
MiTMoJCo 1.1
Dmitry R. Gulevich

ITMO University, St. Petersburg, Russia

September 12, 2018

Contents
1 Introduction 2

2 Changes between version 1.0 and 1.1 2

3 Basic Usage 3
3.1 Theory behind MiTMoJCo . 3
3.2 Installation (Linux OS) . 4
3.3 MiTMoJCo interface . 4
3.4 MiTMoJCo Python module for creation of tunnel current amplitudes . . . 8
3.5 Pre-calculated Tunnel Current Amplitudes 8
3.6 Optimum filtration of a sinusoidal signal 11

4 Examples 12
4.1 Example 1: Current-biased SIS junction 12
4.2 Example 2: Voltage-biased SIS junction under ac drive 13
4.3 Example 3: Sine-Gordon breather in long Josephson junction 15
4.4 Example 4: Fluxon in an Annular Josephson junction 16
4.5 Example 5: Flux Flow Oscillator . 17

5 Disclaimer 19

Dmitry R. Gulevich MiTMoJCo 1.1

1 Introduction

MiTMoJCo (Microscopic Tunneling Model for Josephson Contacts) is C code designed
for modeling superconducting Josephson junctions within the formalism of microscopic
tunneling theory. The purpose of the code is to offer implementation of a computation-
ally demanding part of this calculation which is evaluation of the superconducting pair
and quasiparticle tunnel currents. The tunnel currents calculated by MiTMoJCo are
offered to user’s disposal to be employed in a specialized ODE/PDE solver or within a
finite difference or finite element scheme in a custom C code. The source code contains
examples of modeling some common cases of Josephson contacts.

MiTMoJCo is written by Dmitry R. Gulevich (ITMO University, St Petersburg, Rus-
sia) and is made publicly available under the GNU General Public License. This implies
that you may freely copy, distribute, or modify the sources, but the copyright for the
original code remains with the author and the ITMO University. The code can be down-
loaded from the github online repository https://github.com/drgulevich/mitmojco. If
you find the code useful in your research, we kindly ask you to include a reference to the
original paper [1] in all studies that use MiTMoJCo.

2 Changes between version 1.0 and 1.1

1. MiTMoJCo 1.1 is compiled and installed via the CMake build process to a shared
library libmitmojco.so (default location /usr/local/lib). MiTMoJCo header files are
placed to the standard paths (by default /usr/local/include/mitmojco). To include
them in your code use

#include <mitmojco/mitmojco.h> // MiTMoJCo main header file
#include <mitmojco/opt_filter.h> // MiTMoJCo optimum filtration

2. The library functions are now callable from C++. The header files are wrapped by

#ifdef __cplusplus
extern "C" {
#endif
...
#ifdef __cplusplus
}
#endif

to enable the calls from C++ code.

2

https://github.com/drgulevich/mitmojco

MiTMoJCo 1.1 Dmitry R. Gulevich

3 Basic Usage

3.1 Theory behind MiTMoJCo

The goal of MiTMoJCo is to aid evaluation of the tunnel current density in a Josephson
tunnel junction,

j(r, t) = αN
∂φ

∂t
+ j̄(r, t) (1)

where

j̄(r, t) = k

Re j̃p(0)

∫ ∞

0

{
jp(kt

′) sin
[
φ(r, t) + φ(r, t− t′)

2

]
+ j̄qp(kt

′) sin
[
φ(r, t)− φ(r, t− t′)

2

]}
dt′,

(2)

is the reduced tunnel current density which depends on the history of evolution of the
superconducting phase difference φ(r, t) through the convolution with pair and quasi-
particle time-domain kernels jp(τ) and j̄qp(τ). The tunnel current density (1) enters the
integro-differential equation describing dynamics of superconducting phase difference in
a Josephson tunnel junction,

∂2φ

∂t2
−

(
1 + β

∂

∂t

)
∇2φ+ αN

∂φ

∂t
+ j̄(r, t) = 0 (3)

n ·
(
1 + β

∂

∂t

)
∇φ = ez · [n × h]

where n is the in-plane outward normal, h is the normalized magnetic field in units jcλJ .
The bar over the reduced tunnel current density j̄(r, t) and a reduced quasiparti-

cle time-domain kernel j̄qp(τ) signifies that the normal resistance contribution has been
subtracted: it enters to the full tunnel current (1) and the equation (3) explicitly as a
damping term αN∂φ/∂t. This is done for computational reasons to avoid the singularity
at τ = 0 and obtain a regular behaviour of the quasiparticle time-domain kernel as a
function of time. Furthermore, this allows constructing convenient semi-implicit numeri-
cal schemes where part of the tunnel current (the term αN∂φ/∂t) is computed implicitly.
The time-domain kernels are defined by Fourier transforms of the tunnel current ampli-
tudes which can be calculated theoretically from the Bardeen–Cooper–Schrieffer (BCS)
theory, or, found experimentally.

In Eqs. (3) and (2) time is measured in units of the inverse angular Josephson fre-
quency ω−1

J , the spatial coordinates are expressed in units of the Josephson penetration
length λJ , the reduced current density j̄(r, t) is normalized to Vg/ARN , where Vg is the
gap voltage, A is the total area of the junction and RN is the normal resistance.

3

Dmitry R. Gulevich MiTMoJCo 1.1

3.2 Installation (Linux OS)
MiTMoJCo 1.1 source code contains:

amplitudes/ folder with a set of fits of the tunnel current amplitudes;
documentation folder doc/;
examples/ folder with examples of application of the library;
include/ folder with headers mitmojco/mitmojco.h and mitmojco/opt_filter.h;
src/ folder with the main source mitmojco.c and a supplementary optimum filtra-

tion routine opt_filter.c;
CMakeLists.txt file as an input to cmake.
LICENSE: GNU General Public License.
README.md: general information.

Download the source code by typing in the terminal

$ git clone https://github.com/drgulevich/mitmojco

Modify CMakeLists.txt to suit your needs. Default installation paths are set in
CMakeLists.txt to /usr/local/lib for the shared library libmitmojco and /usr/local
/include/mitmojco for the headers. CMake version 2.6 or higher is required to run the
CMake build procedure.

In the mitmojco directory create and enter the build/ folder. Then execute cmake,
make and the installation procedure:

$ mkdir build
$ cd build
$ cmake ..
$ make
$ sudo make install

Check the installation by running one of the provided examples in the examples
folder. To compile the first example type

$ make example-1

Use similar command to compile other examples or type

$ make all

to compile all examples at once.

3.3 MiTMoJCo interface
The interface for MiTMoJCo is implemented in the spirit of object-oriented program-
ming. To use MiTMoJCo in your C code include the header file,

#include <mitmojco/mitmojco.h>

4

MiTMoJCo 1.1 Dmitry R. Gulevich

and create a tunnel current object (TunnelCurrentType pointer) by calling the construc-
tor declared in the header file as

TunnelCurrentType* mitmojco_create(
char *filename, double a_supp, double kgap, double dt,
int Ntotal, double *phi, int Nskip, int *skipinds);

Arguments of the constructor are:

char *filename: tunnel current amplitudes file,
double a_supp: pair current suppression parameter αsupp,
double kgap: normalized gap frequency k,
double dt: integration time step,
int Ntotal: size of phi array,
double *phi: pointer to the superconducting difference array,
int Nskip: number of shadow nodes to skip,
int *skipinds: pointer to the array storing indices of the shadow nodes.

Often in numerical schemes one introduces shadow nodes used for treating the bound-
ary conditions. However, the tunnel current only needs to be evaluated for the physical
nodes and, therefore, its evaluation at the shadow nodes can be skipped. The last two
arguments accepted by the constructor are the number of the shadow nodes and the
pointer to the array with their indices in the phi array.

The type TunnelCurrentType is defined in MiTMoJCo header file as a structure,

typedef struct {
const char *filename;
double a_supp;
double kgap;
double dt;
int Ntotal;
double *phi;
int Nskip;
int *skipinds;
int Nnodes;
int Nexps;
MemState memstate;
double Rejptilde0;
double alphaN;
double *jbar;
void *self;
bool error;

} TunnelCurrentType;

5

Dmitry R. Gulevich MiTMoJCo 1.1

which has member variables:
const char *filename: pointer to tunnel current amplitude (TCA) file name (more

on the tunnel current amplitudes in sec. 3.5).
double a_supp: pair current suppression parameter.
double kgap: normalized gap frequency.
double dt: integration time step.
int Ntotal: size of the array phi.
double *phi: pointer to the superconducting phase difference.
int Nskip: number of shadow nodes to skip. Often in numerical schemes one

introduces shadow nodes used for treating the boundary conditions. However, the tunnel
current only needs to be evaluated for the physical nodes and, therefore, its evaluation
at the shadow nodes can be skipped.

int *skipinds: pointer to the array of node indices to skip.
int Nnodes: number of active nodes, Nnodes = Ntotal-Nskip.
int Nexps: number of exponentials used in fitting.
MemState memstate: struct containing previous evolution information.
double Rejptilde0: normalized critical current Re j̃p(0).
double alphaN: damping due to the normal resistance αN .
double *jbar: pointer to the reduced current density array j̄(r, t).
void *self is used internally to access private member variables by the MiTMoJCo

methods and is not intended for a regular user.
bool error: handler to check that no errors occurred during the object creation

(false if no errors occurred an true is error occurred such as e.g. missing amplitudes
file or incorrect file format).

Object member variables are accessed via the arrow operator ->. For example, to
access value of the error flag use tunnel_current->error.

To illustrate a particular example, a code implementing 1D model long Josephson
junction discretized into 100 nodes (98 physical and 2 shadow nodes to treat the bound-
ary conditions), may start with

// Superconducting phase difference array (100 nodes)
double *phi = malloc(100 * sizeof(double));

// Indices of the shadow nodes
int *skipinds={0,99};

// Create tunnel current object
TunnelCurrentType *tunnel_current = mitmojco_create(

"../amplitudes/NbNb_4K2_008.fit", 0.7, 3.3, 0.01,
100, phi, 2, skipinds);

// Check that no errors occurred during the object creation

6

MiTMoJCo 1.1 Dmitry R. Gulevich

if(tunnel_current->error)
return;

The first two calls define superconducting phase difference array phi and array of
shadow nodes indices skipinds. Then, the tunnel current object is created with param-
eters: tunnel current amplitudes from file NbNb_4K2_008.fit will be used, pair current
suppression αsupp = 0.7, normalized gap frequency k = 3.3 and time step 0.01. Two
shadow nodes with indices 0 and 99 will be skipped in the evaluation of the tunnel
current.

Upon creating the tunnel current object the three methods available to the user are,
as declared in the header file,

extern void mitmojco_init(TunnelCurrentType *object);
extern void mitmojco_update(TunnelCurrentType *object);
extern void mitmojco_free(TunnelCurrentType *object);

Below we will discuss each of these methods in more detail.

Method mitmojco_init initializes the state of the memory integral, assuming no
dynamics in the past (that is, the supplied state is assumed to be stationary in which
the system existed for an infinite time). Use

mitmojco_init(tunnel_current);

to initialize the tunnel current object based on the initial value of phi. Note that
that mitmojco_init should be called after the array phi is initialized as its values will
be accessed by the address supplied to the object constructor.

Method mitmojco_update updates values of the tunnel current at the physical nodes,
based on the updated values of the superconducting phase difference phi obtained within
the numerical scheme (recall that the addresses of the physical nodes in phi are already
known to MiTMoJCo at the constructor call during the object creation). Call

mitmojco_update(tunnel_current);

to calculate values of the reduced tunnel current density j̄(r, t). These can be later
accessed via the object pointer, tunnel_current->jbar.

Finally, mitmojco_free is used to empty the memory allocated for the tunnel current
object,

mitmojco_free(tunnel_current);

It is possible to deal with several tunnel current objects simultaneously, e.g. FFO
and a SIS, or, an array of Josephson junctions by creating independent object. As an
example,

7

Dmitry R. Gulevich MiTMoJCo 1.1

double phi_sis;

TunnelCurrentType *sis_tunnel_current = mitmojco_create(
"../amplitudes/NbNb_4K2_008.fit", 0.7, 4.1, dt,
1, &phi_sis, 0, NULL);

double *phi_ffo = malloc(1000 * sizeof(double));
int *skipinds_ffo={0,999};

TunnelCurrentType *ffo_tunnel_current = mitmojco_create(
"../amplitudes/NbNb_4K2_016.fit", 0.8, 3.3, dt,
1000, phi_ffo, 2, skipinds_ffo);

creates independent objects for a flux flow oscillator and SIS junction, each with its own
parameters and different tunnel current amplitudes.

3.4 MiTMoJCo Python module for creation of tunnel current ampli-
tudes

MiTMoJCo is provided with an easy-to-use module mitmojco written in Python 3 for
creation of custom fits of TCAs at arbitrary temperature, superconducting gaps of
the materials and degree of Riedel peak smoothing. The supplied Jupyter notebook
amplitudes.ipynb illustrates the use of mitmojco module by creating a fit of TCAs.

The work with mitmojco starts with the import statement

import mitmojco

upon which the following functions of the mitmojco module become available:

tca_bcs(T, Delta1, Delta2)
tca_smbcs(T, Delta1, Delta2, dsm)
new_fit(x, Jpair_data, Jqp_data, maxNterms, thr)

Function tca_bcs returns bare (without smoothing) BCS TCAs evaluated from the
Larkin and Ovchinnikov expressions [5] which are summarized in Ref. [1]; tca_smbcs
returns smoothed TCAs obtained by smoothing bare BCS TCAs using the smoothing
procedure of Ref. [6]; new_fit is used to calculate fits of exact TCAs and export them
as a .fit file in the format suitable for the use by MiTMoJCo C library.

3.5 Pre-calculated Tunnel Current Amplitudes
The current amplitude files have extension .fit. User is supplied with a set of tunnel cur-
rent amplitudes which are pre-calculated for a symmetric junction with ∆1 = ∆2 = 1.4
meV at temperature T=4.2 K and different degrees of smoothing, see Table 1. In the
calculations of the current voltage characteristics (IVC) of Josephson flux flow oscillator

8

MiTMoJCo 1.1 Dmitry R. Gulevich

in Ref. [1] value δ = 0.008 was used as it fitted best the experimental IVC of a small
Nb/AlOx/Nb junction. Note, that the tunnel current amplitudes are supplied with-
out the account of the pair suppression αsupp which is controlled separately within the
function call (see the subsection 3.3 below).

The fits are found by calculating parameters which minimize the cost function

∑
X

∫ 2

0
D(X fit, Xexact)2 dξ, (4)

where
D(X fit, Xexact) ≡ |X fit −Xexact|

max(τa/τr, |Xexact|)
, (5)

is the relative difference between the fitted and exact functions X = Re j̃p(ξ), Im j̃p(ξ),
Re j̃qp(ξ), Im j̃qp(ξ), and τa,r are absolute and relative tolerances, respectively. Three
of the fits NbNb_4K2_001.fit, NbNb_4K2_008.fit and NbNb_4K2_064.fit are shown in
Fig. 1 along with the exact theoretical results and their relative difference defined by (5)
(τa/τr = 0.2 in calculating the fits). The plots and the error information about the other
fits from the Table 1 can be found in the amplitudes\ folder.

Filename T (K) ∆1(meV) ∆2(meV) δ N τr τa

NbNb_4K2_001.fit 4.2 1.40 1.40 0.001 10 0.005 0.001

NbNb_4K2_002.fit 4.2 1.40 1.40 0.002 9 0.005 0.001

NbNb_4K2_004.fit 4.2 1.40 1.40 0.004 9 0.004 0.0008

NbNb_4K2_008.fit 4.2 1.40 1.40 0.008 8 0.005 0.001

NbNb_4K2_016.fit 4.2 1.40 1.40 0.016 8 0.005 0.001

NbNb_4K2_032.fit 4.2 1.40 1.40 0.032 8 0.004 0.0008

NbNb_4K2_064.fit 4.2 1.40 1.40 0.064 8 0.005 0.001

NbNbN_4K2_008.fit 4.2 1.40 2.30 0.008 8 0.010 0.002

NbNbN_4K2_015.fit 4.2 1.40 2.30 0.015 8 0.004 0.0008

Table 1: Library of pre-calculated fits of tunnel current amplitudes (TCAs) supplied
with MiTMoJCo. Tunnel current amplitudes are calculated from the BCS theory for
Nb-AlOx-Nb and Nb-AlN-NbN junctions and smoothed using different values of the
phenomenological smoothing parameter δ. Number of the fitting exponentials N , relative
and absolute tolerances of the fit in the frequency region |ξ| ≤ 2 are also shown.

9

Dmitry R. Gulevich MiTMoJCo 1.1

Figure 1: Fits of tunnel current amplitudes: NbNb_4K2_001.fit (top),
NbNb_4K2_008.fit (middle) and NbNb_4K2_064.fit (bottom). Solid lines are the fit
and dashed lines are the exact tunnel current amplitudes calculated from the BCS. To
illustrate the behaviour of the tunnel current amplitudes in the subgap region, 20x zoom
of the imaginary parts of the tunnel current amplitudes is shown. Relative difference of
the fitted and exact amplitudes defined by Eq. (5) is shown on the rightmost figures.

For historical reasons we also provide fits given in the Refs. [2] and [3]. However, due
to their extremely bad performance in the subgap region, we discourage from using them
for other purposes than debugging your code and/or reproducing results of Refs. [2] and
[3, 4].

10

MiTMoJCo 1.1 Dmitry R. Gulevich

Filename N Source

OSZ_Table_1.fit 4 Table 1 in Ref. [2]

OSZ_Table_2.fit 5 Table 2 in Ref. [2]

GJHS_Table_1.fit 4 Table 1 in Ref. [3]

GJHS_Table_2.fit 5 Table 2 in Ref. [3]

Table 2: Fits of tunnel current amplitudes of Refs. [2] and [3] . The fits are given for
historical reasons only and should not be used for production unless reproducing the
results of Refs. [2] and [3, 4] is your direct purpose. In all other cases use the tunnel
current amplitude files listed in the Table 1

3.6 Optimum filtration of a sinusoidal signal
Optimum filtration routine for efficient calculation of a constant component of a sinu-
soidal signal is implemented in a supplementary code opt_filter.c and opt_filter.h.
The code implements the algorithm outlined in Ref. [2]. To access the optimum filtration
routine include the header file,

#include <mitmojco/opt_filter.h>

and begin with declaring the filter object, for example,

OptFilterType *voltage_filter = opt_filter_create(5);

where the argument of the constructor controls shape of the filtering window function:
parameter n in Ref. [2]. n is integer and, in practice, takes values between 1 and 5, where
1 correspond to the arithmetic mean of the recorded values, see Ref. [2] for details. The
type OptFilterType which emulates the class is defined in opt_filter.h as a structure,

typedef struct {
int n;
double a;
double *y;
void *self; // pointer to private struct

} OptFilterType;

The four methods accessible by the user are

extern void opt_filter_init(OptFilterType *object);
extern void opt_filter_update(OptFilterType *object, double signal);
extern double opt_filter_result(const OptFilterType *object);
extern void opt_filter_free(OptFilterType *object);

11

Dmitry R. Gulevich MiTMoJCo 1.1

Method opt_filter_init initializes the filter object,

opt_filter_init(voltage_filter);

Method opt_filter_update makes a record of the signal value,

opt_filter_update(voltage_filter, voltage);

Method opt_filter_result returns value of the calculated dc component once the
calculation is finished,

Vdc = opt_filter_result(voltage_filter);

Finally, opt_filter_free is used to clear the memory allocated to the filter object,

opt_filter_free(voltage_filter);

4 Examples
Examples of how MiTMoJCo can be used in modeling several common cases of Josephson
junctions are provided.

To compile a particular example, type

$ make example-#

where # is the example number, or, type

$ make all

or, simply,

$ make

to compile all the provided examples.

4.1 Example 1: Current-biased SIS junction
Current-biased Josephson junction is described by

φ̈+ αN φ̇+ j̄(t)− γ = 0,

j̄(t) =
k

Re j̃p(0)

∫ ∞

0

{
jp(kt

′) sin
[
φ(t) + φ(t− t′)

2

]
+ j̄qp(kt

′) sin
[
φ(t)− φ(t− t′)

2

]}
dt′,

where γ is the applied biasing current. To compile the first example, type in the terminal

$ make example-1

which produces executable example-1 in the current directory. Executing

12

MiTMoJCo 1.1 Dmitry R. Gulevich

$./example-1

without the command line arguments produces an output

#===
#---- Example 1: Current-biased SIS Junction -----
#===
Incorrect number of arguments.
Please, supply 1 or 3 arguments in the following order:
1. Value of bias current (gamma_start)
or
1. Starting value of bias current (gamma_start)
2. Final value of bias current (gamma_finish)
3. Bias current step (gamma_step)

Run

$./example-1 1.1

to calculate the normalized dc voltage at a specified bias current (e.g., γ = 1.1 in this
example), or,

$./example-1 1.1 0.0 0.01

for a range of values. In this case, γ takes 1.1 as initial value (just above the critical
current) and decreases down to 0.0 with step 0.01.

4.2 Example 2: Voltage-biased SIS junction under ac drive
Current through a small voltage-biased Josephson junction is given by the Eq. (1). In
this case, one does not need to solve the differential equation, rather, the superconducting
phase difference φ(t) can be easily found from the fundamental Josephson relation if the
time-dependence of the applied voltage is known.

All one needs to do in MiTMoJCo is to update φ and call

mitmojco_update(sis_tunnel_current);

at each time step to get the reduced tunnel current. Adding the normal resistance part
αN φ̇ will get us the full tunnel current.

In this example we assume a harmonic ac drive

V (t) = Vdc + Vac cos(ωt)

and use the optimum filtration routine to get the resulting dc current component. Com-
pile the code with

$ make example-2

13

Dmitry R. Gulevich MiTMoJCo 1.1

and run

$./example-2

to see the command line arguments needed to run the simulation,

#===
#---- Example 2: Voltage-biased SIS Junction -----
#===
Incorrect number of arguments.
Please, supply 5 arguments in the following order:
1. Vac
2. omega
3. Vdc_start
4. Vdc_finish
5. Vdc_step

The arguments should be supplied in normalized units (units of ℏωJ/e for voltage and
units of ωJ for the angular frequency). As an example, the command

$./example-2 1.5 1.0 0.0 6.0 0.02

calculates the SIS IVC for Vac = 1.5, ω = 1.0 in normalized units. The resulting SIS IVC
obtained for different values of the driving frequency ω is shown in Fig. 3. In the simplest
case of a harmonic drive discussed here, MiTMoJCo results coincide with those given by
the SIS mixer theory where the explicit expressions in terms of the Bessel functions are
known [7].

14

MiTMoJCo 1.1 Dmitry R. Gulevich

Figure 2: IVC of voltage-biased SIS junction under ac drive calculated by MiTMoJCo
for in presence and absence of the ac drive. Parameters of the calculation are: tunnel
current amplitudes file NbNb_4K2_008.fit, pair current suppression αsupp = 0.7, nor-
malized gap frequency k = 3.3. For verification of MiTMoJCo the known theoretical
result from the SIS mixed theory [7] is also shown.

4.3 Example 3: Sine-Gordon breather in long Josephson junction
In this example we consider a 1D model of a long Josephson junction,

φtt −
(
1 + β

∂

∂t

)
φxx + αNφt + j̄(x, t) = 0

with open boundary conditions,

φx(±L/2, t) = 0.

Running the executable

$./example-3

produces the file breather.dat where dynamics of the superconducting phase difference
is written during the time evolution of the breather. Use the supplied Python routine
breather.py to animate. Start the Python 3 interactive mode,

$ ipython

Within the Python interactive mode execute

In [1]: run breather

to see animation of the breather dynamics.

15

Dmitry R. Gulevich MiTMoJCo 1.1

Figure 3: Time evolution of sine-Gordon breather. A large number of time frames
were super-imposed to illustrate dynamics of the superconducting phase difference. Pa-
rameters used in the calculation are: Josephson junction normalized length L = 40,
tunnel current amplitudes file NbNb_4K2_008.fit, pair current suppression αsupp = 0.7,
normalized gap frequency k = 3.3.

4.4 Example 4: Fluxon in an Annular Josephson junction
Compile

$ make example-4

running the executable

$./example-4

displays the information about the input parameters,

#===
#---- Example 4: Fluxon in Annular Josephson Junction ----
#===
Incorrect number of arguments.
Please, supply 1 or 3 arguments in the following order:
1. gamma_start
2. gamma_finish
3. gamma_step

Running the executable with the parameters

$./example-4 0.0 0.05 0.001

16

MiTMoJCo 1.1 Dmitry R. Gulevich

executes the calculation of the current-velocity curve for a fluxon displayed in Fig. 4.
Note that the slope of the curve is larger for small velocities compared and than for
moderate velocities. This is in agreement with the theoretical result of Ref. [4] (cf. their
Fig.3).

Figure 4: Current-velocity dependence for a single fluxon trapped in an annular Joseph-
son junction of length L = 40. The parameters used in the calculations are: tunnel
current amplitudes file NbNb_4K2_008.fit, pair current suppression αsupp = 0.7, nor-
malized gap frequency k = 3.3.

4.5 Example 5: Flux Flow Oscillator
Example-5 is based on the model of a flux flow oscillator introduced in Ref. [1]. For
simplicity, the model without coupling to load is presented here.

As with the previous examples, use

$ make example-5

to compile the code

$./example-5

to display the info,

#===
#------- Example 5: Flux Flow Oscillator -------
#===
Incorrect number of arguments.

17

Dmitry R. Gulevich MiTMoJCo 1.1

Please, supply 2 or 4 arguments in the following order:
1. Magnetic field (hext)
2. Value of bias current (gamma_start)
or
1. Magnetic field (hext)
2. Starting value of bias current (gamma_start)
3. Final value of bias current (gamma_finish)
4. Bias current step (gamma_step)

Executing

$./example-5 3.5 0.0 0.2 0.002

starts the calculation of FFO IVC at a fixed magnetic field 3.5 and values of γ varied
in the range from 0.0 to 0.2 with step 0.002. The typical output of the program run for
FFO IVC calculation is as follows,

#===
#------- Example 5: Flux Flow Oscillator -------
#===
Magnetic field (hext): 3.5000
Bias current (gamma): (0.0000, 0.2000, 0.0020)
OpenMP threads: 4
Tapered ends FFO geometry:
L0: 400.000 micron
W0: 16.000 micron
S0: 40.000 micron
Wend: 1.000 micron
Josephson penetration (LAMBDA_J): 5.50 micron
Surface damping (BETA): 0.0200
Settling time (SETTLING_TIME): 200.00
Integration time (TMAX): 1000.00
FFO area: 191.74 LAMBDA_J^2
#------------------- MiTMoJCo --------------------
Amplitudes loaded from file "amplitudes/NbNb_4K2_008.fit"
MiTMoJCo started with parameters:
Normalized gap frequency (kgap): 3.300
Pair current suppression (a_supp): 0.70
Rejp~(0): 0.52799
alphaN: 0.28697
Number of fitting exponents (Nexps): 8
Number of physical nodes (Nnodes): 800
dx: 0.09091
dt: 0.04545

18

MiTMoJCo 1.1 Dmitry R. Gulevich

#----------- Starting the calculation ------------
Column 1: gamma
Column 2: Vdc
0.0000 -0.000000
0.0020 0.014012
0.0040 0.029413
....
0.1420 1.725801
0.1440 1.733849
0.1460 1.742871
0.1480 3.204688
#---
CPU time: 565.274841
Wall clock time: 141.343814

As in the previous examples, the first part of the output displays information about
the model: magnetic field, bias current, geometrical parameters, surface damping and
numerical scheme details. The second part is the MiTMoJCo internal output when the
starting routine is invoked: normalized gap frequency k (KGAP), pair current suppression
αsupp (A_SUPP), normalized critical current (Re j̃p(0)), damping due to a normal resis-
tance (αN) and number of fitting exponents (Nexps). Finally, the calculation output
is started. The output can be fed to gnuplot or Python’s numpy.loadtxt routine for
processing (the both treat the rows starting with a hash symbol # as a commentary).
The program terminates as soon as the voltage jump to the gap region is detected.

5 Disclaimer

MiTMoJCo comes without any warranty nor guarantees to produce correct results. The
author accepts no responsibility whatsoever for source code bugs, failures, crashes, ex-
pected or unexpected behavior.

This is user’s responsibility to ensure that the time step dt and the spatial discretiza-
tion dx suits his needs. In the examples 3-5 the ratio dt/dx is controlled by a parameter
DTREL which we set to 0.5. We recommend not to exceed this value if the semi-implicit
scheme like the one presented here is used as the larger values of DTREL may lead to
instability.

In the example 4, when the current is applied fluxon shrinks in size due to the Lorentz
contraction. Ensure that spatial discretization is sufficient to resolve the contracted
fluxon. Ignoring this may lead to unphysical results as soon as the fluxon size becomes
of the order of dx.

19

Dmitry R. Gulevich MiTMoJCo 1.1

References
[1] D. R. Gulevich, V. P. Koshelets, and F. V. Kusmartsev, Phys. Rev. B 96, 024215

(2017).

[2] A. A. Odintsov, V. K. Semenov and A. B. Zorin, IEEE Trans. Magn. 23, 763 (1987).

[3] N. Grønbech-Jensen, S. A. Hattel and M. R. Samuelsen, Phys. Rev. B 45, 12457
(1992).

[4] S. A. Hattel, N. Grønbech-Jensen and M. R. Samuelsen, Phys. Lett. A 178, 150
(1993).

[5] A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 24, 1035 (1967).

[6] A. B. Zorin, I. O. Kulik, K. K. Likharev and J. R. Schrieffer, Sov. J. Low Temp.
Phys. 5, 537 (1979).

[7] J. R. Tucker and M. J. Feldman, Rev. Mod. Phys. 57, 1055 (1985).

20

	Introduction
	Changes between version 1.0 and 1.1
	Basic Usage
	Theory behind MiTMoJCo
	Installation (Linux OS)
	MiTMoJCo interface
	MiTMoJCo Python module for creation of tunnel current amplitudes
	Pre-calculated Tunnel Current Amplitudes
	Optimum filtration of a sinusoidal signal

	Examples
	Example 1: Current-biased SIS junction
	Example 2: Voltage-biased SIS junction under ac drive
	Example 3: Sine-Gordon breather in long Josephson junction
	Example 4: Fluxon in an Annular Josephson junction
	Example 5: Flux Flow Oscillator

	Disclaimer

