillators**. Parameters: γ = 0.25 ℏ v and Ω 2 = 100...**qubit**-**oscillator** coupling, then the dynamics can very well be approximated...**oscillator** if the **qubit** would be measured in state | ↓ ; the dash-dotted...**qubit**-oscillator entanglement, with state-of-the-art circuit QED as a ...**qubit**-**oscillator** entanglement, with state-of-the-art circuit QED as a ...**oscillator** energies ℏ Ω 1 , 2 are much larger than the **qubit**-**oscillator**...**qubit** are well suited for the robust creation of entangled cavity states...**qubit** coupled to one **oscillator**, far outside the RWA regime: γ = ℏ Ω =... of a qubit coupled to two oscillators. Parameters: γ = 0.25 ℏ v and Ω...**qubit** may undergo Landau-Zener transitions due to its coupling to one ...**qubit**-oscillator coupling γ . Parameters: γ = 0.25 ℏ v and ℏ Ω 2 = 100...final qubit-two-oscillator state | ψ ∞ rather than merely the transition...**oscillator** **frequencies**, both inside and outside the regime where a rotating-wave... final qubit state is | ↑ . We call this dynamical selection rule the ...**qubit** coupled to two **oscillators**. Parameters: γ = 0.25 ℏ v , ℏ Ω 1 = 90...**oscillators**. We show that for a **qubit** coupled to one **oscillator**, Landau-Zener...state of the qubit....**qubit** coupled to two oscillators with large energies, and with detunings...**qubit** coupled to one oscillator, Landau-Zener transitions can be used ...**qubit** coupled to two **oscillators** with degenerate energies. Parameters: ... A **qubit** may undergo Landau-Zener transitions due to its coupling to one or several quantum harmonic **oscillators**. We show that for a **qubit** coupled to one **oscillator**, Landau-Zener transitions can be used for single-photon generation and for the controllable creation of **qubit**-**oscillator** entanglement, with state-of-the-art circuit QED as a promising realization. Moreover, for a **qubit** coupled to two cavities, we show that Landau-Zener sweeps of the **qubit** are well suited for the robust creation of entangled cavity states, in particular symmetric Bell states, with the **qubit** acting as the entanglement mediator. At the heart of our proposals lies the calculation of the exact Landau-Zener transition probability for the **qubit**, by summing all orders of the corresponding series in time-dependent perturbation theory. This transition probability emerges to be independent of the **oscillator** **frequencies**, both inside and outside the regime where a rotating-wave approximation is valid.

Files:

Contributors: Beaudoin, Félix, da Silva, Marcus P., Dutton, Zachary, Blais, Alexandre

Date: 2012-08-09

**qubits** have **frequencies** separated enough that they do not overlap during...**the** **second** **qubit**. The fidelity is extracted by injecting these unitaries...two-**qubit** operations in circuit QED. ϵ is the strength of the drive used...**qubit**-resonator and **qubit**-**qubit** interactions. We discuss in detail how...anticrossings in the qubit-resonator or qubit-qubit spectrum. They are...**qubit** or the resonator, with the significant disadvantage that such implementations...of the fidelity on qubit relaxation and dephasing is similar....**oscillator** with **frequency** ω r = 7.8 GHz. As explained in Section sec:...**qubit** at the red sideband **frequency** assuming the second **qubit** is in its...two-**qubit** operations in circuit QED. ϵ is **the** strength of **the** drive used...**qubit** frequency modulation...**oscillators** (see Section sec:Duffing) with E J 1 = 25 GHz, E J 2 = 35...**qubit** splitting is modulated at a **frequency** that lies exactly between ...**frequency** associated to the operating point φ i . This **frequency** is illustrated...coming from the spectator qubit (see Section sec:SB)....prepare qubit-qubit entangled states. The parameters of every pulses entering...**qubits** and microwave resonators. Up to now, these transitions have been...**qubit** frequency using a flux-bias line. Not only can first-order transitions...**oscillations** have been seen to be especially large for big relevant ε ...**eqn**:trace). The qubits are taken to be transmons, which are modelled as...**oscillations** of the **qubit** **frequency** using a flux-bias line. Not only can...**oscillations** in the Rabi **oscillations** that reduce the fidelity. These ...**qubit** transition **frequencies** in and out of resonance without crossing ...**second** **qubit** is excited. Blue dashed line: population transfer error 1...**qubit** at **the** red sideband frequency assuming **the** **second** **qubit** is in its ... Sideband transitions have been shown to generate controllable interaction between superconducting **qubits** and microwave resonators. Up to now, these transitions have been implemented with voltage drives on the **qubit** or the resonator, with the significant disadvantage that such implementations only lead to second-order sideband transitions. Here we propose an approach to achieve first-order sideband transitions by relying on controlled **oscillations** of the **qubit** **frequency** using a flux-bias line. Not only can first-order transitions be significantly faster, but the same technique can be employed to implement other tunable **qubit**-resonator and **qubit**-**qubit** interactions. We discuss in detail how such first-order sideband transitions can be used to implement a high fidelity controlled-NOT operation between two transmons coupled to the same resonator.

Files: