Msprop program technical supplement v1.0

Robert Fleischhaker*and Jorg Evers'
Max-Planck-Institut fiir Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany

May 18, 2010

Abstract

This supplement is intended to provide some additional help in adapt-
ing the msprop program to a new physical system. We do not aim for a
general documentation of the program and its algorithm here, since this
is already covered in the related Computer Physics Communications ar-
ticle. Instead, we focus on the different aspects of setting up the source
code for a given quantum optical few-level system other than the systems
treated in the examples accompanying the code. In particular, we discuss
setting up the system dimensions and scaling, including the corresponding
equations of motion, choosing the correct source functions for the wave
equations, adding physical parameters, and adapting the output routine.
We assume that the reader is familiar with the general structure and func-
tioning of the msprop program as documented in the Computer Physics
Communications (CPC) article.

1 Introduction

A quantum optical few-level system usually consists of a fixed number of n ba-
sis states |I) (I € {1,...,n}) connected by several optical transitions which are
driven by laser fields. The mathematical problem of calculating the system dy-
namics from given initial conditions is defined by the following set of equations.
The atomic system is governed by a master equation

1
where p is the atomic density matrix, H is the system Hamiltonian, and £ is
the Liouvillian operator containing all decay and dephasing processes of the
corresponding level scheme. In the simplest possible matrix-vector notation,

this equation can be represented as

OR=ME+K, (2)

*robert.fleischhaker@mpi-hd.mpg.de
tjoerg.evers@mpi-hd.mpg.de

where R is a n2-dimensional vector containing the density matrix elements
(I)o|m) for I,m € {1,...,n}*. The r.h.s of Eq. (1) is then represented by the
n? x n2-dimensional matrix M and a constant n2-dimensional vector K.

In addition, each relevant laser field component is described by a wave equa-
tion of the form

|:(9z + % 54 Q; =g,(0), (3)

where (2; is the Rabi frequency of the jth laser field component, c is the speed
of light, and g; is the source function depending on the polarization and magne-
tization of the medium expressed by the corresponding elements of the density
matrix 9. We assume that there are m relevant field components, such that
j € {i,...,m}. Note that the number of relevant field components can be
higher than the number of applied laser fields, e.g., if one laser field couples
with both its magnetic and its electric field component to the atomic system.
In this case discussed in our example example_cross_coupling, both field
components count individually.

2 System dimension and scaling

The first step is to fix the dimensions of the system. In the program, the atomic
density matrix is represented by the complex variable R and the dimension of
R is given by dim_R. The driving fields are represented by the complex variable
0,with dimension dim_0. Thus, one has to set

dim_R = nx*n;
dim_0 = m;

Both, the definition of dim_R and dim_0 can be found in the beginning of the
msprop program (for example, see line 41 and 42 in file msprop_eit.c).

Next, the dimensionless propagation velocity w and the dimensionless cou-
pling constant n have to be fixed. These quantities are represented by the vari-
ables u and eta which are set in the initialize routine. For an efficient numer-
ical treatment of Eq. (3), u should be as closed to the physical velocity occurring
in the problem as possible. For example, in case of the electromagnetically in-
duced transparency (EIT) setup (see example_eit_1 and example_eit_2) we
used the standard analytical expression for the EIT group velocity.

The coupling constant eta is usually fixed by choosing a dimensionless time
and position coordinate (see CPC article). If the coupling constant is not the
same for all field components and transitions, an array etaik rather than a
single variable eta is defined to describe the couplings of the different field
components. This array has to describe the couplings of the fields in the same

I Note that representations with smaller dimension of R, M and K are possible, e.g., if the
properties (I|o|m) = (m|o|l)* and Tr(o)= 1 of the density matrix are used. Such more efficient
representations can be used in the code, if n is adjusted accordingly.

order as the variable 0. In our example example_cross_coupling, the different
elements of the array are fixed in the initialize routine as

etaik[0] eta;
etaik[1] = eta * alpha;
etaik[2] = eta * gam32 / gam34;

The three lines correspond to the coupling constants for the electric probe field
component (index [0]), the magnetic probe field component ([1]), and the
control field ([2]) (see lines 340 - 342 in msprop_cross.c).

3 Equations of motion for the density matrix

Next, the rhs_dRdt routine in the source code has to be adjusted corresponding
to the EOM for the atomic density matrix. More specifically, this routine con-
tains a list of time derivatives dRdt [i] of the elements of the density matrix in
the same order as the density matrix is represented by the complex variable R.
These time derivatives directly correspond to the right-hand side of Eq. (2). For
example, in the EIT case (see example_eit_1 and example_eit_2), we defined

R = {011, 091,022, 031, 032, 033} , (4)
and the field array 0 is defined in the order {€31,€32}. The first two equations
of the explicit form of Eq. (2) read

0011 =731033 — 5931913 + 5931931 ; (5a)
01021 = — YdecO21 + Q31001 ..., (5b)

which directly corresponds to the following lines of code

dRdt [0]
dRdt [1]

0.5%Ixconj(0[0])*R[3] + gam31*R[5] - 0.5%I*conj(R[3])*0[0];
-(gamdec*R[1]) + IxDelta31xR[1]...

in the rhs_dRdt routine (see file msprop_eit.c in example_eit_1).

For convenience, in each of the examples we have used a Mathematica note-
book which automatically generates the C-code form of the EOM. In Mathe-
matica it is easy to construct the EOM in a matrix formulation. With the help
of the CForm command and the string manipulation functions of Mathematica,
the corresponding C code can be generated.

4 Equations of motion for the laser fields

The EOM for the laser fields are represented by the three routines

tlw_fss_O_new, tlw_O_new, tlw_1lss_0O_new,

which calculate a first, an intermediate, and a last propagation space step for
a field variable. These routines rely on a single source function, and only this
source function has to be adapted. Two possible implementations have to be dis-
tinguished, depending on whether a laser field couples to one atomic transition
only, or whether it couples to several transitions.

4.1 Single coupling

In simple cases, a laser field only couples to a single transition. Following
Eq. (3), the density matrix element entering the source function g, has to be
specified for each field componenet €2;. This is achieved by supplying an array
P[1= {j1,Jo2,...} where ji is the index such that the density matrix element
represented by R[ji] corresponds to the density matrix element in the source
function of the field represented by 0[k].

For example, in the EIT system (see example_eit_land example_eit_2)
the density matrix elements p3; and g3s enter the source function for the fields
Q31 and Q32. The two density matrix elements are represented by the elements
R[3] and R[4] of the complex variable R and the two fields by 0[0] and 0[1].
Correspondingly, P[0] = 3 and P[1] = 4 and we include the line

int P[] = {3, 4};

into the code (see line 55 in file msprop_eit.c). In the code, the source terms in
the three space step routines directly refer to the corresponding density matrix
element R[j;]1=R[P[k 1]as

ROi_t][i_z] [P[i_k]].

In the code, the indices for the element, the position and the time are denoted
i_k,i_z and i_t, respectively.

4.2 Multiple coupling

In systems with a simultaneous coupling of one laser field to different transitions,
the source function for a single field component can depend on multiple density
matrix elements. An example is given in example_cross_coupling. In this
example, for better clarity the source functions of the different field components
are defined in the dedicated routine Rp with the index of the laser field compo-
nent as parameter. In the routine, a switch\case statement distinguishes the
different field components.

For example, in a system with a cross coupling of the two probe field com-
ponents (see example_cross_coupling), the probe field simultaneously couples
with its electric component Qg and its magnetic component Q5 to the atom.
Additionally, each field component couples to a combination of the electric and
magnetic coherence. In particular, Qg couples to p34 £icp21 and Qg couples to
021 F 1034, where the choice of sign + (F) is determined by the helicity hel of
the applied circularly polarized probe field. In the program, the two field com-
ponents Qg and g are represented by 0[0] and 0[1]. The electric coherence

is represented by R[3] and the magnetic coherence by R[0]. Correspondingly,
the Rp routine contains (see lines 428 - 431 in file msprop_cross.c)

case 0:
return R[i_t] [i_z][3] + I * hel * alpha * R[i_t][i_z][0];
case 1:
return alpha * R[i_t][i_z][0] - I * hel * R[i_t][i_z][3];

The three space step routines then directly use the Rp routine such that the
source term for field i_k at time i_t and position i_z reads Rp(i_t,i_z,i_k).

5 Boundary conditions

In addition to the EOM, for a different physical system one usually has to
adapt the boundary conditions. The boundary conditions for the atomic density
matrix have to be supplied for all z at ¢ = 0. These initial values for R are defined
in the array rho_start. For example, in the EIT system we assume an initially
homogeneous medium with all population initially in the ground state |1) such
that o117 = 1 and all other density matrix elements zero. The correponding
definition in the code is (see line 108 in file msprop_eit.c)

complex rho_start[6]={1.,0.,0.,0.,0.,0.};

For the fields, a value has to be provided for each time step at the position of
the medium entry z = 0. This is done in the initialize routine (for example,
see line 369 in msprop_eit.c). For convenience, the two routines pulse_env
and control_env are provided to realize different types of envelope functions.
The pulse_env routine returns different pulse shapes, a Gaussian, a Sech, and a
rectangular pulse shape depending on the ptype parameter. The control_env
routine can be used to switch a continuous wave field on or off throughout the
propagation.

6 Input and output routine

Besides changing the EOM themselves, a new level scheme usually comes with
a different set of physical parameters. For example, when additional transitions
are included, the corresponding decay rates have to be added. As the msprop
program works with a parameter file, this file and the read-in routine have to be
adjusted. For each parameter a global variable is defined in the beginning of the
program. The initialization of the parameters is done in the read_parameters
routine. Here, the parameter file is read line by line. If a line is used for a
comment, it is read and ignored, if it contains a parameter value the value is
stored in the corresponding variable.

For example, the two decay rates y3; and 32 in the EIT system are read
from lines 3 and 4 in the parameters_eit_1 file (see example_eit_1) by the
following lines of code

fgets(input_buffer, 200, parfile);
fgets(input_buffer, 200, parfile);
gam31 = strtod(input_buffer, NULL);
fgets(input_buffer, 200, parfile);
gam32 = strtod(input_buffer, NULL);

(see lines 165 - 169 in msprop_eit.c).

Furthermore, it depends on the physical system which quantities are inter-
esting as observables. Accordingly, one may want to export different quantities
such that the output routines have to be changed. The output of each interme-
diate time steps for all space steps into a file in the data subdirectory is done
in the write_timeline routine. In addition, a file with all time steps for the
last space position (medium exit) is written at the end of the main routine. In
both cases a column-based file is generated with the fprintf command which
lists all variables that should appear in the output file. For example, in the
EIT system (see example_eit_1) in each intermediate time step a file with the
name frame_t=time.dat is generated. In the first three columns it contains the
value of the space position z, the value of the probe field Q31, and the value of
the control field Q35. For the two fields, the absolute value has been taken and
they are scaled to their initial value. The corresponding lines of code are

fprintf (outputfileldata_it], "% .16f\t} .16f\t% .16f\t ...
z,

cabs(0[i_t][0] [0] / E31),

cabs(0[i_t][0][1] / E32),

(see lines 440 - 443 in file msprop_cross.c).

