library(tidyverse)
── Attaching packages ────────────────────────────────────────────────────── tidyverse 1.2.1 ──
βœ” ggplot2 3.0.0     βœ” purrr   0.2.5
βœ” tibble  1.4.2     βœ” dplyr   0.7.6
βœ” tidyr   0.8.1     βœ” stringr 1.3.1
βœ” readr   1.1.1     βœ” forcats 0.3.0
── Conflicts ───────────────────────────────────────────────────────── tidyverse_conflicts() ──
βœ– dplyr::filter() masks stats::filter()
βœ– dplyr::lag()    masks stats::lag()
library(here)
here() starts at /Users/scottericr/Documents/Tufts/Research Projects/BACE Tea/Data for drought by herbivory in tea
library(lubridate)

Attaching package: β€˜lubridate’

The following object is masked from β€˜package:here’:

    here

The following object is masked from β€˜package:base’:

    date
library(cowplot)

Attaching package: β€˜cowplot’

The following object is masked from β€˜package:ggplot2’:

    ggsave

Read in weather data

Summarise

How much rain in 75% and 50% plots?

2.418 * .75
2.418 * .5

How much required by tea? According to Carr 1972, tea requires a minimum of 1150–1400 mm/yr. How much does that average out to monthly? Equivalent to the duration of our experiment?

(daily_min <- 1150/365)
exp_days <- exp_dates %>% as.period() %>% as.numeric("days")
daily_min * exp_days - 157

Plot

rain_plot <- ggplot(BACE_weather, aes(x = date, y = Rain_mm_Tot)) +
  geom_col(fill = "blue") +
  labs(x = "Date", y = "Daily Rainfall (mm)") +
  theme(axis.title = element_text(size = 10),
        axis.text = element_text(size = 9))

temp_plot <- ggplot(BACE_weather, aes(x = date)) +
  geom_line(aes(y = AirTC_Avg), color = "black") +
  geom_line(aes(y = AirTC_Max), linetype = 3, color = "red") +
  geom_line(aes(y = AirTC_Min), linetype = 3, color = "blue") +
  labs(x = "Date", y = "Air Temperature (ΒΊC)") +
  ylim(0, 35) +
  theme(axis.title = element_text(size = 10),
        axis.text = element_text(size = 9))

weather_plot <- plot_grid(rain_plot + theme(axis.title.x = element_blank(), axis.text.x = element_blank()),
          temp_plot,
          labels = "AUTO",
          ncol = 1,
          nrow = 2,
          rel_heights = c(1, 1.2))
weather_plot

Save

save_plot(here::here("figs", "weather.png"), weather_plot,
          ncol = 1,
          nrow = 2,
          base_width = 5,
          base_height = 2)
LS0tCnRpdGxlOiAiV2VhdGhlciBhdCBCQUNFIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgpgYGB7cn0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoaGVyZSkKbGlicmFyeShsdWJyaWRhdGUpCmxpYnJhcnkoY293cGxvdCkKYGBgCgojIFJlYWQgaW4gd2VhdGhlciBkYXRhCmBgYHtyfQp3ZWF0aGVyIDwtIHJlYWRfcmRzKGhlcmU6OmhlcmUoImNsZWFuZWRfZGF0YSIsICJCQUNFIHdlYXRoZXIucmRzIikpCiNleHBlcmltZW50YWwgdGltZSBwZXJpb2QKZXhwX2RhdGVzIDwtICIyMDE3LTA2LTE4IiAlLS0lICIyMDE3LTA4LTI1IgpCQUNFX3dlYXRoZXIgPC0gd2VhdGhlciAlPiUgCiAgZmlsdGVyKGRhdGUgJXdpdGhpbiUgZXhwX2RhdGVzKQpgYGAKCiMgU3VtbWFyaXNlCmBgYHtyfQpCQUNFX3dlYXRoZXIgJT4lIAogIHN1bW1hcmlzZSh0ZW1wX21lYW4gPSBtZWFuKEFpclRDX0F2ZyksCiAgICAgICAgICAgIHRlbXBfc2QgPSBzZChBaXJUQ19BdmcpLAogICAgICAgICAgICByYWluX21lYW4gPSBtZWFuKFJhaW5fbW1fVG90KSwKICAgICAgICAgICAgcmFpbl9zZCA9IHNkKFJhaW5fbW1fVG90KSwKICAgICAgICAgICAgcmFpbl9zdW0gPSBzdW0oUmFpbl9tbV9Ub3QpKQpgYGAKSG93IG11Y2ggcmFpbiBpbiA3NSUgYW5kIDUwJSBwbG90cz8KYGBge3J9CjIuNDE4ICogLjc1CjIuNDE4ICogLjUKYGBgCkhvdyBtdWNoIHJlcXVpcmVkIGJ5IHRlYT8gQWNjb3JkaW5nIHRvIENhcnIgMTk3MiwgdGVhIHJlcXVpcmVzIGEgbWluaW11bSBvZiAxMTUwLS0xNDAwIG1tL3lyLiBIb3cgbXVjaCBkb2VzIHRoYXQgYXZlcmFnZSBvdXQgdG8gbW9udGhseT8gIEVxdWl2YWxlbnQgdG8gdGhlIGR1cmF0aW9uIG9mIG91ciBleHBlcmltZW50PwpgYGB7cn0KKGRhaWx5X21pbiA8LSAxMTUwLzM2NSkKZXhwX2RheXMgPC0gZXhwX2RhdGVzICU+JSBhcy5wZXJpb2QoKSAlPiUgYXMubnVtZXJpYygiZGF5cyIpCmRhaWx5X21pbiAqIGV4cF9kYXlzIC0gMTU3CmBgYAoKCiMgUGxvdApgYGB7cn0KcmFpbl9wbG90IDwtIGdncGxvdChCQUNFX3dlYXRoZXIsIGFlcyh4ID0gZGF0ZSwgeSA9IFJhaW5fbW1fVG90KSkgKwogIGdlb21fY29sKGZpbGwgPSAiYmx1ZSIpICsKICBsYWJzKHggPSAiRGF0ZSIsIHkgPSAiRGFpbHkgUmFpbmZhbGwgKG1tKSIpICsKICB0aGVtZShheGlzLnRpdGxlID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMCksCiAgICAgICAgYXhpcy50ZXh0ID0gZWxlbWVudF90ZXh0KHNpemUgPSA5KSkKCnRlbXBfcGxvdCA8LSBnZ3Bsb3QoQkFDRV93ZWF0aGVyLCBhZXMoeCA9IGRhdGUpKSArCiAgZ2VvbV9saW5lKGFlcyh5ID0gQWlyVENfQXZnKSwgY29sb3IgPSAiYmxhY2siKSArCiAgZ2VvbV9saW5lKGFlcyh5ID0gQWlyVENfTWF4KSwgbGluZXR5cGUgPSAzLCBjb2xvciA9ICJyZWQiKSArCiAgZ2VvbV9saW5lKGFlcyh5ID0gQWlyVENfTWluKSwgbGluZXR5cGUgPSAzLCBjb2xvciA9ICJibHVlIikgKwogIGxhYnMoeCA9ICJEYXRlIiwgeSA9ICJBaXIgVGVtcGVyYXR1cmUgKMK6QykiKSArCiAgeWxpbSgwLCAzNSkgKwogIHRoZW1lKGF4aXMudGl0bGUgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDEwKSwKICAgICAgICBheGlzLnRleHQgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDkpKQoKd2VhdGhlcl9wbG90IDwtIHBsb3RfZ3JpZChyYWluX3Bsb3QgKyB0aGVtZShheGlzLnRpdGxlLnggPSBlbGVtZW50X2JsYW5rKCksIGF4aXMudGV4dC54ID0gZWxlbWVudF9ibGFuaygpKSwKICAgICAgICAgIHRlbXBfcGxvdCwKICAgICAgICAgIGxhYmVscyA9ICJBVVRPIiwKICAgICAgICAgIG5jb2wgPSAxLAogICAgICAgICAgbnJvdyA9IDIsCiAgICAgICAgICByZWxfaGVpZ2h0cyA9IGMoMSwgMS4yKSkKd2VhdGhlcl9wbG90CmBgYAoKIyBTYXZlCmBgYHtyfQpzYXZlX3Bsb3QoaGVyZTo6aGVyZSgiZmlncyIsICJ3ZWF0aGVyLnBuZyIpLCB3ZWF0aGVyX3Bsb3QsCiAgICAgICAgICBuY29sID0gMSwKICAgICAgICAgIG5yb3cgPSAyLAogICAgICAgICAgYmFzZV93aWR0aCA9IDUsCiAgICAgICAgICBiYXNlX2hlaWdodCA9IDIpCmBgYAoK