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Mathematical formulation of OptCouple 

 

The metabolic model used in OptCouple is given by a set of metabolites 𝑚"∀	𝑖 ∈ 𝑁, and a set of 

metabolic reactions 𝑟)	∀		𝑗 ∈ 𝑅. A stoichiometric matrix S encodes which metabolites participate in 

each reaction (Orth et al., 2010). R is partitioned by the three subsets, 𝑅,-."/0, 𝑅10.023435367 and 

𝑅-88"."3,7, representing native reactions, heterologous reactions and boundary reactions for 

potential medium additions, respectively. Furthermore, some reactions 𝑟)	∀	𝑗 ∈ 𝑅"220/027"940  can 

only proceed in the forward direction, while the remaining reactions can proceed in both 

directions. Each reaction is associated with a binary control variable, 𝑦) ∈ 𝑌		∀		𝑗 ∈ 𝑅. 

 

The primal problem (M) optimizes biomass production subject to stoichiometric constraints, 

limited glucose uptake and genetic modifications, Y: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒𝒗	𝑣9"3C-77      (S1)  

subject to: 

        ∑ 𝑠") ∙ 𝑣))∈F = 0		∀		𝑖 ∈ 𝑁 

        𝑣)C", ∙ 𝑦) ≤ 𝑣) ≤ 𝑣)C-J ∙ 𝑦)			∀		𝑗 ∈ 	𝑅 

        𝑣54K_6M.-N0 ≤ 10 

        𝑣) ≥ 0		∀	𝑗 ∈ 𝑅"220/027"940 

        𝑦) ∈ {0, 1}, ∀	𝑗 ∈ 𝑅	 

        ∑ (1 − 𝑦)))∈FWXYZ[\ ≤ 𝐾,-."/0 

        ∑ 𝑦))∈F^\Y\_`a`b`cd ≤ 𝐾10.023435367 

        ∑ 𝑦))∈FXeeZYZ`Wd ≤ 𝐾-88"."3,7 

 

The problem can be modified to not allow flux in the target reaction 𝑟.-250., resulting in M*: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒𝒗	𝑣9"3C-77       (S2) 

subject to: 

        ∑ 𝑠") ∙ 𝑣) = 0,|F|
)gh 			∀		𝑖 ∈ 𝑁 

        𝑣)C", ∙ 𝑦) ≤ 𝑣) ≤ 𝑣)C-J ∙ 𝑦),					∀		𝑗 ∈ 	𝑅 

        𝑣.-250. = 0 
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        𝑣54K_6M.-N0 ≤ 10 

        𝑣) ≥ 0,				∀	𝑗 ∈ 𝑅"220/027"940 

        𝑦) ∈ {0, 1}, ∀	𝑗 ∈ 𝑅 

        ∑ (1 − 𝑦)))∈FWXYZ[\ ≤ 𝐾,-."/0 

        ∑ 𝑦))∈F^\Y\_`a`b`cd ≤ 𝐾10.023435367 

        ∑ 𝑦))∈FXeeZYZ`Wd ≤ 𝐾-88"."3,7 

 

 

M* can then be converted to its dual form, 𝑀i
∗  (as described by Burgard et al. (2003)): 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒𝝁,𝝀	10 ∙ 𝜇546K370_6M.-N0      (S3) 

subject to: 

        ∑ 𝜆"7.3"K1 ∙ 𝑠") + 𝜇) = 0,				∀	𝑗 ∈ 𝑅,			𝑗 ≠ 𝑏𝑖𝑜𝑚𝑎𝑠𝑠|t|
"gh  

        ∑ 𝜆"7.3"K1 ∙ 𝑠",9"3C-77 + 𝜇9"3C-77 = 1|t|
"gh  

        𝜇)C", ∙ u1 − 𝑦)v ≤ 	𝜇) ≤ 	𝜇)C-J ∙ (1 − 𝑦"),				∀	𝑗 ∈ 𝑅, 𝑗 ≠ 𝑡𝑎𝑟𝑔𝑒𝑡  

        𝑦) ∈ {0, 1}, ∀	𝑗 ∈ 𝑅 

        ∑ (1 − 𝑦)))∈FWXYZ[\ ≤ 𝐾,-."/0 

        ∑ 𝑦))∈F^\Y\_`a`b`cd ≤ 𝐾10.023435367 

        ∑ 𝑦))∈FXeeZYZ`Wd ≤ 𝐾-88"."3,7 

 

 

Here 𝜆"7.3"K1 represent dual variables of the stoichiometric constraints in the primal, while 𝜇"  

represent other flux bounds. The minimum and maximum values, 𝜇)C", and 𝜇)C-J  as well as 

𝑣)C",	and 𝑣)C-Jcan be found by sequentially minimizing and maximizing the variables or by using a 

sufficiently large constant (the big-M method). 

 

The two problems 𝑀 and 𝑀8
∗  are combined and optimized simultaneously, together with the 

binary variables Y: 
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 𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒𝒗,𝝀,𝝁,𝒀	𝑣9"3C-77 − 10 ∙ 	𝜇546K370_6M.-N0    OptCouple (S4) 

subject to: 

        ∑ 𝑠") ∙ 𝑣) = 0|F|
)gh 	∀		𝑖 ∈ 𝑁 

        𝑣)C", ∙ 𝑦) ≤ 𝑣) ≤ 𝑣)C-J ∙ 𝑦)			∀		𝑗 ∈ 	𝑅 

        𝑣54K_6M.-N0 ≤ 10 

        𝑣) ≥ 0		∀	𝑗 ∈ 𝑅"220/027"940 

        ∑ 𝜆"7.3"K1 ∙ 𝑠") + 𝜇) = 0,				∀	𝑗 ∈ 𝑅,			𝑗 ≠ 𝑏𝑖𝑜𝑚𝑎𝑠𝑠|t|
"gh  

        ∑ 𝜆"7.3"K1 ∙ 𝑠",9"3C-77 + 𝜇9"3C-77 = 1|t|
"gh  

        𝜇)C", ∙ u1 − 𝑦)v ≤ 	𝜇) ≤ 	𝜇)C-J ∙ (1 − 𝑦"),				∀	𝑗 ∈ 𝑅, 𝑗 ≠ 𝑡𝑎𝑟𝑔𝑒𝑡  

        𝑦) ∈ {0, 1}, ∀	𝑗 ∈ 𝑅 

        ∑ (1 − 𝑦)))∈FWXYZ[\ ≤ 𝐾,-."/0 

        ∑ 𝑦))∈F^\Y\_`a`b`cd ≤ 𝐾10.023435367 

        ∑ 𝑦))∈FXeeZYZ`Wd ≤ 𝐾-88"."3,7 

 

Optimizing (S1) finds the highest possible growth rate of the organism and the modifications 

necessary to achieve this. Similarly, optimizing (S2) or (S3) finds the highest growth rate possible 

with no flux through the target reaction. Jointly solving (S1) and (S3) with shared binary variables, 

as in (S4), finds the highest difference between maximal growth rates with and without flux 

through the target reaction (and the required combination of binary variable values). For a target 

reaction representing production, this difference corresponds to the growth-coupling potential, 

i.e. the maximal growth advantage of producer cells compared to non-producer cells. Any 

combination of binary variable values that results in a non-zero growth-coupling potential 

corresponds to a (weakly) growth-coupled strain design. 

 

A design with high growth-coupling potential will be easier to evolve using ALE, compared to 

designs with lower growth-coupling potentials, due to the larger potential increase in growth rate. 

However, since a high growth-coupling potential does not guarantee a high growth-coupled 

production rate, designs with sub-optimal growth-coupling potentials might be preferable. Such 



 4 

sub-optimal solutions can be sampled using the solution pool feature of some commercial MILP 

solvers (e.g. Gurobi or CPLEX). 
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