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Appendix A: Search string

(machine learning[MeSH Terms] OR support vector machine[MeSH Major Topic] OR neural networks[MeSH Major Topic] OR support vector machine OR multilayer perceptron OR neural network OR random forest OR lasso OR ridge OR kernel OR bayesian network OR classification tree OR regression tree OR relevance vector machine OR nearest neighbor OR probability estimation tree OR elastic net OR ensemble OR penalized OR regularized OR bagging OR boosting OR fuzzy OR Naive bayes OR deep learning OR genetic algorithms) AND (logistic models[MeSH Terms] OR multinomial logistic regression OR ordinal logistic regression OR logistic regression OR proportional odds regression). 

Appendix B: Further details on data extraction

· Categorical predictors with >2 levels are counted as one predictor.
· Missing indicator variables (binary variable indicating whether a predictor is missing or not) are not counted as predictor variables
· We extracted detailed information on tuning of hyperparameters, and classified these later on into four categories: unclear, use of default values, values are tuned but procedure is unclear, and values are tuned (procedure clear).
· Several papers also analyze ‘variable importance’ of the included predictors, we did not extract information on this.
· As an additional analysis, some studies also investigated the impact of sample size on performance based on smaller subsamples of the full dataset. In that case, we did not extract data from subsample models. We only extracted data for modeling based on the full dataset.

Appendix C: Criteria for identifying comparisons

Criteria for identifying comparisons between logistic regression (LR) and machine learning  (ML) within a paper were:
· Comparisons involve standard/penalized LR vs a ML method
· When a paper compared LR with traditional statistical models, these are not identified as LR vs ML comparisons. We regarded discriminant analysis, Poisson regression, generalized estimating equations, and generalized additive models as traditional statistical methods
· If a paper develops models for more than one outcome, comparisons involve LR and ML models for the same outcome
· If a paper develops models for multiple subgroups: comparisons involve LR and ML models for the same subgroup
· If a paper develops models with different predictor sets that are clearly described (e.g. only clinical variables vs clinical variables and lab values): comparisons involve LR and ML models within the same predictor set
· The AUC must be available for both models, with at least 2 decimals


Table A.1. Overview of extracted items for each study.
	Extracted item
	Comments

	Journal
	Name of the journal in which the study was published

	Impact factor
	Impact factor in year of publication

	Data collection
	Retrospective vs prospective. If data collection was prospective, but the aim to build prediction models arose after data collection, we classified the study as retrospective.

	Study design
	E.g. cohort, cross-sectional, pooled data from interventional studies

	Outcome type
	Diagnostic vs prognostic

	Predicted outcome(s)
	Actual outcome(s) predicted in the study; if multiple outcomes are predicted, multiple rows are used in the extraction sheet

	Sampling procedure
	Population-based (registries, administrative or claims databases, recruitment from general population outside medical sites) vs hospital-based

	Number of centers
	In case of multicenter hospital-based study

	Sample size
	Sample size used in modeling, including training and validation data. E.g. if complete case analysis is used, it is the number of complete cases used in modeling. If prediction was performed in several subgroups, we recorded sample size per subgroup, and used a different row for each subgroup

	Train-test split ratio and sample size for training and test sets
	If only ratio (e.g. 80:20) or only sample size per dataset was given, we calculated the other one; we also recorded the sample sizes if cross-validation was used (e.g. if 10-fold cross-validation was used, training sample size was 90% of total sample size)

	Number of outcome events (overall, in training)
	Defined as number of participants in the smallest outcome category; if the exact number of events for the training data was not reported, we approximated the number of events based on the overall event rate (assuming equal distribution)

	Missing data statements
	The specific statements on amount of missing data

	Method(s) to deal with missing data
	E.g. complete case analysis, variable deletion, multiple imputation

	Applied algorithms
	We recorded every algorithm that was fitted, each algorithm was entered on a different row in the extraction sheet

	Considered predictors
	This is the number of predictors considered prior to data-driven selection (if done); Nominal predictors are counted as 1; extracted per algorithm

	Predictors included in final model
	This information is recorded per algorithm

	Interaction terms for LR
	Whether interaction terms were considered for LR, and which approach was used for this (e.g. all pairwise, prespecified terms)

	Hyperparameter tuning
	Which hyperparameters were tuned, and the method used for tuning these hyperparameters; extracted per algorithm

	Type of data-driven variable selection
	Whether data-driven selection was performed prior to model development, and which method was used; extracted per algorithm

	Handling of continuous covariates
	Whether continuous variables were kept continuous, or whether some or all continuous variables were categorized or dichotomized; for LR we also extracted information about investigation of nonlinear effects; extracted per algorithm

	Type of validation
	E.g., none, (repeated) train-test splitting, 10-fold cross-validation, external validation (type of external validation added; extracted per algorithm

	Validation risk of bias
	Whether validation of model performance was clearly described and did not have a potential for bias; extracted per algorithm

	Validation issues
	If risk of bias was observed, the specific issue(s) are stated here; extracted per algorithm

	AUC
	AUC result per algorithm; we recorded one value in this order of priority: external validation, internal validation; training data

	Calibration information
	Whether calibration of risk predictions was examined, and which method(s) was/were used; extracted per algorithm

	Other reported performance measures
	Other performance measures are listed here (not the values, only the measures); extracted per algorithm

	Method to deal with class imbalance
	Whether class imbalance was addressed, and which method was used; extracted per algorithm

	Type of predictors
	A list of the broad type of predictors that were used in the study (e.g. demographic)





Table A.2. Description of the five risk of bias items.
	Risk of bias item
	Description

	Unclear or biased validation of performance
	We discern two general criteria to assess the validation: first, it should be clear that models are developed using training data only; second, if validation is done using resampling (repeated data splitting, cross-validation, bootstrapping), it should be clear that all model building steps are repeated in every training dataset [26]; ad hoc flaws are documented and tabulated.

	Difference in use of data-driven variable selection
	This item refers to the situation where the LR model was preceded by data-driven variable selection but the ML model was not, or vice versa. This item did not refer to the use of different methods for data-driven selection, or inherent differences in selection between algorithms (e.g. LASSO automatically includes variable selection).

	Difference in handling of continuous variables
	This item refers to the situation where the LR model uses categorized versions of continuous variables as predictors, but the ML model kept these variables continuous, or vice versa. This item did not refer to inherent differences in handling of continuous variables between algorithms (e.g. CART) automatically dichotomizes continuous variables during model development).

	Difference in considered predictors
	This item refers to whether both models considered the same predictors or not.

	Difference in methods for class imbalance
	As discussed elsewhere in this report, some studies used methods to correct imbalance in the outcome (i.e. event rate far away from 50%). This item refers to the situation where such methods were used for the LR model but not for ML model, or vice versa.





Table A.3. List of 71 papers [28–98].
	Paper
	Research Field
	Sample size
	Predictors
	Bias item 1
	Bias item 2
	Bias item 3
	Bias item 4
	Bias item 5

	Acion 2017
	Psychiatry
	99,013
	28
	No
	No
	No
	No
	No

	Alghamdi 2017
	Endocrinology
	32,555
	26
	Yes
	No
	No
	No
	Unc

	Allyn 2017
	Cardiology
	6,520
	66
	Unc
	No
	Unc
	No
	No

	Amini 2017
	Preterm Birth
	4,415
	14
	Unc
	Yes
	No
	No
	No

	Asaoka 2017
	Ophthalmology
	374
	84
	No
	Yes
	Unc
	No
	No

	Batterham 2017
	Nutrition & DIet
	295
	23
	Unc
	No
	No
	No
	No

	Batterham 2017b
	Nutrition & DIet
	 76
	5
	Yes
	No
	No
	No
	No

	Cheng 2017
	Geriatrics
	1,951
	11
	No
	Yes
	No
	No
	No

	Chiriac 2017
	Allergy & Immunology
	2,191
	9
	No
	Yes
	No
	No
	No

	Dean 2017
	Oncology
	179
	 32
	No
	No
	No
	No
	No

	Deng 2017
	Critical Care
	417
	28
	Yes
	No
	No
	No
	No

	Ebell 2017
	Primary Care
	175
	17
	Yes
	Yes
	Yes
	Unc
	No

	Fei 2017
	Critical Care
	353
	11
	Unc
	Yes
	No
	No
	No

	Fei 2017b
	Critical Care
	353
	11
	Unc
	Yes
	No
	No
	No

	Fei 2017c
	Critical Care
	72
	11
	Unc
	No
	Unc
	No
	Unc

	Frizzell 2017
	Cardiology
	56,477
	83
	Unc
	Yes
	No
	No
	No

	Hettige 2017
	Psychiatry
	345
	27
	Unc
	No
	No
	No
	No

	Hu 2017
	Health care services
	125,940
	35
	No
	No
	No
	No
	No

	Huang 2017
	Oncology
	3,632
	11
	Unc
	No
	No
	No
	No

	Imai 2017
	Allergy & Immunology
	592
	11
	Yes
	Yes
	No
	Yes
	No

	Kessler 2017
	Psychiatry
	2,114,855
	381
	No
	Unc
	No
	No
	No

	Kim 2017
	Oncology
	139
	
	Un
	No
	No
	No
	No

	Luo 2017
	Cardiology
	33,831
	9
	Unc
	No
	No
	No
	Yes

	Nuutinen 2017
	Geriatrics
	3,056
	 97
	Yes
	No
	No
	No
	No

	Olivera 2017
	Endocrinology
	12,447
	27
	No
	No
	No
	No
	No

	Shi 2017
	Hepatology
	777
	22
	No
	No
	No
	No
	No

	Shneider 2017
	Neonatology
	660
	22
	Yes
	Yes
	No
	No
	No

	Tighe 2017
	Oncology
	979
	10
	Unc
	Unc
	Unc
	No
	No

	Wallert 2017
	Cardiology
	51,943
	28
	No
	No
	No
	No
	No

	Weng 2017
	Cardiology
	378,256
	30
	No
	No
	No
	No
	No

	Yip 2017
	Hepatology
	922
	23
	Yes
	No
	Unc
	No
	No

	Zhang 2017
	ObGyn
	 3,994,872
	14
	No
	Yes
	No
	No
	No

	Zhao 2017
	Phys. Med. & Rehab.
	1,331
	35
	Unc
	No
	No
	No
	No

	Zhao 2017b
	Oncology
	13,355
	10
	No
	No
	Yes
	No
	No

	Adavi 2016
	Endocrinology
	12,000
	7
	Unc
	No
	No
	No
	No

	Anderson 2016
	Endocrinology
	9,948
	 298
	Yes
	No
	No
	No
	No

	Arslan 2016
	Cardiology
	190
	17
	Yes
	No
	No
	No
	No

	Belliveau 2016
	Phys. Med. & Rehab.
	3,142
	
	Yes
	No
	No
	Unc
	No

	Berchialla 2016
	Health care services
	7,296
	12
	Unc
	Yes
	No
	No
	No

	Berikol 2016
	Cardiology
	228
	7
	Unc
	No
	No
	No
	No

	Casanova 2016
	Endocrinology
	3,363
	93
	No
	No
	No
	No
	No

	Chen 2016
	Critical care
	939
	10
	Yes
	Yes
	No
	No
	No

	Churpek 2016
	Critical care
	269,999
	29
	No
	No
	No
	No
	No

	De Souza Filho 2016
	Infectious diseases
	136
	12
	Yes
	No
	No
	No
	No

	Dean 2016
	Oncology
	183
	 32
	No
	No
	No
	No
	No

	Eigentler 2016
	Oncology
	1,170
	7
	Unc
	No
	No
	No
	No

	Habibi 2016
	Neonatology
	148
	19
	Yes
	No
	Unc
	No
	No

	Ichikawa 2016
	Primary Care
	61,313
	12
	No
	No
	No
	No
	No

	Jahani 2016
	Endocrinology
	545
	5
	Yes
	No
	No
	No
	No

	Kabeshova 2016
	Geriatrics
	3,525
	17
	No
	No
	No
	No
	No

	Kate 2016
	Hepatology
	25,521
	42
	Unc
	No
	Unc
	No
	No

	Kulkarni 2016
	Health care services
	112,749
	 8
	Yes
	No
	No
	No
	No

	Lu 2016
	Geriatrics
	772
	16
	Unc
	No
	Unc
	No
	No

	Mahajan 2016
	Cardiology
	1,037
	48
	Yes
	Yes
	Unc
	No
	No

	Malik 2016
	Endocrinology
	175
	7
	Unc
	No
	No
	No
	No

	Matis 2016
	Health care services
	145
	13
	No
	No
	Unc
	No
	No

	Mortazavi 2016
	Cardiology
	1,004
	236
	Yes
	Yes
	No
	No
	No

	Nakas 2016
	Health care services
	106,688
	25
	Unc
	No
	Unc
	No
	No

	Ratliff 2016
	Surgery
	
	18
	Yes
	No
	No
	No
	No

	Rau 2016
	Endocrinology
	65,871
	
	Unc
	Unc
	No
	Unc
	No

	Ross 2016
	Cardiology
	1,047
	130
	Yes
	Yes
	Unc
	No
	No

	Taylor 2016
	Critical care
	5,278
	 563
	No
	No
	No
	Yes
	No

	Thottakkara 2016
	Hepatology
	50,318
	285
	Yes
	No
	No
	No
	No

	Tong 2016
	Critical care
	162,466
	273
	Yes
	Yes
	Unc
	No
	No

	van der Ploeg 2016
	Neurology
	11,026
	 10
	No
	No
	No
	No
	No

	Wang 2016
	Oncology
	20,696
	 7
	Unc
	No
	No
	No
	No

	Wang 2016b
	Oncology
	1,143
	19
	Unc
	Yes
	No
	No
	No

	Wu 2016
	Surgery
	195
	9
	No
	Yes
	No
	No
	No

	Yahya 2016
	Oncology
	754
	28
	No
	Yes
	No
	No
	No

	Zhang 2016
	Oncology
	205
	 11
	Yes
	No
	No
	Yes
	No

	Zhou 2016
	Oncology
	81
	18
	Unc
	No
	Unc
	No
	No






Table A.4. List of domains (n=71 studies).
	Clinical discipline
	N

	Oncology
	12 (17%)

	Cardiovascular medicine
	10 (14%)

	Critical care
	8 (11%)

	Endocrinology
	8 (11%)

	Health care services
	5 (7%)

	Geriatrics
	4 (6%)

	Hepatology
	4 (6%)

	Psychiatry
	3 (4%)

	Allergy & Immunology
	2 (3%)

	Neonatology
	2 (3%)

	Nutrition
	2 (3%)

	Obstetrics & Gynecology
	2 (3%)

	Physical medicine & rehabilitation
	2 (3%)

	Primary care
	2 (3%)

	Surgery
	2 (3%)

	Infectious diseases
	1 (1%)

	Neurology
	1 (1%)

	Ophthalmology
	1 (1%)








Table A.5. Overview of study characteristics. 
	Study characteristic
	N (%)

	Study design
	

	Unclear
	3 (4%)

	Cohort study
	39 (55%)

	Cross-sectional study
	18 (25%)

	Pooled data from interventional studies
	6 (8%)

	(Nested) case-control
	2 (3%)

	Pooled data from cohort and interventional studies
	2 (3%)

	Mix of cross-sectional and cohort data
	1 (1%)

	Type of outcome
	

	Prognostic only
	50 (70%)

	Diagnostic only
	19 (27%)

	Prognostic and diagnostic outcomes
	2 (3%)

	Study timing
	

	Unclear
	4 (6%)

	Retrospective
	64 (90%)

	Prospective
	3 (4%)

	Participant sampling
	

	Unclear
	3 (4%)

	Hospital-based multicenter
	27 (38%)

	Hospital-based single center
	22 (31%)

	Population-based
	19 (27%)





Table A.6. Descriptive statistics, of papers and study characteristics.
	Variable
	N
	Unknown
or NA
	Median
	Interquartile
range
	Range

	Journal impact factor
	71
	6
	2.8
	2.5-4.2
	0.6-10.1

	Number of centers if multicenter 
	27
	10
	5
	4-15
	2-1,137

	Total sample size a
	71
	1
	1,250
	353-188,861
	72-3,994,872

	Number of predictors b
	71
	3
	19
	11-32
	5-563

	Event rate c
	102
	14
	0.18
	0.09-0.35
	0.002-0.50

	Events per predictor, training data d
	128
	26
	8
	4-34
	0.3-6,697


a Some studies included an assessment of performance by sample size by also developing models for different subsamples of the full dataset. Here, we recorded information on the core analysis using the full dataset.
b In some cases, the number of predictors was not mentioned explicitly but could be reasonably derived from a table.
c Event rate: in total 102 outcomes are predicted (62 papers predicted 1 outcome, 9 predicted multiple outcomes; event is defined as the smallest outcome group.
d Events per predictor: papers can predict outcomes in multiple subgroups/cohorts, or with multiple predictor sets, or for multiple outcomes; in total 128 settings were identified in 71 papers. The size of and number of events in the training data was recorded exactly where possible. In some papers, size of the training data was approximated based on the reported train-test split ratio or number of folds if cross-validation was used, and number of events was approximated based on event rate. If this information was also absent, we could not derive the number of events per predictor (this happened in 26 settings).


Table A.7. Approaches to deal with missing data (n=71 studies).
	Missing data approach
	N (%)

	Unclear / no information
	32 (45%)

	Complete case analysis (CCA)
	16 (23%)

	Ad hoc methods
	14 (20%)

	Replacement with fixed value (FV), e.g. mean imputation
	4

	Mixture of CCA and Missing indicator methods
	3

	Missing indicator methods only
	1

	Mixture of FV and missing indicator methods
	1

	Mixture of variable deletion and FV
	1

	Mixture of CCA and variable deletion
	1

	Mixture of variable deletion and missing indicator methods
	1

	Mixture of CCA and linear interpolation
	1

	Mixture of missing indicator methods and an unclear method
	1

	Single/Multiple stochastic imputation – see table S7
	9 (13%)








Table A.8. Descriptions in papers where single or multiple imputation was used (n=9 studies)
	Description in paper
	N

	Multiple imputation, no further information
	2

	Complete case analysis, multiple (5) imputation using propensity score method as sensitivity analysis
	1

	Participants with less than 75% complete information were omitted, multiple (25) information using fully conditional specification for clinically important variables
	1

	Less important predictors with >5% missing values were removed, important predictors with >15% missing values were removed, then complete cases were used. As a sensitivity analysis, multiple (5) imputation was done using multivariable imputation through chained equations and predictive mean matching
	1

	Single imputation using sequential regression imputation, no further information
	1

	Single imputation with knnImpute with k=5 in caret R package, no further information
	1

	Imputation using multivariate imputation by chained equations (mice), no further information (unclear whether single or multiple imputation)
	1

	Single imputation based on correlations between predictors, no further information
	1






Table A.9. Detailed information about methods that were used for penalized regression, classification trees, support vector machines, and artificial neural networks. Some studies used multiple methods, therefore numbers within an algorithm category may not sum to the subtotal.
	Algorithm category
	N studies

	Penalized logistic regression
	15

	Lasso
	8

	Elastic net
	5

	Ridge
	4

	Lasso or ridge used as tuning parameter
	2

	Classification trees
	30

	Classification and Regression Trees (CART)
	20

	C4.5
	5

	Chi-square Automatic Interaction Detection (CHAID)
	4

	
	

	Conditional inference tree
	1

	Unclear
	2

	Artificial neural networks
	26

	1 hidden layer
	22

	>1 hidden layer
	3

	# hidden layers unclear
	1

	Support vector machine
	24

	Radial basis function (RBF) kernel
	10

	Kernel unclear
	7

	Linear kernel
	5

	Kernel part of tuning process
	5

	Polynomial kernel
	2






Table A.10. Approaches to deal with predictors (n=71 studies). Counts refer to papers.
	Issue
	N (%)

	Continuous variables: general approach
	

	Unclear
	14 (20%)

	Kept continuous
	37 (52%)

	Categorized (i.e. >2 categories) a
	10 (14%)

	Dichotomized (2 categories) b
	8 (11%)

	Depends on algorithm
	2 (3%)

	
	

	Continuous variables: approach for logistic regression
	

	Unclear
	14 (20%)

	Continuous, nonlinearity unclear
	29 (41%)

	Discretized (2 or more categories) all variables
	16 (23%)

	Continuous, nonlinearity investigated
	7 (10%)

	Generalized additive modes used as alternative
	2

	Unclear, piecewise effects noted in results
	2

	Restricted cubic splines
	1

	Penalized spline functions
	1

	BMI categorized because nonlinearity expected
	1

	Discretized some variables, unclear for others
	4 (6%)

	Continuous, with linear effect
	1 (1%)

	
	

	Data-driven variable selection c
	

	Unclear
	2 (3%)

	No (i.e. a priori prespecification)
	28 (39%)

	For some algorithms
	22 (31%)

	For all algorithms d
	19 (27%)

	
	

	Interaction terms for logistic regression modeling
	

	Not explicitly mentioned
	63 (89%)

	Interaction terms were considered e
	8 (11%)


a 2 studies categorized some variables, but not all
b 1 study dichotomized some variables, and categorized others; 3 studies dichotomized some variables, but not all.
c This refers to data-driven variable selection before applying the algorithms, not to variable selection that is inherent in algorithms (e.g. as in CART or lasso)
d 5 studies applied the algorithms both with and without data-driven variable selection
e The description of what was done was often unclear.



Table A.11. Descriptions in papers where interaction terms were examined (n=8 studies)
	Description in paper
	N

	All two-way interactions were included
	1

	All two- and three-way interactions considered for LASSO model, no interactions for standard model
	1

	All two-way interactions screened 
	1

	Interactions were tested
	1

	Models were tested for significant interactions
	1

	A number of interactions between socio-demographic features are included
	1

	Potential interactions detected through the CART model were considered
	1

	Interactions were checked using a backward method
	1





Table A.12. Summary of hyperparameter tuning for the most common algorithms. Counts refer to papers.
	
	Penalized LR
(N=15)
	Tree
(N=30)
	RF 
(N=28)
	SVM
(N=24)
	ANN
(N=26)

	Tuning approach 
	n (%)
	n (%)
	n (%)
	n (%)
	n (%)

	Unclear
	3 (20%)
	10 (33%)
	6 (21%)
	7 (29%)
	5 (19%)

	Default setting
	1 (7%)
	5 (17%)
	7 (25%)
	2 (8%)
	4 (15%)

	Tuned, unclear approach
	7 (47%)
	11 (37%)
	8 (29%)
	11 (46%)
	13 (50%)

	Tuned
	4 (27%)
	4 (13%)
	7 (25%)
	4 (17%)
	4 (15%)


LR, logistic regression; RF, random forest; SVM, support vector machine; ANN, artificial neural network.



Table A.13. Reasons for labeling a validation approach as unclear or biased (n=71 studies). Multiple reasons may apply to the same study.
	Biased validation approach
	N

	Yes
	

	No validation of model performance
	10

	Model optimized using test data
	5

	Variable selection not repeated during resampling
	4

	Selective reporting of ML performance (only for the best ones)
	3

	Variable selection done on all data, then train-test split
	2

	Resampling used to tune and validate at the same time
	1

	Recoding of categorical predictors using the outcome
	1

	Performance calculated for all data despite validation procedure
	1

	Tuning based also on test data
	1

	
	

	Unclear
	

	Not clear on which data the hyperparameters were tuned
	27

	Not clear on which data variable selection was done
	4

	Resampling may have been used to tune and validate at the same time
	4

	Unclear whether tuning repeated during resampling
	3

	Paper states the model ‘was fitted to the test sample’
	1

	Unclear whether variable selection repeated during resampling
	1

	Unclear whether all procedures repeated during resampling
	1

	No information on how the bootstrap validation was done
	1

	No information at all, except that the algorithm was used
	1





Table A.14. Measures used to assess model performance (n=71 studies)
	Performance criterion
	N (%)

	Area under the ROC curve (AUC)
	64 (90%)

	Sensitivity
	45 (63%)

	Specificity
	43 (61%)

	Positive predictive value
	31 (44%)

	Overall accuracy
	29 (41%)

	Negative predictive value
	25 (35%)

	Positive likelihood ratio (LR+)
	4 (6%)

	Negative likelihood ration (LR-)
	4 (6%)

	F1 score
	4 (6%)

	Brier
	4 (6%)

	Youden index
	4 (6%)

	Misclassification rate / overall error rate
	4 (6%)

	Kappa
	3 (4%)

	R-squared information
	3 (4%)

	False positive rate
	3 (4%)

	False negative rate
	3 (4%)

	Logloss / entropy
	2 (3%)

	Balanced accuracy
	1 (1%)

	Weighted accuracy
	1 (1%)

	Balanced error rate
	1 (1%)

	G mean
	1 (1%)

	Net reclassification improvement
	1 (1%)

	Matthews correlation coefficient
	1 (1%)

	Gini coefficient
	1 (1%)

	Pearson correlation
	1 (1%)

	Root mean squared error (RMSE)
	1 (1%)

	Avg absolute error
	1 (1%)

	Max absolute error
	1 (1%)

	Relative risk reduction
	1 (1%)

	Absolute risk reduction
	1 (1%)

	Absolute risk increase
	1 (1%)





Table A.15. Approaches used to assess the accuracy of risk estimates (calibration) (n=71 studies).
	Method
	N (%)

	Calibration not discussed
	56 (79%)

	Calibration discussed a
	15 (21%)

	Grouped calibration plot (or table)
	8

	Calibration intercept and slope
	3

	Hosmer-Lemeshow test on training data only
	3

	Hosmer-Lemeshow test on validation data 
	3

	Calibration slope
	1

	Smoothed calibration plot
	1

	Overall predicted vs observed events
	1


a Some papers used more than one method, hence numbers per method do not sum to 15.

Table A.16. Methods used for imbalanced outcome (event rate far from 50%)  (71 studies)
	Methods for imbalance used
	N (%)

	No
	50 (70%)

	Yes
	21 (30%)

	Undersampling
	8

	Weighting approach
	5

	Several methods tried a 
	3

	Unclear
	3

	Synthetic minority oversampling (SMOTE) technique
	1

	Sampling a balanced training set
	1


a Two papers tried undersampling and SMOTE, one paper tried undersampling, oversampling, and SMOTE


Table A.17. Overview of the bias items for the 71 studies and the 282 comparisons. The table indicates for how many studies/comparisons the bias item was present or was unclear.
	
	Item unclear or bias present, n (%)

	Bias item
	Study level (N=71)
	Comparison level (N=282)

	Validation procedure
	48 (68)
	119 (42)

	Variable selection
	24 (32)
	39 (14)

	Continuous predictors
	16 (23)
	44 (16)

	Number of predictors
	6 (8)
	14 (5)

	Outcome imbalance 
	3 (4)
	5 (2)




Table A.18. Overview of further anecdotal observations in the included studies [28–98].
	Number
	Description

	General observations

	1
	The measurement scale of predictors was often lacking

	2
	The number of predictors selected in the final model was often lacking

	3
	The exact type of data-driven variable selection was often unclear

	4
	Several extractions were implicit, by checking tables, figures or footnotes, but without clear explicit statements

	Anecdotal observations

	1
	We observed selective reporting of performance in some studies. It happened that several ML algorithms were applied but only results for the best were shown (1 study), or that results were shown only for ML algorithms that performed better than LR (1 study).

	2
	Regarding prognostic outcomes:
· We observed several studies where a prognostic outcome was predicted without taking into account the time horizon. The outcome was defined as the occurrence of the condition within the available follow-up time, which could be different for each participant.
· One prognostic study predicted functional limitations in the elderly, but excluded participants who died irrespective of the reason.
· One study aimed to make a prognostic model based on cross-sectional data: a model to predict who is at risk of developing the condition was made by distinguishing between participants who already had or had not experienced the condition.

	3
	In one study, a split into train-validate-test parts was reported. The models were developed on the training set using default values, and performance was reported for the validation set. There was no further mention of the test set. 

	4
	One paper reported an AUC of 0.52 for logistic regression, but with a sensitivity of 84% and a specificity of 87%.

	5
	Some papers present ROC plots showing binary ROC curves, i.e. ROC curves that are not based on the absolute risk predictions but rather on the classification after applying a cut-off.

	6
	One paper included a sensitivity analysis where models were training on 50% of the data, and then validated on all data.

	7
	One study mentions very high AUCs for two ML algorithms in the abstract and discussion, but without any mention in the results section.

	8
	One study matched participants with and without the outcome condition on age and gender, and then used these variables as predictors for the outcome.

	9
	One paper deletes the top and bottom 1% of values for continuous predictors to avoid a large influence of outliers, but then imputes these values using mean imputation.

	10
	One paper gives numerical values to different levels of nominal predictors based on the association of each level with the outcome that is predicted.

	11
	One paper deletes nearly all data in order to obtain a ‘balanced’ data set (i.e. 50% event rate). The observed event rate is 1%, such that nearly all non-events had to be excluded.




Table A.19. Overview of recommendations with the rationale and further explanation.
	Recommendation
	Rationale and further explanation

	Fully report on all modeling steps
	Incomplete reporting makes it impossible to judge on the likely robustness and validity of a model. Full reporting includes for example clear information of sample size and number of outcome events in the dataset and in dataset splits if appropriate, an unambiguous overview of all predictors that were considered in data-driven modeling and how these were selected, hyperparameter tuning, explicit statements of how continuous variables were addressed in logistic regression models, explicit statements of whether and how interaction terms were used in logistic regression models, whether and what kind of data-driven variable selection was performed, and a clear description of how modeling was done in each resampled dataset.

	If resampling is used for internal validation, also develop and report the models on the full dataset
	When the aim of a study is to develop clinical prediction models for use in medical practice, these models should be fully reported and available to allow external validation studies. When a study uses a single train-test split, the development data is the training set. The model based on this set is applied to the test set, and should be available for further external validation. When models are internally validated using resampling, test performance is based on multiple training and testing datasets generated from the total study sample. This means that the development data is the total study sample, and the model based on all data  should be available for validation. 

	Report training and validation performance
	Often, performance on the development data is not provided because it tends to be optimistic. However, the difference in performance with the internally validated performance (whether based on a single test set or on resampling) is informative of the amount of optimism or overfitting.

	Assess calibration of the risk predictions
	In clinical medicine, risk predictions are important for making decisions for individuals. Therefore, discrimination performance of a model is not sufficient. The calibration of the predicted risks should be evaluated as well. This informs on the likely over- or underestimation of the predicted risks. For example, overfitted models tend to underestimate low risks and overestimate high risks. Poor calibration reduces the utility of a model.


Figure A.1. Scatter plot of the number of considered predictors by the number of events in the training data for all 71 studies. The plot contains >71 data points: some studies predicted multiple outcomes, made predictions for different subgroups, or considered multiple predictor sets.
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Figure A.2. Scatter plot of the area under the ROC curve (AUC) for LR vs ML for all 282 comparisons. Comparisons with low risk of bias are shown in green, comparisons with high risk of bias in red. 
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