
README - Instructions for set up and use of LVQ-KNN

Authors: Ariane Belka, Dirk Hoeper, Mareike Fischer, Martin Beer, Anne Pohlmann
Year: Copyright 2017

This program is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either ver-
sion 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this pro-
gram. If not, see <https://www.gnu.org/licenses/>.

If you use this program/method to create data/results in any publication please cite:

LVQ-KNN: Composition-based DNA/RNA classification of short nucleotide se-
quences utilizing a prototype-based k-nearest neighbor approach. 2018. A.
Belka, M. Fischer, A. Pohlmann, M. Beer and D. Höper.(doi...)

1 SOFTWARE DEPENDENCIES

1. EMBOSS/compseq: for computation of oligonucleotide frequency rates

2. R and packages: for creating data and prototype sets and for classification

(a) "seqinr" and all dependencies

(b) "class" and all dependencies

3. Perl and packages: for creating prototype sets via LVQ (if chosen; faster than LVQ.R)

(a) List::Util

(b) Time::Duration

2 SET UP

1. unzip L-KNN archive

2. change paths "path-name" in Config.txt and Main.sh to corresponding software tools
and the program

3. change path to Config.txt in *.sh files (* wildcard)

3 DATA STRUCTURE

1. If reference sequences are used:
The name of the reference sequences (refseqs) should contain the words "Bacteria",
"DNA" or "RNA" to generate the coding information. The sequences have to be in fastA
format, the files need the file extention: *.fasta or *.fna, e.g.:

1

RefseqBacteria.fasta, containing all bacterial refseqs

RefseqdsDNA.fasta, containing all double-stranded DNA virus refseqs

Refseqss-RNA.fasta, containing all negative-sense single-stranded RNA virus
refseqs,

...

2. If refseq oligonucleotide information is provided:
The data frame need the following structure, tab-separated, decimal mark ’.’ (e.g. for
dinucleotides):

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT DoRNA

ref1 1

ref2 2

...

NOTE: 1 = DNA, 2 = RNA; In order to avoid errors, the data frame should be ordered
by class-coding. File name and extention: e.g. training ∗ .txt

3. If prototype datasets are provided:
The data frame should have the same structure as for references in 2. File name and
extention: e.g. proto_di_ls_10_apk_500.txt

4. If test sequences are used:
The sequences have to be in fastA format, the file need the file extention: *.fasta or
*.fna

5. If test sequence oligonucleotide information is provided:
The data frame need the following structure, tab-separated, decimal mark ’.’ (e.g. for
dinucleotides):

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

query1

query2

...

File name and extention: e.g. test ∗ .txt

NOTE:

The prototype and the query sequence information need to be the same (e.g.
both dinucleotides), otherwise the classification fails.

Training oligonucleotide file names: training ∗ .txt
Test oligonucleotide file names: test ∗ .txt

4 USAGE

If you want to do the whole analysis (training data, prototypes, test data and classification)
run Main.sh with your specified parameter settings. Alternatively both scripts can be run
individually.

2

1. Whole analysis program running, using ./Main.sh

-o working directory, where the data of the analysis should be stored

-p project name of the current analysis (default: analysis_output)

-t should a training dataset be created (default: y)

if y: reference sequences files are copied to /wdir/projectname/trainingdata
if n: reference oligonucleotide information file is copied to

/wdir/projectname/trainingdata

-q should a query dataset be created (default: y)

if y: test sequences files are copied to /wdir/projectname/testdata
if n: test oligonucleotide information file is copied to /wdir/projectname/testdata

-l should prototype datasets be computed (default: y)

if y: LVQ method is employed to trainingdata to compute prototypes
if n: prototype dataset should be stored in /wdir/projectname/prototypes by the

USER or can be delivered by option -r

-k should classification results be created (default: y)

if y: K-NN method is employed to testdata and prototype sets to classify the test-
data

if n: Nothing is done.

-r path to the reference file/s or the prototype set

-u path to query files

-c which oligonucleotide should be used for classification (default: 2)

EXAMPLES:

Main.sh -o /Analysis/ -p Test -t y -l y -r /References/ -u /Queries/ -c 3

The analysis results are stored in /Analysis/Test/ (-o and -p).

The training dataset and prototypes are created/computed (-t y and -l y).

The analysis is based on trinucleotides (-c 3).

The classification is running by default (-q y and -k y).

2. Training dataset creation and Prototype dataset computation with LVQ using
./Prototype-computing/training_prototypes.sh

-o working directory, where the data of the analysis should be stored

-p project name of the current analysis

-t should a training dataset be created

if y: refseqs files are copied to /wdir/projectname/trainingdata
if n: reference oligonucleotide information file is copied to

/wdir/projectname/trainingdata

-l should prototype datasets be computed

if y: LVQ method is employed to trainingdata to compute prototypes
if n: prototype dataset should be stored in /wdir/projectname/prototypes by the

USER or can be delivered by option -f

3

-f path to the reference file/s or the prototype set

-c which oligonucleotide should be used for classification

EXAMPLES:

training_prototypes.sh -o /Analysis/ -p Test -t y -l y -f /References/ -c 3

The Analysis results are stored in /Analysis/Test/ (-o and -p).

The training dataset and prototypes are created/computed (-t y -l y).

The analysis is based on trinucleotides (-c 3).

training_prototypes.sh -o /Analysis/ -p Test -t n -l y -f /References/

Only prototypes are computed, training dataset already exist(-t n -l y).

The analysis is based on dinucleotides, because -c is default 2.

3. Test dataset creation and K-NN classification using
./Prototype-computing/test-classification.sh

-o working directory, where the data of the analysis should be stored

-p project name of the current analysis

-t should test datasets be created

if y: test sequences files are copied to /wdir/projectname/testdata
if n: test oligonucleotide information file is copied to /wdir/projectname/testdata

-k should classification results be created

if y: K-NN method is employed to testdata and prototype sets to classify the test-
data

if n: Nothing is done.

-f path to the test file/s

-c which oligonucleotide should be used for classification

EXAMPLES:

test-classification.sh -o /Analysis/ -p Test -t y -k y -f /Testfiles/ -c 3

The Analysis results are stored in /Analysis/Test/ (-o and -p).

The test dataset and the classification are created (-t y, -k y).

The analysis is based on trinucleotides (-c 3).

test-classification.sh -o /Analysis/ -p Test -t n -k y -f /Testfiles/

Only classification is executed, test dataset already exist(-t n, -l y).

The analysis is based on dinucleotides, because -c is default 2.

Have fun with the program. If any errors occur do not hesitate to report them to

ariane.belka@fli.de

4

PROGRAM - FILE - STRUCTURE:

LVQ-KNN (dir)

k-NN-classification (dir)
k-nn.R
results_compact.R
test-classification.sh
testdata.R

Prototype-computing (dir)
LVQ.pl
LVQ.R
training_prototypes.sh
trainingdata.R

Config.txt
Hilfsprogramme.R
Main.sh
README
README.pdf

5

