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Synthesis of new glycosyl based meso-substituted dipyrromethanes 1–3 has been described. Crystal
structure of the representative compound 1 has been determined by X-ray single crystal analysis. The
compounds 1 and 3 exhibit fluorescent ‘Turn-On’ and ‘Turn-Off’ signaling for Cd2+ and Cu2+ ions. Notably,
meso-galactosyl dipyrromethane 2 remains silent toward tested metal ions.

� 2013 Elsevier Ltd. All rights reserved.
The chemistry of dipyrromethanes has attracted a great deal of
attention because of their potential applications in diverse areas.1–

3 The photophysical and photochemical properties of these are
governed by substituents at meso-position. In this context, numer-
ous systems containing a variety of meso-substituents have been
developed and extensively studied.4–18 Although, some sugar ap-
pended porphyrin derivatives have been described in the litera-
ture, there are only a couple of reports dealing with the
dipyrromethanes containing sugar moieties appended to the pyr-
role ring/meso-carbon.19,20 The synthetic strategies for such sys-
tems involve substitution at the pyrrole ring of a dipyrromethane
using a sugar derivative or as intermediate in the synthesis of
meso-substituted porphyrins.19,20 At the same time, their proper-
ties have scarcely been investigated.20

Furthermore, Cu2+ is an indispensable trace element in biologi-
cal systems and harmful as well.21 Considering inherent quenching
behavior of copper, numerous fluorescent chemosensors have been
developed and thoroughly studied. On the other hand, Cd2+ is
industrially and agriculturally important element.21 Biological
and environmental damages caused by Cd2+ are well known, there-
fore selective chemosensors for its detection are highly
demanding.21

Keeping these points in mind, we have designed and synthe-
sized two new meso-glucosyl substituted dipyrromethanes 1 and
3, wherein 3 is akin to a dimer of 1. For the sake of disparity at
the meso-position, we have also prepared a meso-galactosyl dipyr-
romethane 2 and compared the optical and cation recognition
properties of 1–3.

Through this contribution we present the synthesis and charac-
terization of three new glycosyl derivatives, 5-(3-O-benzyl-1,2-O-
isopropylidene-a-D-xylo-pentodialdo-1,4-furanose)-dipyrrome-
thane (1), 5-(1,2:3,4-di-O-isopropylidene-a-D-galacto-hexodialdo-
1,5-pyranose)-dipyrromethane (2), and 5-[1’,4’-bis(1,2-O-isopro-
pylidene-a-D-xylo-pento-dialdo-1,4-furanose-3-O-methyl)ben-
zene]-bis(dipyrromethane) (3) along with potential applications of
1 and 3 as a new class of chemosensors for Cd2+ and Cu2+ ions un-
der aqueous conditions (H2O/EtOH; 1:1, v/v).

In this letter, we have synthesized the glycosyl based dipyrrom-
ethanes by an acid catalyzed condensation of pyrrole with respec-
tive aldehydes.3 Three different aldehydes 3-O-benzyl-1,2-O-
isopropylidene-a-D-xylo-pentodialdo-1,4-furanose (4) 1,2:3,4-di-
O-isopropylidene-a-D-galacto-hexodialdo-1,5-pyranose (5) and
1’,4’-bis(1,2-O-isopropylidene-a-D-xylo-pento-dialdo-1,4-fura-
nose-3-O-methyl)benzene (6) were chosen as the key precursor for
the synthesis of 1–3.22,23 Simple synthetic strategy adopted for
their preparation is depicted in Scheme 1. It is noteworthy to men-
tion that the oxidation of dipyrromethanes 1–3 to respective dipyr-
rins could not be achieved using DDQ.2 The reluctancy of these
compounds toward oxidation may be associated with intramolec-
ular H-bonding interactions (vide supra). The compounds 1–3 have
been characterized by elemental analysis, IR, NMR (1H and 13C),
ESI-MS, absorption and emission spectral studies.
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Scheme 1. Synthesis of 1–3.

Figure 1. ORTEP view of 1 at 30% thermal ellipsoid probability (H atoms omitted for
clarity).
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1H NMR spectra (CDCl3) of both 1 and 3 exhibited two broad
resonances at d 8.93 (1H, –NH) and 8.04 ppm (1H, –NH) associated
with pyrrole ring protons (Figs. S1a and S3a, Supplementary infor-
mation). Notably, the pyrrole ring protons of both the 1 and 3 res-
onated at almost the same position (Dd = 0.89 ppm). Relatively
large downfield shift for one –NH proton indicated intramolecular
H-bonding via only one of the pyrrolic protons, which has further
been supported by single crystal X-ray analyses on 1. Similarly, 2
displays broad signals at d 8.83 (1H, –NH) and 8.49 (1H, –NH)
ppm (Fig. S2a). Rather small downfield shift and signal separation
(Dd = 0.34 ppm) relative to 1 and 3 suggested about weak H-bond-
ing in 2. 13C NMR spectral studies on 1–3 also supported formation
of these compounds (Figs. S1b, S2b and S3b). The presence of
molecular ion peaks [M+H]+ at m/z 395.1979 (Calcd 395.1892), 1;
375.1923 (Calcd 375.1841), 2; and 711.3394 (Calcd 711.3315), 3
(Figs. S5a, S7, and S8a) in the ESI-MS spectra strongly supported
the formation of 1–3.

Compound 1 crystallizes in orthorhombic system with the
P212121 space group. Crystal structure (Fig. 1) reveals that the pyr-
role rings in this molecule are not coplanar. Inter planar angle of
82.63� between the pyrrole rings suggest gauche-conformation.
The pyrrole ring oriented toward furanosyl oxygen O(3) rotated
along C–C bond and gets involved in intramolecular H-bonding
[N(1)–H(1)� � �O(3); 2.280 Å]. Rather short H-bonding distance re-
sults in the formation of a stable six-membered ring. It is notewor-
thy to mention that the intramolecular H-bonding takes place only
amidst N(1)–H(1)� � �O(3) though there is a scope for another H-
bond formation N(2)–H(2)� � �O(4). It could not occur probably
due to orientation of the other pyrrole ring. The furanose ring rep-
resented by C(4)–C(7) and O(3) adopted a tilted envelope where
C(6) serves as cover of the envelope. The oxygens O(1) and O(2)
from the sugar moiety attached to C(3) of the iso-propylidine
adopted syn-conformation with respect to each other whereas,
O(1) and O(4) assume anti-conformation.

Optical properties of 1–3 have been investigated by UV/vis and
fluorescence spectral studies. In its absorption spectra 1 exhibited
a shoulder in the high energy region (�260 nm, e,
1.71 � 103 M�1 cm�1) and a broad band at �374 nm (Fig. S10).
Notably, despite having similar chromophoric framework, 3 dis-
plays a strong high energy band at �294 nm (e,
1.38 � 103 M�1 cm�1) and a weak structureless shoulder at
�400 nm. In contrast, 2 shows only a single strong band in high en-
ergy region (�264 nm; e, 1.78 � 104 M�1 cm�1). The high energy
bands in 1–3 may be ascribed to the dipyrromethane moiety
(intraligand: n ? p⁄/p ? p⁄ transitions), whereas low energy
bands to the benzyloxy moieties.24 It is noteworthy to mention
that 2 exhibits only a single band below 300 nm as it does not have
benzyloxy moiety.

The interaction studies for 1–3 have been followed in presence
of various metal ions (10.0 equiv; c, 10 mM), viz., Li+, Na+, Ca2+,
Mg2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, and Hg2+ in H2O/EtOH
(1:1, v/v; c, 100 lM). The absorption spectra of 1 remained almost
unaltered except for Cd2+, which induces red shift (Dk �20 nm) for
the high energy band (�260 nm). On the other hand, high energy
band (�294 nm) for 3 displays hyperchromic shift only in the pres-
ence of Cu2+ among the tested metal ions. Conversely, 2 does not
show significant changes in presence of the tested cations.

To understand binding affinity, titration experiments have been
performed. Addition of Cd2+ (0.5 equiv) to a solution of 1 results in
a small red shift (�5 nm) in the position of high energy band
(�265 nm, e, 1.67 � 103 M�1 cm�1). It is interesting to note that
broad low energy band (�374 nm) remains unchanged. An in-
crease in the concentration of Cd2+ (7.0–8.0 equiv) leads to an
appreciable red shift (�20 nm) of the high energy band, which ap-
pears at �280 nm (e, 1.59 � 103 M�1 cm�1, Fig. 2a). The absorption
spectral changes for 1 may be ascribed to the formation of 1�Cd2+

complex. Interaction between 3 and Cu2+ has also been investi-
gated by absorption titration studies (Fig. 2b). Addition of Cu2+

(0.5 equiv) to a solution of 3 leads to hyperchromic shift for the
high energy band at �294 nm (e, 1.66 � 103 M�1 cm�1). In this case
too, the low energy band at �400 nm remains unaltered. Further
addition of Cu2+ (8.0–9.0 equiv) results in a considerable hyper-
chromic shift of the high energy band (e, 2.83 � 103 M�1 cm�1),
indicating enhanced intramolecular charge transfer (ICT) process.



Figure 2. UV/vis titration spectra of (a) 1 with Cd(NO3)2 and (b) 3 with Cu(NO3)2 in H2O/EtOH (1:1, v/v; c, 100 lM).
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The spectral changes upon interaction with Cu2+ may be associated
with the formation of 3�Cu2+ complex. On the basis of changes tak-
ing place only for the high energy bands of 1 and 3, which is asso-
ciated with dipyrromethane moiety, it may be concluded that
preferred binding site is nitrogen of the dipyrromethane unit.

The compounds 1–3 display moderate fluorescence [340 nm, /,
0.09, kex, 280 nm, 1; 385 nm, / 0.21, kex, 320 nm, 2; 404 nm, /,
0.16, kex, 360 nm, 3] in H2O/EtOH (1:1, v/v, 100 lM). It may be re-
lated to the lack of extended p-conjugation coupled with chro-
mophores. Further, metal ion interaction studies for 1–3 have
been performed under analogous conditions in presence of
10.0 equiv of the tested metal ions (c, 10 mM) (Fig. S13). Probe 1
displays insignificant changes in presence of the tested cations ex-
cept for Cd2+ which leads to fluorescence enhancement (�62%).
The fluorescence spectral features of 2 remained unaltered upon
addition of various metal ions. Conversely, 3 exhibited fluores-
cence quenching (�69%) only in the presence of Cu2+.

To understand the binding affinity of 1 and 3 toward Cd2+ and
Cu2+, titration experiments have been performed. The addition of
Cd2+ (0.5 equiv) to a solution of 1 enhances the emission intensity
by �21% which upon addition of �7.0–8.0 equiv of Cd2+ became
saturated and intensity enhanced to �62% (Fig. 3a). The quantum
yield (/) increased to 0.19. The LOD of 1 has been determined to
be �20 ppm with R2, 0.983 (Fig. S18). On the other hand, addition
Figure 3. Fluorescence titration spectra of (a) 1 with Cd(NO3)2
of Cu2+ (0.5 equiv) to a solution of 3 results in fluorescence quench-
ing (�18%). At saturation stage (9.0–10.0 equiv Cu2+) it came out to
be �69% (/, 0.08) (Fig. 3b). The LOD of 3 toward Cu2+ has also been
determined and found to be �3 ppm with R2, 0.992 (Fig. S19).

Job’s plot analysis reveals 1:1 and 1:2 stoichiometries for 1/Cd2+

and 3/Cu2+ systems (Fig. S16). Association constants for 1�Cd2+ and
3�Cu2+ have been worked out using the Benesi–Hildebrand method
and it converged to 4.25 � 102 mol�1 and 1.8 � 105 mol�1, respec-
tively (Fig. S17). The formation of more fluorescent complex 1a
(Scheme 2, Figs. S5b and S6) may be attributed to chelation of
Cd2+ to 1 through pyrrole ring nitrogen. Conversely, 3 serves as
‘turn-off’ probe for Cu2+ leading to formation of almost nonfluo-
rescent complex 3a. The ESI-MS of 1a shows molecular ion peak
[M+H]+ at m/z, 648.2298 (calcd 648.8996) followed by loss of the
associated water (m/z, 631.1279, 568.0834) (Figs. S5b and S6). On
the other hand, 3a displays [M+H]+ at m/z 909.4235 (calcd
909.9683). It further showed peaks at m/z 891.7044 and
874.7165 due to the loss of coordinated water molecules from
the complex 3a (Figs. S8b and S9).

To have insight into reversibility of the systems fluorescence
changes in 1 and 3 have been investigated in the presence of
Cd2+/Cu2+ followed by addition of a strong chelating agent EDTA
in large excess (150 equiv). In this context, Cd2+ (9.0 equiv) was
added to a solution of 1 which results in a 62% fluorescence
and (b) 3 with Cu(NO3)2 in H2O/EtOH (1:1, v/v; c, 100 lM).



Scheme 2. Plausible binding mode of 1/Cd2+ and 3/Cu2+.
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enhancement. Further, addition of EDTA to the solution of 1+Cd2+

lead to quenching to some extent (41%) indicating reversible inter-
action of 1 with Cd2+. On the other hand, Cu2+ (10 equiv) was added
to a solution of 3 which causes 69% quenching in the presence of
EDTA (150 equiv) leading to regeneration of the fluorescence asso-
ciated with 3 to a considerable extent (49%). It also suggests revers-
ible interaction between 3 and Cu2+ (Fig. S15).

To have an idea about chemosensing behavior of 3 and since
there is a conflict with the orientation of the two dipyrromethane
moieties about –O–CH2–C6H4–CH2–O- unit, which serves as a lin-
ker, we have performed quantum chemical calculations. In this
context, both cis- and trans-forms of 3 were optimized indepen-
dently. Our results revealed that irrespective of the initial struc-
ture, optimized structures seem to be gauche-like with respect to
the linker. It is worth mentioning that two dipyrromethane moie-
ties remain in either trans- or cis-orientation as they were initially
in the starting structure (Fig. 4).

However, the optimized structure for trans- is slightly more sta-
ble relative to cis-form by �3.90 kcal/mol. Upon interaction with
two Cu2+ ions through its cis-dipyrromethane units steric crowding
is increased between two metal ions and their co-ligands (H2O) in
the resultant complex.

Based on overall results it is obvious that 1 exhibits fluores-
cence enhancement in the presence of Cd2+ whereas 3 induces
quenching upon interaction with Cu2+ ions despite interactions
Figure 4. Optimized energy comparison between cis- and trans-like structures for
3.
through same site (pyrrolic nitrogens in both the cases). It may
be associated with the Cd2+ (d10 system) which is reluctant in par-
ticipating any photoinduced charge transfer transitions and dis-
plays ‘Turn-On’ fluorescence response. On the other hand Cu2+ is
a d9 system, thus promotes photoinduced charge transfer and leads
to the fluorescence quenching. One can see that though the dipyr-
romethane interaction site is the same both in 1 and 3, but the
adjacent environment is quite bulky in case of 3 (please see theo-
retically calculated structures of 3). Therefore, it does not prefera-
bly interact with Cd2+ ions owing to larger size, rather interacts
with smaller metal ion Cu2+ and results in fluorescence quenching.
On the other hand, the metal ion silent nature of 2 may be associ-
ated with the presence of galactosyl moiety instead of glucosyl at
the meso-position.

Through this work, we have described the synthesis, character-
ization and optical properties of a new class of meso-substituted
dipyrromethanes 1–3. Further, crystal structure of any glycosyl
based dipyrromethane has been presented for the first time. The
compounds 1–3 are fluorescent among which 1 serves as a ‘turn-
on’ probe for Cd2+ while 3 as ‘turn-off’ toward Cu2+ ion. The present
work may open new avenues toward photophysical chemistry of
sugar based dipyrromethanes/dipyrrins.
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