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Preparation of MP and PBP-Rx. 
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Determination of optimum dosage of PVDF.
In order to realize the high efficiency of solar water purification (SWP), it’s necessary to design PP in an appropriate way, to promote the water transport without impacting the utilization of incident light. The effect of PVDF’s dosage on SWP was studied. The mass percent of 4, 8, 10, 12, 14, 16 wt% PVDF (to DMF) were selected to prepare PP composites. Fig. S2 shows the optical images and images of their floating states. It could be obviously observed that, as the dosage of PVDF increased, opaque white gels accumulated at the surface of PP, which would impair light harvest. While less dosage of PVDF would damage the mechanical property of PP. Consequently, we selected 8 wt% PVDF (to DMF) as the optimum dosage of PVDF to prepare PP composites.
[image: image2.png]




Determination of the optimum thickness of PU.
Heat management and water transport are both important for SWP. So an appropriate floating state will facilitate the evaporative capability. Here, when the thickness of BP is constant, the floating states of PP samples with different thickness of PU were investigated. As shown in Fig. S3, it’s easy to sink to the bottom of the beaker, when the sample was too thin to maintain the floating state (Fig. S3a), thus weakening the heat management. While sample c (Fig. S3c) was too thick to satisfy water supply (Fig. S3c). Here we selected 10 mm as the optimum thickness of PU to prepare PP composites.
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Determination of the optimum dosage of Bi2S3.
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In order to realize the high efficiency and high stability of SWP device, it’s necessary to investigate the optimum dosage of Bi2S3 to prepare PBP-Rx composites. The amount of 1, 3, 5, 7, 9 mg/mL Bi2S3 (to the volume of DMF) were selected to prepare PBP-R1.5 composites. And we measured the mass change through water evaporation enabled by these composites with different dosage of Bi2S3 under 1 sun illumination. As displayed in Fig. S4a, all composites doped with Bi2S3 exhibited higher mass change. Besides, with the increase of the amount of Bi2S3, the amount of solar steam generated increased. But when the dosage of Bi2S3 was higher than 5mg/mL, some black objects shedding was observed in Fig. S4b, couldn’t well satisfy the requirement of high stability. So we selected 5 mg/mL Bi2S3 (to the volume of DMF) to prepare PBP-Rx composites.
Fabrication of chrysanthemum-like Bi2S3.
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Mechanical and chemical stability of PBP-R1.5.
Table S1 The properties of polyurethane (PU) sponges.
	Bore diameter
(μm)
	Hardness （Asker）（°）
	Elongation
%
	tensile strength
Kg/cm2
	Tear strength
Kg/cm
	Bulk density
Kg/m3

	60±5
	65-80
	0.5
	1.5
	80
	22±2


* The data was provided by manufacturers of PU sponges.
Table S2. Essential parameters for different SWP system. (1 Sun=1 kW m-2)
	Materials
	system
	Power density
kW m-2
	Evaporation
rate
	Efficiency
%
	Refs.

	Oligoaniline foam/PHTs
	Floating system
	1
	1.1687 kg m-2 h-1
	80.5
	[1]

	Activated
carbon fiber
	Floating system
	1
	1.22 kg m-2 h-1
	79.4
	[2]

	rGO/MCE membrane-PU
	Floating system
	1
	0.838 kg m-2 h-1
	~60
	[3]

	PU sponges
	Floating system
	1
	0.83 kg m-2 h-1
	~52.2
	[4]

	rGO/PU foam
	Floating system
	1
	0.9 kg m-2 h-1
	65
	[5]

	F-wood/CNTs
	Floating system
	1
	0.95 kg m-2 h-1
	65
	[6]

	RGO/BNC:BNC aerogel
	Floating system
	10
	11.8 kg m-2 h-1
	
	[7]

	Carbon black
	Suspending system
	10
	
	69
	[8]

	Hollow carbon beads
	Floating system
	1
	1.28 L m−2 h−1
	
	[9]

	Flame-treated wood
	Floating system
	1
	
	~72
	[10]

	Carbonized mushroom
	Floating system
	1
	1.475
	~78
	[11]

	Carbon
Sponges
	Floating system
	1
	1.39 kg m-2 h-1
	90
	[12]

	rGO nanofluids
	Suspending system
	1
	0.9 kg m-2 h-1
	~47
	[13]

	SiO2/Ag@TiO2
core–shell
	Suspending system
	1
	5.68
	70.8
	[14]

	Au nanofluids
	Suspending system
	220
	
	80.3
	[15]

	3D printed CNT/GO
	Floating system
	1
	1.25
	85.6
	[16]

	Carbonized rice straw-bacterial cellulose/culms
	Floating system
	1
	1.2 kg m-2 h-1
	75.8
	[17]

	Carbon fibers
	Floating system
	1
	1.47
	92.5
	[19]

	Aluminium
nanoparticles
	Floating system
	4
	5.7
	88.4
	[22]

	Ti3C2 membrane
	Floating system
	
	1.33
	84
	[23]

	Bi2S3/PVDF-PU sponges
	Floating system
	1
	1.66 kg m-2 h-1
	92.9
	Our work


The analysis of heat loss[11]

 REF _Ref11912722 \r \h  \* MERGEFORMAT 
[18]

 REF _Ref11912723 \r \h  \* MERGEFORMAT 
[19].
(1) Radiation:
The radiation heat flux was calculated based on the Stefan-Boltzmann Equation:
Φ=εAσ(T14-T24)                                                   (1)
Where Φ (W m-2) is the radiation heat flux; ε is the emissivity of samples, that’s 0.97 (estimated based on Kirchhoff Law[20], ε=α, α-absorbility, Note S); A (m2) is the surface area (D46 mm); σ is the Stefan-Boltzmann constant, that’s 5.67×10-8 W m-2 K-4; T1 is the average surface temperature (≈43.6 °C) of samples at a steady state under 1 sun irradiation, T2 is the temperature (≈42 °C) of steam on the top of samples at a steady state under 1 sun irradiation. According to the equation (1), the radiation heat flux is calculated to be ~11 W m-2, which is ~1% of solar flux.
(2) Convection:
The convection heat flux is calculated via Newton' law of cooling:
Q= hAΔT                                                        (2)
where Q (W m-2) is the convection heat flux; h is the convection heat transfer coefficient, that’s about 5 W m-2 K-1 as reported[21]; A (m2) is the surface area (D46 mm); ΔT (1.6 K)is different value between the average surface temperature of samples and the ambient temperature upward the samples under 1 sun illumination. According to the equation (2), the convection heat flux is estimated to be ~8 W m-2, which is ~1% of solar flux.
(3) Conduction: 
The conduction heat flux was calculated based on the flowing Equation:
Q=CmΔT                                                        (3)
Where Q is the heat loss; C is the specific heat capacity of water, that’s 4.2 J ℃-1 g-1; m (65 g) is the weight of water used in the paper; ΔT (1.2 ℃) is the temperature difference of pure water after and before 1 h solar irradiation under 1 sun. According to the equation (3), the conduction heat flux can be estimated to be ~54 W m-2, which is ~5% of solar flux.
Note S calculation of emissivity[19]. 
ε=α=1-R-T=1-1.5%-1.5%=0.97  α-absorbility, ε-emissivity.
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Fig. S1. Schematic fabrication process of MP and PBP-Rx.
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Fig. S2. (a-c) Optical images of floating states for PP with different mass percent of PVDF; Optical images for PP with different mass percent of PVDF (inset); (d) Optical images for PP with different mass percent of PVDF.
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Fig. S3. (a-c) Optical images of floating states for PP with different thickness of PU.
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Fig. S4. (a) Mass change of SWP device with PP and PBP-R1.5 (with different dosage of Bi2S3) under 1 sun illumination, respectively; (b) Optical images of PBP-R1.5 (with different dosage of Bi2S3).
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Fig. S6. The FE-SEM images for Rx.
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Fig. S5. Schematic diagram illustrating (a) design principle of the architecture inspired by chrysanthemum and synthesis procedure of chrysanthemum-like Bi2S3 architecture; (b) The incident light can be guided into the gaps and be fully absorbed for solar thermal conversion; (c) The absorption spectra of Rx.
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Fig. S7. The cross section view of temperature distributions of SWP device (a) without and (b) with PU after 1h illumination were monitored by IR camera; (c) The optical image of (ⅰ) Top and side view (ⅱ) side view of SWP device with floating PBP.
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Fig. S9. (a) Transmittance and (b) reflectance spectra of R1.5, PU and PBP-R1.5, respectively. 
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Fig. S8. (a-c) Optical images of free floating state of ⅰ) MP; ⅱ) pristine PU; ⅲ) PBP.
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Fig. S10. The optical images of (a) bending and (b) compression tests of PBP-R1.5; (c) The floating states of PBP-R1.5 before and after 24 h immersion in 2 M HCl and 2 M KOH aqueous solution.
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