Validation of Critical Ages in MRI Aging Data

Published: 24 Jan 2020 | Version 1 | DOI: 10.17632/2pkhbdgjys.1
Contributor(s):

Description of this data

Various forms of nonlinear maturation likely reflect different biological mechanisms such that theoretical distinctions between maturation patterns ought to be considered. Code is provided to simulate data with known maturation patterns to establish the level of reliability and validity of a nonparametric fitting method, the smoothing spline. Three categories of maturation patterns are explored: U-shaped, with a change in direction across the life span; sigmoidal, with a period of change preceded and followed by no change in volume; accelerating, with changes in amplitude but not direction. As noise is a limiting factor in curve fitting, smoothing splines were fit to data with idealized low noise levels and higher, more realistic noise levels. Using the included analysis code, the smoothing spline can be shown to contain the relevant information to extract the critical ages of all maturation patterns in the form of derivative zero points, but each derivative zero point is only information for certain maturation patterns. Therefore, an additional classification step was included to first determine the category of maturation pattern. The code can be adapted to analyze actual biological data if it is put into the proper format. Run the demo code to see how the code works.

Experiment data files

Latest version

  • Version 1

    2020-01-24

    Published: 2020-01-24

    DOI: 10.17632/2pkhbdgjys.1

    Cite this dataset

    Nichols, David (2020), “Validation of Critical Ages in MRI Aging Data”, Mendeley Data, v1 http://dx.doi.org/10.17632/2pkhbdgjys.1

Statistics

Views: 14
Downloads: 0

Institutions

Roanoke College

Categories

Neuroscience, Aging

Licence

CC BY 4.0 Learn more

The files associated with this dataset are licensed under a Creative Commons Attribution 4.0 International licence.

What does this mean?
You can share, copy and modify this dataset so long as you give appropriate credit, provide a link to the CC BY license, and indicate if changes were made, but you may not do so in a way that suggests the rights holder has endorsed you or your use of the dataset. Note that further permission may be required for any content within the dataset that is identified as belonging to a third party.

Report