
1. Introduction

 This program has been tested in MATLAB R2016b, Windows 7 Ultimate. You

should install Parallel Computing Toolbox.

2. Numerical examples

 Please run 'RunMe1.m', 'RunMe2.m' or 'RunMe3.m' directly. You should input the

number of CPU cores at the beginning. Three numerical examples are introduced as

below:

The first example ('RunMe1.m') is to validate the connection boundary. The

Schwarzschild radius is set to 1m. There is no scatterer in FDTD domain (Fig. 1). The

FDTD mesh size is set to 0.05m. The FDTD domain is: 0.6m to 1.9m in x direction,

-0.65m to 0.65m in y direction, and -0.65m to 0.65m in z direction. The number of

PML layers is set to 10. The connection boundaries are: x=1.25±0.25m, y=±0.25m,

and z=±0.25m. A z-directed electric dipole is placed at (1m, -1m, 0m) (the midpoint

of the two charges). The waveform of charge is a Gaussian pulse

()
2

1
exp 4

2

t
q t A



  
= − −  

    (1)

where 61 10A −=  C and σ=3.22ns. The z components of the electric field at five

positions are calculated by FDTD method. These positions are Pt1 (1.25m, 0m,

0.025m), Pt2 (1.4m, 0m, 0.025m), Pt3 (1.25m, 0.15m, 0.025m), Ps1 (1.7m, 0m,

0.025m) and Ps2 (1.25m, 0m, 0.475m). Pt1~Pt3 are located at total field zone and

Ps1~Ps2 are located at scatter field zone. The electric fields at Pt1~Pt3 are also

calculated by Green function method (GFM). Fig. 2(a) ~ (c) show the results at

Pt1~Pt3 by the two methods. It demonstrates that the numerical results obtained

through both methods match perfectly. This example validates both the FDTD code

and Green function code. The results at Ps1~Ps2 are shown in Fig. 2(d), in which the

values of electric field are in dB: ()120lg / maxz zE E , where
1zE is the electric field

at Pt1. It demonstrates that the numerical scatter fields are less than -65dB.

Fig. 1 Validating the connection boundary

(a)Pt1 (b)Pt2

(c)Pt3 (d)Ps1 and Ps2

Fig. 2. Ez at Pt1, Pt2, Pt3, Ps1 and Ps2

 'vt1.txt', 'vt2.txt', 'vt3.txt', 'vs1.txt', 'vs2.txt' are results of FDTD method,

'dipole_GFM.mat' is result of GFM.

The second example ('RunMe2.m') is to validate the output boundary. The

Schwarzschild radius is set to 1m. A z-directed electric dipole is placed at (1.5m, 0m,

0m). The waveform of charge is a Gaussian pulse with 101 10A −=  C and σ=0.966 ns

(Eq. (1)). The FDTD mesh size is set to 0.01m and the number of PML layers is set to

10. The FDTD domain is: 1m to 2m in x direction, -0.5m to 0.5m in y direction, and

-0.5m to 0.5m in z direction. The output boundaries are: x=1.5±0.05m, y=±0.05m and

z=±0.05m (Fig. 3). The z components of the electric field at four positions are

calculated by FDTD method. These positions are P1 (1.98m, 0m, 0.005m), P2 (1.02m,

0m, 0.005m), P3 (1.5m, 0.48m, 0.005m) and P4 (1.5m, 0m, 0.485m). The electric

fields at these four positions are also calculated by integrating on output boundaries

using Green function method. The results are shown in Fig. 4.

Fig. 3. Validate the output boundary

(a) P1 (b) P2

(c) P3 (d) P4

Fig. 4. Ez at P1, P2, P3 and P4

 'v1.txt', 'v2.txt', 'v3.txt', 'v4.txt' are results of FDTD method, 'far.txt' is result of far

fields by GFM.

 The third example ('RunMe3.m') is scattering by a thin plate. The size of the thin

PEC (Perfectly electric conductor) plate is 1m×1m. It spread out in the plane x=3m

(Fig. 5), and the center locates at (3m, 0m, 0m). The Schwarzschild radius is set to 1m.

A z-directed electric dipole is placed at P(7m, 0m, 0m). The waveform of charge is a

Gaussian pulse with
101 10A −=  C and σ=2.415ns (Eq. (1)). The FDTD mesh size is

set to 0.05m, and the number of PML layers is set to 10. The FDTD domain is: 2.4m

to 3.6m in x direction, -1.1m to 1.1m in y direction, and -1.1m to 1.1m in z direction.

The connection boundaries are: x=3±0.2m, y=±0.7m, and z=±0.7m. The output

boundaries are: x=3±0.4m, y=±0.9m, and z=±0.9m. The z component of the scattered

electric field (both in time domain and frequency domain) at P is shown in Fig. 6. The

scattered electric field in flat space-time is also shown in Fig. 6. The effective light

speed is smaller than that in flat space-time. This leads to time delay which is shown

in Fig. 6(a). The inhomogeneity leads to pulse broading in time domain and red shift

in frequency domain (Fig. 6(b)).

Fig. 5. Scattering by a thin plate

(a)time domain (b)frequency domain

Fig. 6. Ez at P

http://www.baidu.com/link?url=ixGK42OyPUw7fIah7DY9P6agZ1n1rjxuCQJUQ0sE2ZknVURP1ut3KqcFZNyjc58WyIp1AexEXJL7ivXTI2ZP8U_umrqXh2dada9IHZEAfFEhN7-BjyOJNyDEePp0ydwI

'far.txt' is result of far fields. 'far_flat.txt' is scattered electric field in flat

space-time.

3. All files/folders

 All files/folders:

fdtd_sw

output_files

conf1.mat

conf2.mat

conf3.mat

dipole_sw.m

far_flat.txt

fft_realsig.m

RunMe1.m

RunMe2.m

RunMe3.m

ReadMe.pdf

User Manual.pdf

The files 'conf1.mat', 'conf2.mat' and 'conf3.mat' includes the input data for

'RunMe1.m', 'RunMe2.m' and 'RunMe3.m' respectively. The file 'dipole_sw.m' is the

program to calculate the radiation of an electric dipole by Green function method, and

this program will be called by 'RunMe1.m' and 'RunMe2.m'. The file 'fft_realsig.m' is

the program to calculate Fourier transform which will be called by 'RunMe3.m'. The

file 'far_flat.txt' is scattered electric field in flat space-time, it will be read by

'RunMe3.m'.

 The program for FDTD method is placed in the folder 'fdtd_sw'. The program

for Green function method is placed in the folder ' fdtd_sw\GF_sw'.

The files in the folder 'fdtd_sw':

bound_init.m : Initialize the FDTD boundary

dipole_add.m : Add dipole source into the FDTD simulation

dipole_init.m : Initialize the dipole parameters

epsrmur_sw.m : The relative permittivity and permeability in Schwarzschild

 space-time

exc_init.m : Initialize the excitation

far_accum_n.m : Accumulating ZJ0,ZJx0,ZJy0,ZJz0,Jmx,Jmy,Jmz,Jm00

far_accum_nd.m : Accumulating Jm0,Jmx0,Jmy0,Jmz0

far_accum_np.m : Accumulating ZJx,ZJy,ZJz,ZJ00

far_alloc.m : Allocate variables for far field

far_init.m : Initialize far field

far_Jm_x.m : Calculate xJ

far_Jm_y.m : Calculate yJ

far_Jm_z.m : Calculate zJ

far_out.m : Output far field

far_read.m : Read output files recording far field

far_ZJ_x.m : Calculate
0 xZ J

far_ZJ_y.m : Calculate 0 yZ J

far_ZJ_z.m : Calculate
0 zZ J

farfield.m : Calculate far field

fdtd_sw.m : Main program

grid_init.m : Initialize the FDTD grid

ind_init.m : Convert type numbers to array indices

init.m : Initialize the FDTD parameters

iw_add.m : Add incident wave

iw_init.m : Initialize incident wave

iw_subtract.m : Subtract incident wave

iw_Zq.m : Incident waveform

iw_Zq1.m : Derivative of incident waveform

iw_Zq2.m : Two order derivative of incident waveform

med_bound.m : Find the medium parameter on the PML interface

out_init.m : Initialize the output parameters

out_post.m : Post-processing for output

output.m : Output

plane_init.m : Initialize the output plane

plane_out.m : Output electric field in the specified plane

plane_read.m : Read electric field in the specified plane from the output file

PML_conf.m : PML configuration

pml_init_sw.m : Initialize the PML parameters

PML_param.m : PML parameter

pml_update_e.m : Update electric field in PML domain

pml_update_h.m : Update magnetic field in PML domain

source_add.m : Add sources into the FDTD simulation

update_e_sw.m : Update electric field in non-PML domain

update_h_sw.m : Update magnetic field in non-PML domain

volt_add.m : Add voltage source into the FDTD simulation

volt_co_init.m : Initialize the coordinate of the voltage source

volt_out.m : Output voltage between the two specified points

wave_fun.m : Waveform function

wave_init.m : Initialize waveform parameters

The files in the folder ' fdtd_sw\GF_sw':

cart_equator.m : Rotate Cartesian coordinate so that the specified two

 points fall in the equatorial plane

cart2sph_sw.m : Convert Cartesian coordinate to spherical coordinate

Christoffel_sw.m : Christoffel symbols in spherical coordinate

Christoffel_sw_cart.m : Christoffel symbols in Cartesian coordinate

Contraction.m : Tensor contraction

ContracU2.m : Get U  from ;U 

dE.m : Differential element of electric filed

dot_TT.m : Contraction between two tensors

dot_TV.m : Contraction between a tensor and a vector

dxs_dxc.m : Transform matrix - from spherical coordinate to

 Cartesian coordinate

EulerTrans.m : Euler transform matrix

geodesic_sw_bvp.m : Solve geodesic equation

GF_sw_cart.m : Green function in Cartesian coordinate

GF_sw_sph.m : Green function in spherical coordinate

Int_null.m : Integral alone the null geodesic

Int_S_up.m : Solve  

Int_Sp_p.m : Solve


 



Int_Sp_pp.m : Solve


  

 

Int_Su_u.m : Solve




Int_Su_uu.m : Solve




Int_Su_uuu.m : Solve




Int_U.m : Solve U

Int_U_.m : Solve U alone the inverse direction

Int_U_p.m : Solve ;U  

Int_U_u.m : Solve ;U 

Int_U_uu.m : Solve ;U 

Int_V0.m : Solve
0V 

inv_metric_sw.m : Inverse metric

L0_s3.m :

0t
t





→

 
 
 

L0_U1.m : ;

0t

U

t

 

→

 
 
 

matrix_dE : Matrix for calculating dE

metric_sw.m : Metric

prod_tensor.m : Tensor product

Riemann_sw.m : Riemann curvature

RM1_sw.m : The first order covariant derivative of Riemann

 curvature

RM2_sw.m : The second order covariant derivative of Riemann

 curvature

