Tetrahedron Letters 54 (2013) 4193-4197

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Glycosyl based *meso*-substituted dipyrromethanes as fluorescent probes for Cd²⁺/Cu²⁺ ions

Arnab Biswas, Rampal Pandey, Divya Kushwaha, Mohammad Shahid, Vinod Kumar Tiwari, Arvind Misra, Daya Shankar Pandey*

Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi, U.P. 221 005, India

ARTICLE INFO

Article history: Received 9 October 2012 Revised 23 May 2013 Accepted 25 May 2013 Available online 6 June 2013

Keywords: Glycosyl-dipyrromethane Fluorescence Aqueous media Cadmium Copper ABSTRACT

Synthesis of new glycosyl based *meso*-substituted dipyrromethanes **1–3** has been described. Crystal structure of the representative compound **1** has been determined by X-ray single crystal analysis. The compounds **1** and **3** exhibit fluorescent 'Turn-On' and 'Turn-Off' signaling for Cd^{2+} and Cu^{2+} ions. Notably, *meso*-galactosyl dipyrromethane **2** remains silent toward tested metal ions.

© 2013 Elsevier Ltd. All rights reserved.

The chemistry of dipyrromethanes has attracted a great deal of attention because of their potential applications in diverse areas.^{1–3} The photophysical and photochemical properties of these are governed by substituents at *meso*-position. In this context, numerous systems containing a variety of *meso*-substituents have been developed and extensively studied.^{4–18} Although, some sugar appended porphyrin derivatives have been described in the literature, there are only a couple of reports dealing with the dipyrromethanes containing sugar moieties appended to the pyrrole ring/*meso*-carbon.^{19,20} The synthetic strategies for such systems involve substitution at the pyrrole ring of a dipyrromethane using a sugar derivative or as intermediate in the synthesis of *meso*-substituted porphyrins.^{19,20} At the same time, their properties have scarcely been investigated.²⁰

Furthermore, Cu²⁺ is an indispensable trace element in biological systems and harmful as well.²¹ Considering inherent quenching behavior of copper, numerous fluorescent chemosensors have been developed and thoroughly studied. On the other hand, Cd²⁺ is industrially and agriculturally important element.²¹ Biological and environmental damages caused by Cd²⁺ are well known, therefore selective chemosensors for its detection are highly demanding.²¹

Keeping these points in mind, we have designed and synthesized two new *meso*-glucosyl substituted dipyrromethanes **1** and **3**, wherein **3** is akin to a dimer of **1**. For the sake of disparity at the *meso*-position, we have also prepared a *meso*-galactosyl dipyrromethane **2** and compared the optical and cation recognition properties of **1**–**3**.

Through this contribution we present the synthesis and characterization of three new glycosyl derivatives, 5-(3-O-benzyl-1,2-Oisopropylidene- α -D-xylo-pentodialdo-1,4-furanose)-dipyrromethane (**1**), 5-(1,2:3,4-di-O-isopropylidene- α -D-galacto-hexodialdo-1,5-pyranose)-dipyrromethane (**2**), and 5-[1',4'-bis(1,2-O-isopropylidene- α -D-xylo-pento-dialdo-1,4-furanose-3-O-methyl)benzene]-bis(dipyrromethane) (**3**) along with potential applications of **1** and **3** as a new class of chemosensors for Cd²⁺ and Cu²⁺ ions under aqueous conditions (H₂O/EtOH; 1:1, v/v).

In this letter, we have synthesized the glycosyl based dipyrromethanes by an acid catalyzed condensation of pyrrole with respective aldehydes.³ Three different aldehydes 3-O-benzyl-1,2-Oisopropylidene- α -D-xylo-pentodialdo-1,4-furanose (**4**) 1,2:3,4-di-O-isopropylidene- α -D-galacto-hexodialdo-1,5-pyranose (**5**) and 1',4'-bis(1,2-O-isopropylidene- α -D-xylo-pento-dialdo-1,4-furanose-3-O-methyl)benzene (**6**) were chosen as the key precursor for the synthesis of **1**–**3**.^{22,23} Simple synthetic strategy adopted for their preparation is depicted in Scheme 1. It is noteworthy to mention that the oxidation of dipyrromethanes **1**–**3** to respective dipyrrins could not be achieved using DDQ.² The reluctancy of these compounds toward oxidation may be associated with intramolecular H-bonding interactions (vide supra). The compounds **1**–**3** have been characterized by elemental analysis, IR, NMR (¹H and ¹³C), ESI-MS, absorption and emission spectral studies.

^{*} Corresponding author. Tel.: +91 542 6702480; fax: +91 542 2368174. *E-mail address:* dsprewa@yahoo.com (D.S. Pandey).

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.05.126

Scheme 1. Synthesis of 1–3.

¹H NMR spectra (CDCl₃) of both **1** and **3** exhibited two broad resonances at δ 8.93 (1H, -*NH*) and 8.04 ppm (1H, -*NH*) associated with pyrrole ring protons (Figs. S1a and S3a, Supplementary information). Notably, the pyrrole ring protons of both the 1 and 3 resonated at almost the same position ($\Delta \delta = 0.89$ ppm). Relatively large downfield shift for one -NH proton indicated intramolecular H-bonding via only one of the pyrrolic protons, which has further been supported by single crystal X-ray analyses on 1. Similarly, 2 displays broad signals at δ 8.83 (1H, -NH) and 8.49 (1H, -NH) ppm (Fig. S2a). Rather small downfield shift and signal separation $(\Delta \delta = 0.34 \text{ ppm})$ relative to **1** and **3** suggested about weak H-bonding in **2**. ¹³C NMR spectral studies on **1–3** also supported formation of these compounds (Figs. S1b, S2b and S3b). The presence of molecular ion peaks [M+H]⁺ at *m*/*z* 395.1979 (Calcd 395.1892), **1**; 375.1923 (Calcd 375.1841), 2; and 711.3394 (Calcd 711.3315), 3 (Figs. S5a, S7, and S8a) in the ESI-MS spectra strongly supported the formation of **1–3**.

Compound **1** crystallizes in orthorhombic system with the P_{212121} space group. Crystal structure (Fig. 1) reveals that the pyrrole rings in this molecule are not coplanar. Inter planar angle of 82.63° between the pyrrole rings suggest *gauche*-conformation. The pyrrole ring oriented toward furanosyl oxygen O(3) rotated along C–C bond and gets involved in intramolecular H-bonding $[N(1)-H(1)\cdots O(3); 2.280 \text{ Å}]$. Rather short H-bonding distance results in the formation of a stable six-membered ring. It is noteworthy to mention that the intramolecular H-bonding takes place only amidst $N(1)-H(1)\cdots O(3)$ though there is a scope for another H-bond formation $N(2)-H(2)\cdots O(4)$. It could not occur probably due to orientation of the other pyrrole ring. The furanose ring represented by C(4)-C(7) and O(3) adopted a tilted envelope where C(6) serves as cover of the envelope. The oxygens O(1) and O(2) from the sugar moiety attached to C(3) of the *iso*-propylidine

Figure 1. ORTEP view of 1 at 30% thermal ellipsoid probability (H atoms omitted for clarity).

adopted *syn*-conformation with respect to each other whereas, O(1) and O(4) assume *anti*-conformation.

Optical properties of **1–3** have been investigated by UV/vis and fluorescence spectral studies. In its absorption spectra **1** exhibited a shoulder in the high energy region (~260 nm, ε , $1.71 \times 10^3 \, \text{M}^{-1} \, \text{cm}^{-1}$) and a broad band at ~374 nm (Fig. S10). Notably, despite having similar chromophoric framework, **3** displays a strong high energy band at ~294 nm (ε , $1.38 \times 10^3 \, \text{M}^{-1} \, \text{cm}^{-1}$) and a weak structureless shoulder at ~400 nm. In contrast, **2** shows only a single strong band in high energy region (~264 nm; ε , $1.78 \times 10^4 \, \text{M}^{-1} \, \text{cm}^{-1}$). The high energy bands in **1–3** may be ascribed to the dipyrromethane moiety (intraligand: $n \to \pi^*/\pi \to \pi^*$ transitions), whereas low energy bands to the benzyloxy moieties.²⁴ It is noteworthy to mention that **2** exhibits only a single band below 300 nm as it does not have benzyloxy moiety.

The interaction studies for **1–3** have been followed in presence of various metal ions (10.0 equiv; *c*, 10 mM), viz., Li⁺, Na⁺, Ca²⁺, Mg²⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Pb²⁺, and Hg²⁺ in H₂O/EtOH (1:1, v/v; *c*, 100 μ M). The absorption spectra of **1** remained almost unaltered except for Cd²⁺, which induces red shift ($\Delta\lambda \sim 20$ nm) for the high energy band (~ 260 nm). On the other hand, high energy band (~ 294 nm) for **3** displays hyperchromic shift only in the presence of Cu²⁺ among the tested metal ions. Conversely, **2** does not show significant changes in presence of the tested cations.

To understand binding affinity, titration experiments have been performed. Addition of Cd^{2+} (0.5 equiv) to a solution of **1** results in a small red shift (\sim 5 nm) in the position of high energy band (~265 nm, $\epsilon\!\!\!, \, 1.67 \times 10^3 \, M^{-1} \, cm^{-1}$). It is interesting to note that broad low energy band (~374 nm) remains unchanged. An increase in the concentration of Cd²⁺ (7.0-8.0 equiv) leads to an appreciable red shift (\sim 20 nm) of the high energy band, which appears at ~280 nm (ϵ , 1.59 × 10³ M⁻¹ cm⁻¹, Fig. 2a). The absorption spectral changes for **1** may be ascribed to the formation of $1 \cdot Cd^{2+}$ complex. Interaction between **3** and Cu²⁺ has also been investigated by absorption titration studies (Fig. 2b). Addition of Cu²⁺ (0.5 equiv) to a solution of **3** leads to hyperchromic shift for the high energy band at \sim 294 nm (ϵ , 1.66 \times 10³ M⁻¹ cm⁻¹). In this case too, the low energy band at \sim 400 nm remains unaltered. Further addition of Cu²⁺ (8.0–9.0 equiv) results in a considerable hyperchromic shift of the high energy band (ε , 2.83 × 10³ M⁻¹ cm⁻¹), indicating enhanced intramolecular charge transfer (ICT) process.

Figure 2. UV/vis titration spectra of (a) 1 with Cd(NO₃)₂ and (b) 3 with Cu(NO₃)₂ in H₂O/EtOH (1:1, v/v; c, 100 μ M).

The spectral changes upon interaction with Cu^{2+} may be associated with the formation of $3 \cdot Cu^{2+}$ complex. On the basis of changes taking place only for the high energy bands of **1** and **3**, which is associated with dipyrromethane moiety, it may be concluded that preferred binding site is nitrogen of the dipyrromethane unit.

The compounds **1–3** display moderate fluorescence [340 nm, ϕ , 0.09, λ_{ex} , 280 nm, **1**; 385 nm, ϕ 0.21, λ_{ex} , 320 nm, **2**; 404 nm, ϕ , 0.16, λ_{ex} , 360 nm, **3**] in H₂O/EtOH (1:1, v/v, 100 μ M). It may be related to the lack of extended π -conjugation coupled with chromophores. Further, metal ion interaction studies for **1–3** have been performed under analogous conditions in presence of 10.0 equiv of the tested metal ions (c, 10 mM) (Fig. S13). Probe **1** displays insignificant changes in presence of the tested cations except for Cd²⁺ which leads to fluorescence enhancement (~62%). The fluorescence spectral features of **2** remained unaltered upon addition of various metal ions. Conversely, **3** exhibited fluorescence quenching (~69%) only in the presence of Cu²⁺.

To understand the binding affinity of **1** and **3** toward Cd²⁺ and Cu²⁺, titration experiments have been performed. The addition of Cd²⁺ (0.5 equiv) to a solution of **1** enhances the emission intensity by ~21% which upon addition of ~7.0–8.0 equiv of Cd²⁺ became saturated and intensity enhanced to ~62% (Fig. 3a). The quantum yield (ϕ) increased to 0.19. The LOD of **1** has been determined to be ~20 ppm with R^2 , 0.983 (Fig. S18). On the other hand, addition

of Cu²⁺ (0.5 equiv) to a solution of **3** results in fluorescence quenching (~18%). At saturation stage (9.0–10.0 equiv Cu²⁺) it came out to be ~69% (ϕ , 0.08) (Fig. 3b). The LOD of **3** toward Cu²⁺ has also been determined and found to be ~3 ppm with R^2 , 0.992 (Fig. S19).

Job's plot analysis reveals 1:1 and 1:2 stoichiometries for $1/Cd^{2+}$ and $3/Cu^{2+}$ systems (Fig. S16). Association constants for $1 \cdot Cd^{2+}$ and $3 \cdot Cu^{2+}$ have been worked out using the Benesi–Hildebrand method and it converged to $4.25 \times 10^2 \text{ mol}^{-1}$ and $1.8 \times 10^5 \text{ mol}^{-1}$, respectively (Fig. S17). The formation of more fluorescent complex **1a** (Scheme 2, Figs. S5b and S6) may be attributed to chelation of Cd²⁺ to **1** through pyrrole ring nitrogen. Conversely, **3** serves as 'turn-off probe for Cu²⁺ leading to formation of almost nonfluorescent complex **3a**. The ESI-MS of **1a** shows molecular ion peak [M+H]⁺ at m/z, 648.2298 (calcd 648.8996) followed by loss of the associated water (m/z, 631.1279, 568.0834) (Figs. S5b and S6). On the other hand, **3a** displays [M+H]⁺ at m/z 891.7044 and 874.7165 due to the loss of coordinated water molecules from the complex **3a** (Figs. S8b and S9).

To have insight into reversibility of the systems fluorescence changes in **1** and **3** have been investigated in the presence of Cd^{2+}/Cu^{2+} followed by addition of a strong chelating agent EDTA in large excess (150 equiv). In this context, Cd^{2+} (9.0 equiv) was added to a solution of **1** which results in a 62% fluorescence

Figure 3. Fluorescence titration spectra of (a) 1 with Cd(NO₃)₂ and (b) 3 with Cu(NO₃)₂ in H₂O/EtOH (1:1, v/v; c, 100 μ M).

Scheme 2. Plausible binding mode of 1/Cd²⁺ and 3/Cu²⁺.

enhancement. Further, addition of EDTA to the solution of $1+Cd^{2+}$ lead to quenching to some extent (41%) indicating reversible interaction of **1** with Cd²⁺. On the other hand, Cu²⁺ (10 equiv) was added to a solution of **3** which causes 69% quenching in the presence of EDTA (150 equiv) leading to regeneration of the fluorescence associated with **3** to a considerable extent (49%). It also suggests reversible interaction between **3** and Cu²⁺ (Fig. S15).

To have an idea about chemosensing behavior of **3** and since there is a conflict with the orientation of the two dipyrromethane moieties about $-O-CH_2-C_6H_4-CH_2-O$ - unit, which serves as a linker, we have performed quantum chemical calculations. In this context, both *cis*- and *trans*-forms of **3** were optimized independently. Our results revealed that irrespective of the initial structure, optimized structures seem to be *gauche*-like with respect to the linker. It is worth mentioning that two dipyrromethane moieties remain in either *trans*- or cis-orientation as they were initially in the starting structure (Fig. 4).

However, the optimized structure for *trans*- is slightly more stable relative to *cis*-form by ~3.90 kcal/mol. Upon interaction with two Cu²⁺ ions through its *cis*-dipyrromethane units steric crowding is increased between two metal ions and their co-ligands (H₂O) in the resultant complex.

Based on overall results it is obvious that **1** exhibits fluorescence enhancement in the presence of Cd^{2+} whereas **3** induces quenching upon interaction with Cu^{2+} ions despite interactions

Figure 4. Optimized energy comparison between *cis*- and *trans*-like structures for 3.

through same site (pyrrolic nitrogens in both the cases). It may be associated with the Cd^{2+} (d^{10} system) which is reluctant in participating any photoinduced charge transfer transitions and displays 'Turn-On' fluorescence response. On the other hand Cu^{2+} is a d^9 system, thus promotes photoinduced charge transfer and leads to the fluorescence quenching. One can see that though the dipyrromethane interaction site is the same both in **1** and **3**, but the adjacent environment is quite bulky in case of **3** (please see theoretically calculated structures of **3**). Therefore, it does not preferably interact with Cd^{2+} ions owing to larger size, rather interacts with smaller metal ion Cu^{2+} and results in fluorescence quenching. On the other hand, the metal ion silent nature of **2** may be associated with the presence of galactosyl moiety instead of glucosyl at the *meso*-position.

Through this work, we have described the synthesis, characterization and optical properties of a new class of *meso*-substituted dipyrromethanes **1–3**. Further, crystal structure of any glycosyl based dipyrromethane has been presented for the first time. The compounds **1–3** are fluorescent among which **1** serves as a 'turnon' probe for Cd²⁺ while **3** as 'turn-off' toward Cu²⁺ ion. The present work may open new avenues toward photophysical chemistry of sugar based dipyrromethanes/dipyrrins.

Acknowledgments

Financial support from the Council for Scientific and Industrial Research, (CSIR) New Delhi is gratefully acknowledged. We are also thankful to the in-charge, National Single Crystal X-ray Diffraction Facility, Indian Institute of Technology, Mumbai, India and Dr. Biswajit Maiti, Department of Chemistry, Faculty of Science, BHU Varanasi for useful suggestions.

Supplementary data

Supplementary data (contains experimental section, ¹H and ¹³C NMR spectra, ESI-MS, UV/vis spectra, fluorescence spectra, Job's plot analysis and B–H plot) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013.05.126.

References and notes

- (a) Wood, T. E.; Thompson, A. Chem. Rev. 2007, 107, 1831–1861; (b) Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891–4932; (c) Li, G.; Ray, L.; Glass, E. N.; Kovnir, K.; Khoroshutin, A.; Gorelsky, S. I.; Shatruk, M. Inorg. Chem. 2012, 51(3), 1614–1624.
- 2. Yadav, M.; Singh, A. K.; Pandey, D. S. Organometallics 2009, 28, 4713-4723.
- (a) Singh, G.; Singh, R.; Girdhar, N. K.; Ishar, M. P. S. *Tetrahedron* 2002, 58, 2471–2480;
 (b) Piao, L. Z.; Park, H. R.; Park, Y. K.; Lee, S. K.; Park, J. H.; Park, M. K. *Chem. Pharm. Bull.* 2002, 50, 309–311.
- 4. Nagarkatti, J. P.; Ashley, K. R. Synthesis 1974, 186-187.
- Hammel, D.; Erk, P.; Schuler, B.; Heinze, J.; Mullen, K. Adv. Mater. 1992, 4, 737– 739.
- Vigmond, S. J.; Kallury, K. M. R.; Thompson, M. Anal. Chem. 1992, 64, 2763– 2769.
- Vigmond, S. J.; Chang, M. C.; Kallury, K. M. R.; Thompson, M. Tetrahedron Lett. 1994, 35, 2455–2458.
- (a) Casiraghi, G.; Cornia, M.; Zanardi, F.; Rassu, G.; Ragg, E.; Bortolini, R. J. Org. Chem. **1994**, 59, 1801–1808; (b) Cornia, M.; Binacchi, S.; Del Soldato, T.; Zanardi, F.; Casiraghi, G. J. Org. Chem. **1995**, 60, 4964–4965; Also see: Casiraghi, G.; Cornia, M.; Rassu, G.; Del Sante, C.; Spanu, P. Tetrahedron **1992**, 48, 5619– 5628.
- Mizutani, T.; Ema, T.; Tomita, T.; Kuroda, Y.; Ogoshi, H. J. Am. Chem. Soc. 1994, 116, 4240–4250.
- (a) Boyle, R. W.; Karunaratne, V.; Jasat, A.; Mar, E. K.; Dolphin, D. Synlett 1994, 939–940; (b) Boyle, R. W.; Xie, L. Y.; Dolphin, D. Tetrahedron Lett. 1994, 35, 5377–5380.
- (a) Staab, H. A.; Carell, T.; Dohling, A. Chem. Ber. **1994**, *127*, 223–229; (b) Shipps, G., Jr.; Rebek, J., Jr. Tetrahedron Lett. **1994**, *35*, 6823–6826; (c) Carell, T. Ph.D. Thesis, Ruprecht-Karls-Universität, Heidelberg, **1993**.
- (a) Wijesekera, T. P. Can. J. Chem. 1996, 74, 1868–1871; (b) Nishino, N.; Wagner, R. W.; Lindsey, J. S. J. Org. Chem. 1996, 61, 7534–7544.
- 13. Lee, C.-H.; Lindsey, J. S. Tetrahedron 1994, 50, 11427-11440.

- Gryko, D.; Lindsey, J. S. J. Org. Chem. 2000, 65, 2249–2252.
 Bruckner, C.; Sternberg, E. D.; Boyle, R. W.; Dolphin, D. Chem. Commun. 1997, 1689–1690.
- Boyle, R. W.; Bruckner, C.; Posakony, J.; James, B. R.; Dolphin, D. Org. Synth. 16. **1998**, 76, 287–293.
- Bruckner, C.; Posakony, J. J.; Johnson, C. K.; Boyle, R. W.; James, B. R.; Dolphin, D. J. Porphyrins Phthalocyanines 1998, 2, 455–465. 18. Littler, B. J.; Miller, M. A.; Hung, C.-H.; Wagner, R. W.; O'Shea, D. F.; Boyle, P. D.;
- Tram, K.; MacIntosh, W.; Yan, H. Tetrahedron Lett. 2009, 50, 2278–2280.
- 20. (a) Cornia, M.; Binacchi, S.; Soldato, T. D.; Zanardi, F.; Casiraghi, G. J. Org. Chem. **1996**, 60, 4964–4965; (b) Maillard, P.; Huel, C.; Momenteau, M. *Tetrahedron Lett.* **1992**, 33, 8081–8084.
- 21. Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J.; Sun, S.; Xu, T. J. Am. Chem. Soc. 2007, 129, 1500-1501.
- Brimacombe, J. S.; Ching, O. A. Carbohydr. Res. 1968, 8, 82–88.
 Anderson, R. C.; Fraser-Reid, B. J. Org. Chem. 1985, 50, 4785–4790.
- 24. Yadav, M.; Singh, A. K.; Pandey, R.; Pandey, D. S. J. Organomet. Chem. 2010, 695, 841-849.