A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables

S. Askaria, N. Montazerina,[footnoteRef:2], M.H. Fazel Zarandib [2: Corresponding Author: mntzrn@aut.ac.ir, mntzrn@hotmail.com]

a Mechanical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran.
b Industrial Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran.

Abstract-There are two popular types of forecasting algorithms for Fuzzy Time Series (FTS). One is based on intervals of universal sets of independent variables and the other is based on fuzzy clustering algorithms. Clustering based FTS algorithms are preferred since role and optimal length of intervals are not clearly understood. Therefore data of each variable are individually clustered which requires higher computational time. Fuzzy Logical Relationships (FLRs) are used in existing FTS algorithms to relate input and output data. High number of clusters and FLRs are required to establish precise input/output relations which incur high computational time. This article presents a forecasting algorithm based on fuzzy clustering (CFTS) which clusters vectors of input data instead of clustering data of each variable separately and uses linear combinations of the input variables instead of the FLRs. The cluster centers handle fuzziness and ambiguity of the data and the linear parts allow the algorithm to learn more from the available information. It is shown that CFTS outperforms existing FTS algorithms with considerably lower testing error and running time.

Keywords: Fuzzy time series, Fuzzy clustering, Fuzzy C-Means (FCM), Least square estimate (LSE), Forecasting

1. Introduction
Fuzzy Time Series (FTS) is a universal forecasting method in a fuzzy environment [1-3]. FTS is used in various areas such as forecasting electricity load demand [4], stock exchange [5-10], rainfall and temperature forecasting [11], pollution [12], enrollments [13-15], etc. There are two major categories of FTS algorithms: FTS algorithms based on intervals of the universal set [3,16] and FTS algorithms based on fuzzy clustering [17-22]. The main problem with the interval based algorithms is the length of the intervals which is not clear how to be chosen. Many attempts are made to find optimal intervals but the problem is still unsolved [23-26]. Clustering based algorithms are preferred since they are interval independent.
A high-order multi-variable algorithm for FTS (HMV-FTS) was presented based on fuzzy clustering to improve forecasting accuracy and handle fuzzy time series with high order and multi-dimensional input space simultaneously [17]. HMV-FTS outperforms existing FTS algorithms as examined by various data sets of different contexts. Data of each variable of the FTS are clustered individually in HMV-FTS and other clustering based algorithms which demands higher running time. The objective of the present work is to establish a fast and precise forecasting algorithm for FTS, based on fuzzy clustering and linear combinations of the input variables (CFTS). In contrast to the existing clustering based FTS algorithms which cluster data of each variable separately, CFTS clusters the input data vectors in the clustering section of the algorithm.
This paper is organized as follows: Mathematical framework of CFTS algorithm is discussed in Section 2. The algorithm is evaluated in Section 3. Computational cost of the algorithm is investigated in Section 4. CFTS is compared with recent FTS algorithms in Section 5 and concluding remarks are drawn in Section 6.

2. Mathematical formulation of CFTS algorithm

We introduce FTS briefly and then propose CFTS algorithm. Let be the universe of discourse on which fuzzy sets are defined and be a collection of s, then is defined as a fuzzy time series on . In general, is a linguistic variable with linguistic values, . If is related to , the Fuzzy Logical Relationship (FLR) between them is represented by which is a first order FLR. In this FLR, and are called current state and next state and denoted by and , respectively, and their FLR is shown as . FLRs with the same current states are grouped as a Fuzzy Logical Relationship Group (FLRG). For forecasting, current state of the FLR of the forecast time is constructed and then the FLRG with current state identical with that of the forecast FLR is found. Next state of the forecast FLR is taken the same as the next state of this FLRG. Finally, crisp value of the forecast is computed from defuzzification of the fuzzy value(s) of the forecast obtained from the next state of the forecast FLR [16,2].
In the CFTS algorithm, the input data are clustered as in the clustering based FTS algorithms but no FLR is used. Instead of FLRs, CFTS uses combinations of input variables to map the input data into the output space. For high order FTS, one can simply apply CFTS algorithm on the lagged variables of the FTS to forecast future values of the dependent variable.

Consider and as the input and output data of the FTS where is number of observations and is number of the FTS variables. input data vector is and its corresponding output is . We group matrix into clusters using Fuzzy C-Means algorithm, FCM [27]. For this purpose, following index is minimized with the given constraint [27]:
	(1)
	

Where, is the number of clusters, is center of the cluster (row of cluster centers matrix,), is membership grade of the data vector in the cluster (element of partition matrix,), is distance, is degree of fuzziness and is the covariance norm matrix, defined as:
	(2)
	

Since is a symmetric matrix, . Using Lagrange Multipliers Method (LMM), is written as:

Zeroing derivatives of with respect to , and yields:

Therefore,
	(3)
	

These equations are repeatedly updated until changes in and become negligible. After deciding on cluster centers, Membership Function (MF) of the variable in the cluster is computed as:
	(4)
	

Weighted contribution of each cluster in the calculation of the output associated with is computed as:
	(5)
	

Consider the matrix such that: . Then output of CFTS algorithm for is considered as the weighted linear combinations of the input variables.
	(6)
	

The coefficients s are obtained by minimizing the following index:
	(7)
	

Zeroing derivative of with respect to yields:

	(8)
	

Using , (8) is written as the following set of equations:
	(9)
	

Since number of equations in is usually higher than number of unknowns, it is solved by Least Square Estimate method (LSE) where the error is minimized.

However, sometimes is ill-conditioned and pseudo-inverse of this matrix should be used. So, is calculated from:
	(10)
	

Where, is pseudo-inverse of .

3. Test cases

Results of the CFTS algorithm are compared with those of the other FTS algorithms and popular forecasting methods. Four test cases are studied to evaluate CFTS algorithm. Degree of fuzziness, , is taken 2 for all cases but one can choose an optimal value of which minimizes the testing error. We use Root Mean Square Error (RMSE) to compare the algorithms performances for both training and testing data sets.
	(11)
	

Where, is output of the model and is number of data points used for training or testing. For all the cases, errors are reported as the average of thirty runs.
The first test case presents a detailed example of applying CFTS on the real data sets. The other test cases follow the same procedure.

3.1. TAIEX data

TAIEX data are frequently used for evaluation of the FTS algorithms. There are two variables and 226 data vectors in these data where 208 of them are used for training and the remaining data are used for testing as in the FTS algorithm of [19]. For all the TAIEX data sets studied in this work, the close price is considered as a function of the high price and low price . We use seven clusters as [19]. The following step-by-step procedure is used to apply CFTS algorithm on these data.

Step 1: Number of clusters , and degree of fuzziness , are assigned which are and in this case.

Step 2: The training input data are clustered using (3). Fuzzy clustering given in (3) is an iterative method which starts with a randomly assigned partition matrix from which cluster centers are computed. Then is calculated from . If where is a predefined threshold (We use for all test cases.) and is norm of , the solution is converged. If , this procedure is continued to iterations until so that the clustering algorithm converges. is final partition matrix from which final cluster centers matrix is computed using (3). Final of these data is:

Step 3: and are calculated from (4) and (5), respectively. Then, is computed using and the training input data matrix .

Step 4: Parameters of the linear combinations, , are calculated using (10) where is output of the training data set. Then, vector of parameters of the linear equation, , is extracted from . For this case, is:

The following matrix includes parameters of the linear parts where the row is parameters of the linear equation, .

Step 5: For any training or testing input data vector , and are calculated from (4) and (5), respectively. Then, output of the CFTS algorithm for is computed by (6) as following:

Note that number of clusters , is not optional and should be computed. Optimal number of clusters is simply found by running the algorithm for and choosing corresponding to the minimum testing error. Although we take degree of fuzziness but one can find the optimal by the method used for . We use this method for all cases studied in this paper.
For this data set, training and testing errors of the CFTS algorithm are 35.58 and 34.38 and those of the clustering based FTS algorithm of [19] are 142.93 and 91.1, respectively. So, testing RMSE of the CFTS algorithm is 62% less than testing error of the FTS algorithm of [19]. Output of the algorithm for training and testing data is shown in Fig. 1.

[image:]
Fig. 1. Comparison of the CFTS algorithm with the FTS algorithm of [19] for TAIEX data of 2004.

Moreover, TAIEX data of 1999 are simulated with five clusters and results of the CFTS algorithm are compared with those of the other FTS algorithms. Output of the CFTS algorithm is shown in Fig. 2.

[image:]
Fig. 2. Output of the CFTS algorithm versus actual data for the TAIEX data of 1999.

These data were also studied using an FTS algorithm combined with Genetic Algorithms (FTSGA) [28]. It was shown that FTSGA is more accurate than other FTS algorithms. Testing RMSE of the CFTS algorithm is compared with those of the FTSGA and other algorithms given in [28] in Table 1. It is observed that testing RMSE of the CFTS algorithm is 47% less than that of the FTSGA algorithm.

Table 1. Testing RMSE of various forecasting algorithms for the TAIEX data of 1999.
	FTSGA
	Cheng
	Huarng
	Yu
	Chen
	CFTS

	103
	109
	109
	142
	149
	54.78

Cluster centers and parameters of the CFTS algorithm for the TAIEX data of 1999 are:

,
One can assign linguistic terms to the cluster centers and express CFTS results as conditional fuzzy rules. For example, CFTS parameters of the TAIEX data of 1999 are written as:

There are two groups of FTS forecasting algorithms one based on the intervals of the universe of discourse and the other is based on the clustering. The differences between the CFTS algorithm and the other FTS algorithms are summarized as followings:
1. The interval based FTS algorithms need to find optimal length of each interval which is not fully understood and researchers are still trying to solve the problem. The CFTS algorithm is based on fuzzy clustering and does not use any interval.
2. The clustering based FTS algorithms deal with fuzziness, uncertainty and ambiguity of the data using fuzzy clusters instead of the intervals. They use FLRGs to establish relations between inputs and outputs but these relations are not strong enough to model behavior of the data with high precision. The interval based algorithms suffer from the same problem. These algorithms usually require high number of clusters or intervals to model the data with the desired testing error which incur high computational time. The CFTS algorithm handles fuzziness of the data by fuzzy clusters as the clustering based FTS algorithms but establishes input/output relations by linear combinations of the input variables instead of the FLRs. These linear relations provide higher degrees of freedom for learning from the training data set and make CFTS more accurate than the other FTS algorithms. Also, number of clusters needed for the CFTS algorithm to achieve the desired testing error is very smaller than those of the other FTS algorithms because of the linear relations. This makes CFTS computationally efficient and fast.
3. Both interval and clustering based FTS algorithms use FLRs as input/output relations. Using the forecasting FLR and the FLRGs, fuzzy value(s) of the forecast is computed which requires defuzzification. However, CFTS gives crisp value of the output and does not require any defuzzification.

3.2. Enrollment problem
Enrollment problem is the basic data set studied by the FTS algorithms where all the data are used for training. Training errors of various FTS algorithms are given in Table 2 which are taken from [17]. Seven clusters are used in this case since other algorithms in the table also use seven intervals or clusters.

Table 2. Training RMSE of various FTS forecasting algorithms for the enrollment problem, all collected from [17].
	Song and Chissom
	Sullivan and Woodall
	Chen
	Huarng
	Cheng et al. TFA
	Cheng et al.
	CFTS

	605.4
	621.3
	638.36
	476
	511
	478.5
	319.56

It is observed that RMSE of the CFTS algorithm is 33% lower than those of the other popular FTS algorithms. Cluster centers and parameters of the linear combination functions are:

,

3.3. Box-Jenkins data
This is a data set with five input variables and 294 data vectors. The first 270 data vectors are used for training and the rest for testing using four clusters. Training and testing RMSE of the CFTS algorithm for these data are 0.2264 and 0.4583, respectively. These data are also modeled using ANFIS (Adaptive Network Based Fuzzy Inference System) [29]. Training and testing RMSE of the ANFIS with triangular MFs, 32 rules and linear THEN part are obtained as 0.1408 and 0.4484, respectively. It is concluded that testing error of the CFTS algorithm with four clusters is comparable with that of the ANFIS with 32 rules. Output of the CFTS algorithm versus actual output is shown in Fig. 3 for the training and testing data sets.

[image:]
Fig. 3. Actual output of the Box-Jenkins data versus output of the CFTS algorithm.

Cluster centers and parameters of the CFTS algorithm for the Box-Jenkins data are:

,

3.4. Gas data
Gas consumption data [17] have three variables and 1238 data vectors. 867 data vectors are used for training and the rest for testing the algorithm with ten clusters. Training and testing RMSE of the CFTS algorithm are 1.6272 and 1.6196 and those of the ANFIS with triangular MFs, 27 rules and linear THEN part are 1.4483 and 1.597, respectively. So, testing error of the CFTS algorithm is comparable with that of the ANFIS. Output of CFTS algorithm for gas data is shown in Fig. 4. Cluster centers and parameters of the linear functions of the CFTS algorithm for the gas data are:

[image:]
Fig. 4. Output of the CFTS algorithm compared with actual gas data, (a) Training data (b) Testing data.

CFTS algorithm allows dealing with fuzziness, ambiguity, vagueness and uncertainty of the data using cluster centers as the other FTS algorithms but provides higher forecasting precision due to learning using parameters of the linear combinations which make it superior to the other FTS algorithms.

4. Computational costs of the CFTS algorithm
Sometimes, existing FTS algorithms need high number of clusters or intervals to learn behavior of the data which demands high computational time. Running time of the CFTS algorithm is compared to those of HMV-FTS and another clustering based FTS algorithm given in [17]. Results are given in Table 3.

Table 3. Comparison of running time (seconds) of the CFTS algorithm with other FTS algorithms.
	Data set
	No. of clusters
	HMV-FTS algorithm
	Cluster based algorithm
	CFTS algorithm

	Box-Jenkins data
	10
	52.3777
	51.2010
	6.5019

	Enrollment data
	7
	0.5989
	0.5697
	0.3227

	Gas data
	30
	607.8671
	550.5880
	371.0061

	TAIEX data
	50
	506.3641
	476.2675
	314.6091

It is observed that running time of the CFTS algorithm is considerably lower than that of other FTS algorithms especially when high number of clusters is used. CFTS algorithm learns behavior of the data with lower number of clusters than those required for the other FTS algorithms because of parameters of the linear parts. Although high number of clusters considerably reduces training error of the CFTS algorithm but increases testing error because of overtraining due to high number of parameters of the linear parts. Overtraining causes the algorithm to learn unimportant details of the data which reduces its generalization ability and increases testing error. So, number of clusters should be chosen such that the desired training or testing error acquired and excessive number of clusters should be avoided. Moreover, computational cost of the algorithm increases with number of clusters. As an instance, variation of the training and testing errors of CFTS for the Box-Jenkins data is shown in Fig. 5. It is observed that although CFTS algorithm learns more details of the data with higher cluster numbers which causes lower training error, but its generalization ability decreases because of the overtraining which is reflected by higher testing error.

[image:]
Fig. 5. Variation of the CFTS algorithm performance with number of clusters, (a) Training error, (b) Testing error.

5. Comparison of CFTS with recent FTS algorithms
TAIEX data from 1997 to 2003 are studied in [30]. Now, the data for 1997 and 1998 are not available on the Internet. We study these data from 1999 to 2004 to compare CFTS with other FTS algorithms. We use data vectors of November and December of each of the data sets for testing and the rest for training CFTS as in [30]. Two FTS algorithms are presented in [30]. The first is based on Entropy Discretization (ED) and the second is combination of Entropy Discretization and Fast Fourier Transform (EDFFT) [30]. These algorithms are compared with 9 other methods including Chen’s algorithm, Yu’s algorithm, Chang’s algorithm, Hsieh’s algorithm, AR(1), AR(2), GARCH-M, GARCH-AR(1) and GARCH-AR(2) [30]. Testing error of CFTS is compared with those of the above algorithms as given in Table 4. Errors of these algorithms are taken from Table 9 of [30] and not computed in this work.

Table 4. Performances of various FTS algorithms, all collected from [30].
	
	1999
	2000
	2001
	2002
	2003
	Average

	Chen
	120
	176
	148
	101
	74
	124

	Yu
	145
	191
	167
	75
	66
	129

	Chang et al.
	100
	173
	119
	61
	53
	101

	Hsieh et al.
	86
	135
	93
	62
	59
	87

	AR(1)
	244
	375
	515
	98
	97
	266

	AR(2)
	246
	376
	506
	99
	92
	264

	GARCH-M
	185
	382
	611
	116
	133
	285

	GARCH-AR(1)
	103
	151
	102
	72
	64
	98

	GARCH-AR(2)
	316
	368
	115
	62
	221
	216

	ED
	89
	116
	61
	67
	46
	76

	EDFFT
	83
	115
	62
	60
	46
	73

	CFTS
	40
	61
	55
	37
	25
	44

ED and EDFFT obviously outperform other algorithms. Based on the average testing error, EDFFT is the best among all the algorithms studied in [30]. But testing error of CFTS is 39.73% less than that of EDFFT algorithm.
TAIEX data of 2004 are studied in [31] where the last 45 data vectors are used for testing and the rest for training. Results of modeling this data set with various FTS algorithms are presented in [31]. We model these data using CFTS by taking training and testing data the same as those of [31].Training and testing RMSE of CFTS is compared to those of other FTS algorithms in Table 5. Note that results of the other FTS algorithms are taken from Table 2 of [31] and are not computed here.

Table 5. Performances of various FTS algorithms for the TAIEX data of 2004, all collected from [31].
	Method
	RMSE (Train)
	RMSE (Test)

	Song and Chissom
	102.11
	77.86

	Chen (1996)
	92.79
	77.18

	Chen (2002)
	19.71
	71.98

	Huarng and Yu
	90.43
	63.57

	Huarng et al.
	-
	72.35

	Yu and Huarng
	-
	67.00

	Aladag et al.
	45.83
	69.80

	Chen and Chen
	-
	57.73

	Aladag et al.
	44.48
	47.95

	CFTS
	38.14
	27.62

Testing error of [31] is the smallest one among those of the eight FTS algorithms. However, testing error of CFTS is 42.4% less than testing error of [31]. Results of modeling the TAIEX data from 1999 to 2004 are shown in Fig. 6.

[image:]
Fig. 6. Actual and forecasted TAIEX data from 1999 to 2004.

Finally, TAIEX data from 2005 to 2014 are forecasted using CFTS. The last 45 data vectors of each data set are used for testing and the rest for training. Actual data and CFTS outputs for each year are shown in Figs. 7 and 8.

[image:]
Fig. 7. Actual and forecasted TAIEX data from 2005 to 2010.

[image:]
Fig. 8. Actual and forecasted TAIEX data from 2011 to 2014.

Training and testing errors of CFTS for the TAIEX data from 1999 to 2014 are given in Table 6. Also, optimal number of clusters for each data set is in the table which is chosen such that the testing error of CFTS becomes minimum.

Table 6. Training and testing errors and optimal number of clusters of CFTS for the TAIEX data from 1999 to 2014.
	Year
	RMSE (Train)
	RMSE (Test)
	

	Year
	RMSE (Train)
	RMSE (Test)
	

	1999
	57.9444
	39.8984
	3
	2007
	33.7431
	64.9964
	3

	2000
	83.7910
	60.7800
	2
	2008
	54.8430
	45.0709
	6

	2001
	43.3371
	54.7053
	5
	2009
	40.5057
	31.9392
	2

	2002
	43.7570
	36.7702
	2
	2010
	31.9017
	19.6151
	5

	2003
	30.8842
	24.5705
	2
	2011
	36.9288
	37.3153
	5

	2004
	38.1382
	27.6108
	4
	2012
	29.0916
	28.0484
	3

	2005
	22.1847
	25.1428
	2
	2013
	25.3076
	20.0725
	2

	2006
	29.7853
	24.8367
	6
	2014
	24.5502
	31.5219
	3

[bookmark: _GoBack]
6. Conclusions
A clustering based forecasting algorithm for fuzzy time series (CFTS) is proposed. CFTS algorithm deals with ambiguity, vagueness and uncertainty of the Fuzzy Time Series (FTS) using fuzzy clusters and replaces FLRs of the conventional FTS algorithms with linear combinations of the input variables. Parameters of the linear combinations are estimated by the Least Square Estimate (LSE) which enable the algorithm to learn behavior of the data more precisely compared to the existing FTS algorithms. The algorithm is evaluated using various data sets. Modeling the enrollment data as the basic problem of FTS shows that error of the CFTS algorithm is 33% less than that of the best algorithm among five popular FTS algorithms. Forecasting TAIEX data demonstrates that testing error of CFTS algorithm is 62% less than testing error of FTS algorithm. Moreover, it is shown that CFTS algorithm is 47% more accurate than the FTS algorithm combined with Genetic Algorithms (FTSGA). Although CFTS algorithm outperforms existing FTS algorithms but its effectiveness is confirmed if it provides satisfactory simulation of the FTS compared with other popular forecasting methods. For this purpose, Box-Jenkins and natural gas consumption data are forecasted using the CFTS algorithm and it is observed that testing errors of the algorithm are comparable with those of the ANFIS. It is also shown that CFTS algorithm is faster than the other FTS algorithms. High accuracy and low running time makes CFTS an efficient algorithm for forecasting fuzzy time series.

References
[1] Q. Song, B.S. Chissom, Forecasting enrollments with fuzzy time series-part I, Fuzzy Sets and Systems, 54 (1) (1993) 1-9.
[2] Q. Song, B.S. Chissom, Fuzzy time series and its models, Fuzzy Sets and Systems, 54 (3) (1993) 269-277.
[3] Q. Song, B.S. Chissom, Forecasting enrollments with fuzzy time series-part II, Fuzzy Sets and Systems, 62 (1) (1994) 1-8.
[4] R. Efendi, Z. Ismail, M.M. Deris, A new linguistic out-sample approach of fuzzy time series for daily forecasting of Malaysian electricity load demand, Applied Soft Computing 28 (2015) 422–430.
[5] K.H. Huarng, T.H.K. Yu, Ratio-based lengths of intervals to improve fuzzy time series forecasting, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 36 (2) (2006) 328-340.
[6] J. Park, D.J. Lee, C.K. Song, M.G. Chun, TAIFEX and KOSPI 200 forecasting based on two-factor high-order fuzzy time series and particle swarm optimization, Expert Systems with Applications, 37 (2) (2010) 959-967.
[7] W. Qiu, X. Liu, L. Wang, Forecasting shanghai composite index based on fuzzy time series and improved C-fuzzy decision trees, Expert Systems with Applications, 39 (9) (2012) 7680-7689.
[8] H.L. Wong, Y.H. Tu, C.C. Wang, Application of fuzzy time series models for forecasting the amount of Taiwan export, Expert Systems with Applications, 37 (2) (2010) 1465-1470.
[9] T.H.K. Yu, K.H. Huarng, A bivariate fuzzy time series model to forecast the TAIEX, Expert Systems with Applications, 34 (4) (2008) 2945-2952.
[10] H.J. Teoh, T.L. Chen, C.H. Cheng, H.H. Chu, A hybrid multi-order fuzzy time series for forecasting stock markets, Expert Systems with Applications, 36 (4) (2009) 7888-7897.
[11] S.T. Li, S.C. Kuo, Y.C. Cheng, C.C. Chen, A vector forecasting model for fuzzy time series, Applied Soft Computing 11 (3) (2011) 3125–3134.
[12] D. Domanska, M. Wojtylak, Application of fuzzy time series models for forecasting pollution concentrations, Expert Systems with Applications, 39 (9) (2012) 7673-7679.
[13] S.M. Chen, N.Y. Chung, Forecasting Enrollments of Students by Using Fuzzy Time Series and Genetic Algorithms, Information and Management Sciences, 17 (3) (2006) 1-17.
[14] I.H. Kuo, S.J. Horng, T.W. Kao, T.L. Lin, C.L. Lee, Y. Pan, An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization, Expert Systems with Applications, 36 (3) (2009) 6108-6117.
[15] Y.L. Huang, S.J. Horng, M. He, P. Fan, T.W. Kao, M.K. Khan, J.L. Lai, I.H. Kuo, A hybrid forecasting model for enrollments based on aggregated fuzzy time series and particle swarm optimization, Expert Systems with Applications, 38 (7) (2011) 8014-8023.
[16] S.M. Chen, Forecasting enrollments based on fuzzy time series, Fuzzy Sets and Systems, 81 (3) (1996) 311-319.
[17] S. Askari, N. Montazerin, A high-order multi-variable Fuzzy Time Series forecasting algorithm based on fuzzy clustering, Expert Systems with Applications, 42 (4) (2015) 2121-2135.
[18] S.M. Chen, K. Tanuwijaya, Multivariate fuzzy forecasting based on fuzzy time series and automatic clustering techniques, Expert Systems with Applications, 38 (8) (2011) 10594-10605.
[19] C.H. Cheng, G.W. Cheng, J.W. Wang, Multi-attribute fuzzy time series method based on fuzzy clustering, Expert Systems with Applications, 34 (2) (2008) 1235-1242.
[20] E. Egrioglu, C.H. Aladag, U. Yolcu, V.R. Uslu, N.A. Erilli, Fuzzy time series forecasting method based on Gustafson-Kessel fuzzy clustering, Expert Systems with Applications, 38 (8) (2011) 10355-10357.
[21] C.H. Aladag, U. Yolcu, E. Egrioglu, A.Z. Dalar, A new time invariant fuzzy time series forecasting method based on particle swarm optimization, Applied Soft Computing, 12 (10) (2012) 3291–3299.
[22] O. Duru, E. Bulut, A non-linear clustering method for fuzzy time series: Histogram damping partition under the optimized cluster paradox, Applied Soft Computing, 24 (2014) 742–748.
[23] U. Yolcu, E. Egrioglu, V.R. Uslu, M.A. Basaran, C.H. Aladag, A new approach for determining the length of intervals for fuzzy time series, Applied Soft Computing, 9 (2) (2009) 647–651.
[24] M. Avazbeigi, S.H. Hashemi Doulabi, B. Karimi, Choosing the appropriate order in fuzzy time series: A new N-factor fuzzy time series for prediction of the auto industry production, Expert Systems with Applications, 37 (8) (2010) 5630-5639.
[25] E. Egrioglu, C.H. Aladag, U. Yolcu, V.R. Uslu, M.A. Basaran, Finding an optimal interval length in high order fuzzy time series, Expert Systems with Applications, 37 (7) (2010) 5052-5055.
[26] L. Wang, X. Liu, W. Pedrycz, Effective intervals determined by information granules to improve forecasting in fuzzy time series, Expert Systems with Applications, 40 (14) (2013) 5673-5679.
[27] N.R. Pal, K. Pal, J.M. Keller, J.C. Bezdek, A Possibilistic Fuzzy c-Means Clustering Algorithm, IEEE Transactions on Fuzzy Systems, 13 (4) (2005) 517-530.
[28] Q.S. Cai, D. Zhang, B. Wu, S.C.H Leung, A novel stock forecasting model based on fuzzy time series and genetic algorithm, Procedia Computer Science, 18 (2013) 1155–1162.
[29] J.S.R. Jang, ANFIS: Adaptive-Network-based Fuzzy Inference Systems, IEEE Transactions on Systems, Man, and Cybernetics, 23 (3) (1993) 665-685.
[30] M.Y. Chen, B.T. Chen, Online fuzzy time series analysis based on entropy discretization and a Fast Fourier Transform, Applied Soft Computing, 14 (2014) 156–166.
[31] C.H. Aladag, U. Yolcu, E. Egrioglu, E. Bas, Fuzzy lagged variable selection in fuzzy time series with genetic algorithms, Applied Soft Computing, 22 (2014) 465–473.
22
image40.wmf
A

oleObject40.bin

image41.wmf
T

A

A

=

oleObject41.bin

image42.wmf
1

J

oleObject42.bin

image43.wmf
å

å

å

å

=

=

=

=

÷

÷

ø

ö

ç

ç

è

æ

-

+

-

=

N

1

j

c

1

i

ij

j

N

1

j

c

1

i

2

A

i

j

m

ij

*

1

1

u

v

x

u

J

l

r

r

oleObject43.bin

image44.wmf
*

1

J

oleObject44.bin

image45.wmf
i

v

r

oleObject45.bin

image46.wmf
ij

u

oleObject46.bin

image47.wmf
j

l

oleObject47.bin

image48.wmf
(

)

(

)

1

c

1

k

1

m

1

2

A

k

j

2

A

i

j

ij

c

1

i

ij

j

*

1

j

2

A

i

j

1

m

ij

ij

*

1

N

1

j

m

ij

N

1

j

j

m

ij

i

T

i

j

T

N

1

j

m

ij

i

*

1

v

x

v

x

u

0

1

u

J

,

0

v

x

mu

u

J

u

x

u

v

A

A

,

0

v

x

A

A

u

v

J

-

=

-

=

-

=

=

=

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

-

=

Þ

=

-

=

¶

¶

=

+

-

=

¶

¶

=

Þ

=

=

-

+

=

¶

¶

å

å

å

å

å

r

r

r

r

r

r

r

r

r

r

r

l

l

oleObject48.bin

image49.wmf
1

c

1

k

1

m

1

2

A

k

j

2

A

i

j

ij

N

1

j

m

ij

N

1

j

j

m

ij

i

v

x

v

x

u

,

u

x

u

v

-

=

-

=

=

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

-

=

=

å

å

å

r

r

r

r

r

r

oleObject49.bin

image50.wmf
U

oleObject50.bin

image51.wmf
V

oleObject51.bin

image52.wmf
th

q

oleObject52.bin

image53.wmf
th

i

oleObject53.bin

image54.wmf
(

)

[

]

N

,

1

j

v

x

v

x

,

v

x

v

x

u

2

qi

qj

2

qi

qj

1

c

1

k

1

m

1

2

qk

qj

2

qi

qj

qij

Î

"

-

=

-

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

-

=

-

=

-

å

oleObject54.bin

image55.wmf
j

x

r

oleObject55.bin

image56.wmf
å

Õ

Õ

=

=

=

=

c

1

i

r

1

q

qij

r

1

q

qij

ij

u

u

t

oleObject56.bin

image57.wmf
(

)

*

N

1

r

X

´

+

oleObject57.bin

image58.wmf
(

)

[

]

[

]

N

,

1

j

,

r

,

1

q

x

x

,

1

x

qj

*

j

1

q

*

j

1

Î

Î

"

=

=

+

oleObject58.bin

image59.wmf
[

]

j

*

j

x

1

x

r

r

=

oleObject59.bin

image60.wmf
å

å

=

+

=

=

c

1

i

1

r

1

q

*

qj

iq

ij

j

x

p

y

t

oleObject60.bin

image61.wmf
iq

p

oleObject61.bin

image62.wmf
2

j

c

1

i

1

r

1

q

*

qj

iq

ij

2

y

x

p

J

÷

÷

ø

ö

ç

ç

è

æ

-

=

å

å

=

+

=

t

oleObject62.bin

image63.wmf
2

J

oleObject63.bin

image64.wmf
iq

p

oleObject64.bin

image65.wmf
Þ

=

÷

÷

ø

ö

ç

ç

è

æ

-

=

¶

¶

å

å

=

+

=

0

x

y

x

p

p

J

*

qj

ij

j

c

1

i

1

r

1

q

*

qj

iq

ij

iq

2

t

t

oleObject65.bin

image66.wmf
[

]

N

,

1

j

0

y

x

p

j

c

1

i

1

r

1

q

*

qj

iq

ij

Î

"

=

-

å

å

=

+

=

t

oleObject66.bin

image67.wmf
(

)

[

]

[

]

N

,

1

j

,

r

,

1

q

x

x

,

1

x

qj

*

j

1

q

*

j

1

Î

Î

"

=

=

+

oleObject67.bin

image68.wmf
N

oleObject68.bin

image69.wmf
[

]

(

)

[

]

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

=

=

\

=

+

rN

cN

rN

N

1

N

1

cN

N

1

N

1

cN

N

1

rj

cj

rj

j

1

j

1

cj

j

1

j

1

cj

j

1

2

r

2

c

2

r

12

12

2

c

12

12

2

c

12

1

r

1

c

1

r

11

11

1

c

11

11

1

c

11

1

r

i

iq

2

i

1

i

i

T

c

i

2

1

x

...

x

...

x

...

x

...

...

...

...

...

x

...

x

...

x

...

x

...

...

...

...

...

x

...

x

...

x

...

x

...

x

...

x

...

x

...

x

...

H

p

p

p

p

p

,

p

p

p

p

P

y

P

H

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

M

M

M

M

M

M

M

M

M

M

M

M

L

L

r

r

L

r

L

r

r

r

r

r

oleObject69.bin

image70.wmf
y

P

H

r

r

=

oleObject70.bin

image71.wmf
(

)

(

)

P

H

y

P

H

y

e

T

r

r

r

r

-

-

=

oleObject71.bin

image72.wmf
(

)

y

H

H

H

P

0

P

H

H

2

y

H

2

P

e

P

H

H

P

P

H

y

2

y

y

e

T

1

T

T

T

T

T

T

T

r

r

r

r

r

r

r

r

r

r

r

-

=

Þ

=

+

-

=

¶

¶

+

-

=

oleObject72.bin

image73.wmf
H

H

T

oleObject73.bin

image74.wmf
P

r

oleObject74.bin

image75.wmf
(

)

y

H

H

H

P

T

T

r

r

+

=

oleObject75.bin

image76.wmf
(

)

+

H

H

T

oleObject76.bin

image77.wmf
H

H

T

oleObject77.bin

image78.wmf
m

oleObject78.bin

oleObject79.bin

image79.wmf
(

)

å

=

-

=

n

1

j

2

*

j

j

y

y

n

1

RMSE

oleObject80.bin

image80.wmf
*

j

y

oleObject81.bin

image81.wmf
n

oleObject82.bin

image82.wmf
y

oleObject83.bin

image83.wmf
1

x

oleObject84.bin

image84.wmf
2

x

oleObject85.bin

image85.wmf
c

oleObject86.bin

image86.wmf
m

oleObject87.bin

image87.wmf
7

c

=

oleObject88.bin

image88.wmf
2

m

=

oleObject89.bin

image89.wmf
(

)

0

U

oleObject90.bin

image90.wmf
(

)

0

V

oleObject91.bin

image91.wmf
(

)

1

U

oleObject92.bin

image92.wmf
(

)

0

V

oleObject93.bin

image93.wmf
(

)

(

)

e

£

-

0

1

U

U

oleObject94.bin

image94.wmf
e

oleObject95.bin

image95.wmf
00001

.

0

=

e

oleObject96.bin

image96.wmf

oleObject97.bin

image97.wmf
(

)

(

)

0

1

U

U

-

oleObject98.bin

image98.wmf
(

)

(

)

e

>

-

0

1

U

U

oleObject99.bin

image99.wmf
t

image1.wmf
(

)

...

,

2

,

1

,

0

t

,

t

Y

=

Â

Î

oleObject100.bin

image100.wmf
(

)

(

)

e

£

-

-

1

t

t

U

U

oleObject101.bin

image101.wmf
(

)

t

U

U

=

oleObject102.bin

image102.wmf
(

)

t

V

V

=

oleObject103.bin

image103.wmf
V

oleObject104.bin

image104.wmf
ú

û

ù

ê

ë

é

=

6693

6585

5788

5862

6054

5415

5660

6803

6652

5896

5921

6345

5483

5836

V

oleObject1.bin

oleObject105.bin

image105.wmf
qij

u

oleObject106.bin

image106.wmf
ij

t

oleObject107.bin

image107.wmf
H

oleObject108.bin

image108.wmf
ij

t

oleObject109.bin

image109.wmf
X

image2.wmf
(

)

...

,

2

,

1

i

,

t

f

i

=

oleObject110.bin

image110.wmf
P

r

oleObject111.bin

image111.wmf
y

r

oleObject112.bin

image112.wmf
th

i

oleObject113.bin

image113.wmf
[

]

c

,

1

i

p

i

Î

r

oleObject114.bin

image114.wmf
P

r

oleObject2.bin

oleObject115.bin

image115.wmf
P

r

oleObject116.bin

image116.wmf
[

]

0.886

0.025

639.232

0.561

0.368

467.547

0.091

0.852

299.269

1.024

0.065

499.280

0.566

0.446

77.717

0.125

0.707

876.255

0.579

0.462

230.896

P

-

-

-

=

r

oleObject117.bin

image117.wmf
th

i

oleObject118.bin

image118.wmf
th

i

oleObject119.bin

image119.wmf
i

p

r

image3.wmf
(

)

t

F

oleObject120.bin

image120.wmf
ï

ï

ï

ï

ï

î

ï

ï

ï

ï

ï

í

ì

+

+

=

+

+

=

+

+

=

+

+

-

=

+

+

-

=

+

+

=

+

+

-

=

Þ

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

=

2

1

j

7

2

1

j

6

2

1

j

5

2

1

j

4

2

1

j

3

2

1

j

2

2

1

j

1

x

0.8868

x

0.0251

639.2321

y

x

0.5618

x

0.3682

467.5471

y

x

0.0911

x

0.8521

299.2695

y

x

1.0249

x

0.0651

499.2808

y

x

0.5660

x

0.4464

77.7173

y

x

0.1258

x

0.7077

876.2556

y

x

0.5797

x

0.4625

230.8968

y

0.8868

0.0251

639.2321

0.5618

0.3682

467.5471

0.0911

0.8521

299.2695

1.0249

0.0651

499.2808

0.5660

0.4464

77.7173

0.1258

0.7077

876.2556

0.5797

0.4625

230.8968

Q

oleObject121.bin

image121.wmf
[

]

T

rj

j

2

j

1

j

x

x

x

x

K

r

=

oleObject122.bin

image122.wmf
qij

u

oleObject123.bin

image123.wmf
ij

t

oleObject124.bin

image124.wmf
j

x

r

oleObject3.bin

oleObject125.bin

image125.wmf
j

7

j

7

j

6

j

6

j

5

j

5

j

4

j

4

j

3

j

3

j

2

j

2

j

1

j

1

j

y

y

y

y

y

y

y

y

t

t

t

t

t

t

t

+

+

+

+

+

+

=

oleObject126.bin

image126.wmf
c

oleObject127.bin

image127.wmf
,...

3

,

2

c

=

oleObject128.bin

image128.wmf
c

oleObject129.bin

image129.wmf
2

m

=

image4.wmf
(

)

t

f

i

oleObject130.bin

image130.wmf
m

oleObject131.bin

oleObject132.bin

image131.emf
0 50 100 150 200

5200

5400

5600

5800

6000

6200

6400

6600

6800

7000

7200

t

y

y

y

*

(Train)

y

*

 (Test)

y

*

 (FTS)

image132.emf
0 20 40 60 80 100 120 140 160 180 200

6800

7000

7200

7400

7600

7800

8000

8200

8400

8600

8800

t

y

y

y

*

(Train)

y

*

(Test)

image133.wmf
ú

û

ù

ê

ë

é

=

7545

8361

7289

7177

7970

7646

8530

7549

7304

8096

V

oleObject133.bin

image134.wmf
ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

-

=

0.3829

0.5801

265.6488

1.1377

0.1492

176.7553

1.4762

0.5560

693.3983

0.2061

1.2168

170.4176

0.7890

0.0083

1672.4194

Q

oleObject134.bin

oleObject4.bin

image135.wmf
2

1

5

25

2

15

1

2

1

4

24

2

14

1

2

1

3

23

2

13

1

2

1

2

22

2

12

1

2

1

1

21

2

11

1

x

0.3829

x

0.5801

265.6488

y

THEN

V

isr

x

and

V

isr

x

IF

x

1.1377

x

0.1492

176.7553

y

THEN

V

isr

x

and

V

isr

x

IF

x

1.4762

x

0.5560

693.3983

y

THEN

V

isr

x

and

V

isr

x

IF

x

0.2061

x

1.2168

170.4176

y

THEN

V

isr

x

and

V

isr

x

IF

x

0.7890

x

0.0083

1672.4194

y

THEN

V

isr

x

and

V

isr

x

IF

+

+

=

+

-

=

+

-

=

-

+

-

=

+

+

=

oleObject135.bin

image136.wmf
[

]

13459

16417

15906

16893

14702

15380

19154

V

=

oleObject136.bin

image137.wmf
ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

-

=

1.2185

2625.53

8.5290

124353.38

0.2157

20414.45

2.7298

63168.67

0.8558

28043.19

1.1680

33445.26

1.0192

38775.65

Q

oleObject137.bin

image138.emf
0 50 100 150 200 250 300

44

46

48

50

52

54

56

58

60

62

64

t

y

y

y

*

 (Train)

y

*

 (Test)

image139.wmf
ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

=

57.4871

48.6089

51.4746

54.1972

57.4835

48.6071

51.5708

54.2134

0.6456

0.6940

0.3673

0.1427

0.7387

0.8221

0.4638

0.1870

0.8654

0.9780

0.5461

0.2325

V

oleObject138.bin

image140.wmf
ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

-

-

-

-

-

-

=

1.3296

0.4702

0.0845

0.4971

0.8435

7.4243

1.4656

0.5976

0.1493

0.5761

0.8937

7.1801

1.3158

0.4516

0.1746

0.4766

0.8138

7.2212

1.3419

0.4937

0.2816

0.8893

1.2139

8.0458

Q

image5.wmf
(

)

t

F

oleObject139.bin

image141.wmf
ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

29.6210

27.3195

25.0867

7.5608

8.6504

7.4004

9.8589

26.9786

15.5953

23.4996

27.0151

30.4455

26.2818

7.5846

8.5951

7.4062

9.8738

26.9162

15.3816

22.7314

10.9957

12.7770

11.1733

36.0007

27.9345

32.7278

23.4916

14.0335

9.8894

11.8523

V

oleObject140.bin

image142.wmf
ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

-

-

-

-

-

-

=

0.4530

0.2308

0.1750

10.7839

0.6303

0.1106

0.2914

17.6259

0.5216

0.1549

0.6506

16.6361

0.5828

0.3614

0.0493

2.2905

0.7265

0.0641

0.0765

3.9231

0.3126

0.5112

0.0034

1.1182

0.9178

0.0585

0.0625

3.1839

0.6374

0.0060

0.2580

12.5460

1.0102

0.3417

0.1030

7.5882

0.3616

0.6451

0.2091

3.0704

Q

oleObject141.bin

image143.emf
0 100 200 300 400 500 600 700 800

5

10

15

20

25

30

35

40

45

t

y

(a)

900 950 1000 1050 1100 1150 1200

5

10

15

20

25

30

35

t

y

(b)

y

y

*

y

y

*

image144.emf
2 3 4 5 6 7 8 9 10

0.215

0.22

0.225

0.23

0.235

0.24

c

RMSE

(a)

2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

c

RMSE

(b)

image145.emf
0 50 100 150 200

6500

7000

7500

8000

8500

9000

t

y

TAIEX data 1999

0 50 100 150 200 250

4000

6000

8000

10000

12000

y

TAIEX data 2000

t

0 50 100 150 200 250

3000

4000

5000

6000

7000

t

y

TAIEX data 2001

0 50 100 150 200 250

3000

4000

5000

6000

7000

t

y

TAIEX data 2002

0 50 100 150 200 250

4000

4500

5000

5500

6000

6500

t

y

TAIEX data 2003

0 50 100 150 200 250

5000

5500

6000

6500

7000

7500

t

y

TAIEX data 2004

y

y

*

(Train) y

*

(Test)

image146.emf
0 50 100 150 200 250

5600

5800

6000

6200

6400

6600

t

y

TAIEX data 2005

0 50 100 150 200 250

6000

6500

7000

7500

8000

t

y

TAIEX data 2006

0 50 100 150 200 250

7000

8000

9000

10000

t

y

TAIEX data 2007

0 50 100 150 200 250

4000

6000

8000

10000

t

y

TAIEX data 2008

0 50 100 150 200 250

4000

5000

6000

7000

8000

9000

t

y

TAIEX data 2009

0 50 100 150 200 250

7000

7500

8000

8500

9000

t

y

TAIEX data 2010

y

y

*

(Train) y

*

(Test)

image147.emf
0 50 100 150 200 250

6000

7000

8000

9000

10000

t

y

TAIEX data 2011

0 50 100 150 200 250

6500

7000

7500

8000

8500

t

y

TAIEX data 2012

0 50 100 150 200 250

7500

8000

8500

9000

y

TAIEX data 2013

t

0 50 100 150 200 250

8000

8500

9000

9500

10000

t

y

TAIEX data 2014

y

y

*

(Train) y

*

(Test)

oleObject5.bin

image148.wmf
c

oleObject142.bin

oleObject143.bin

image6.wmf
(

)

t

Y

oleObject6.bin

image7.wmf
(

)

t

F

oleObject7.bin

image8.wmf
(

)

t

f

i

oleObject8.bin

image9.wmf
(

)

t

F

oleObject9.bin

image10.wmf
(

)

1

t

F

-

oleObject10.bin

image11.wmf
(

)

(

)

t

F

1

t

F

®

-

oleObject11.bin

image12.wmf
(

)

1

t

F

-

oleObject12.bin

image13.wmf
(

)

t

F

oleObject13.bin

image14.wmf
i

A

oleObject14.bin

image15.wmf
j

A

oleObject15.bin

image16.wmf
j

i

A

A

®

oleObject16.bin

image17.wmf
N

r

X

´

oleObject17.bin

image18.wmf
N

1

y

´

r

oleObject18.bin

image19.wmf
N

oleObject19.bin

image20.wmf
r

oleObject20.bin

image21.wmf
th

j

oleObject21.bin

image22.wmf
[

]

T

rj

j

2

j

1

j

x

x

x

x

K

r

=

oleObject22.bin

image23.wmf
j

y

oleObject23.bin

image24.wmf
X

oleObject24.bin

image25.wmf
c

oleObject25.bin

image26.wmf
0

1

u

,

v

x

u

J

c

1

i

ij

N

1

j

c

1

i

2

A

i

j

m

ij

1

=

-

-

=

å

å

å

=

=

=

r

r

oleObject26.bin

image27.wmf
c

oleObject27.bin

image28.wmf
i

v

r

oleObject28.bin

image29.wmf
th

i

oleObject29.bin

image30.wmf
th

i

oleObject30.bin

image31.wmf
c

r

V

´

oleObject31.bin

image32.wmf
ij

u

oleObject32.bin

image33.wmf
th

j

oleObject33.bin

image34.wmf
th

i

oleObject34.bin

image35.wmf
N

c

U

´

oleObject35.bin

image36.wmf
(

)

(

)

i

j

T

i

j

2

A

i

j

v

x

A

v

x

v

x

r

r

r

r

r

r

-

-

=

-

oleObject36.bin

image37.wmf
(

]

¥

Î

,

1

m

oleObject37.bin

image38.wmf
r

r

A

´

oleObject38.bin

image39.wmf
(

)

(

)

å

å

=

-

=

=

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

N

1

j

j

1

T

j

N

1

j

j

x

N

1

v

,

v

x

v

x

N

1

A

r

r

r

r

r

r

oleObject39.bin

