Mathematical formulation of OptCouple

The metabolic model used in OptCouple is given by a set of metabolites m;V i € N, and a set of
metabolic reactions 7; V j € R. A stoichiometric matrix S encodes which metabolites participate in
each reaction (Orth et al., 2010). R is partitioned by the three subsets, R, 4tive, Rreterotogous and
R aa4itions, representing native reactions, heterologous reactions and boundary reactions for
potential medium additions, respectively. Furthermore, some reactions 1; V j € Riyrepersipie €aN
only proceed in the forward direction, while the remaining reactions can proceed in both

directions. Each reaction is associated with a binary control variable, y; €Y V j € R.

The primal problem (M) optimizes biomass production subject to stoichiometric constraints,

limited glucose uptake and genetic modifications, Y:
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The problem can be modified to not allow flux in the target reaction 7;4,¢¢, resulting in M*:
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M* can then be converted to its dual form, M}, (as described by Burgard et al. (2003)):
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Here Af“’ml represent dual variables of the stoichiometric constraints in the primal, while y;

represent other flux bounds. The minimum and maximum values, ,u}”in and pj*** as well as

vjmi" and v;/"**can be found by sequentially minimizing and maximizing the variables or by using a

sufficiently large constant (the big-M method).

The two problems M and M are combined and optimized simultaneously, together with the

binary variables Y:
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Optimizing (S1) finds the highest possible growth rate of the organism and the modifications
necessary to achieve this. Similarly, optimizing (S2) or (S3) finds the highest growth rate possible
with no flux through the target reaction. Jointly solving (S1) and (S3) with shared binary variables,
as in (S4), finds the highest difference between maximal growth rates with and without flux
through the target reaction (and the required combination of binary variable values). For a target
reaction representing production, this difference corresponds to the growth-coupling potential,
i.e. the maximal growth advantage of producer cells compared to non-producer cells. Any
combination of binary variable values that results in a non-zero growth-coupling potential

corresponds to a (weakly) growth-coupled strain design.

A design with high growth-coupling potential will be easier to evolve using ALE, compared to
designs with lower growth-coupling potentials, due to the larger potential increase in growth rate.
However, since a high growth-coupling potential does not guarantee a high growth-coupled

production rate, designs with sub-optimal growth-coupling potentials might be preferable. Such



sub-optimal solutions can be sampled using the solution pool feature of some commercial MILP

solvers (e.g. Gurobi or CPLEX).
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