% Encoding: UTF-8 @Article{Esconjauregui:20091, author = {S. Esconjauregui and B. C. Bayer and M. Fouquet and C. T. Wirth and C. Ducati and S. Hofmann and J. Robertson}, title = {Growth of high-density vertically aligned arrays of carbon nanotubes by plasma-assisted catalyst pretreatment}, journal = {Applied Physics Letters}, year = {2009}, volume = {95}, number = {17}, pages = {173115}, bdsk-file-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QcUdyb3d0aCBvZiBoaWdoLWRlbnNpdHkgdmVydGljYWxseSBhbGlnbmVkIGFycmF5cyBvZiBjYXJib24gbmFub3R1YmVzIGJ5IHBsYXNtYS1hc3Npc3RlZCBjYXRhbHlzdCBwcmV0cmVhdG1lbnQucGRm0hcLGBlXTlMuZGF0YU8RAuAAAAAAAuAAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9Hcm93dGggb2YgaGlnaC1kZW5zIzEwMDlENEEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAJ1K1WS/6gAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA1WUUSgAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEdyb3d0aCBvZiBoaWdoLWRlbnMjMTAwOUQ0QS5wZGYADgDkAHEARwByAG8AdwB0AGgAIABvAGYAIABoAGkAZwBoAC0AZABlAG4AcwBpAHQAeQAgAHYAZQByAHQAaQBjAGEAbABsAHkAIABhAGwAaQBnAG4AZQBkACAAYQByAHIAYQB5AHMAIABvAGYAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQBzACAAYgB5ACAAcABsAGEAcwBtAGEALQBhAHMAcwBpAHMAdABlAGQAIABjAGEAdABhAGwAeQBzAHQAIABwAHIAZQB0AHIAZQBhAHQAbQBlAG4AdAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCdVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Hcm93dGggb2YgaGlnaC1kZW5zaXR5IHZlcnRpY2FsbHkgYWxpZ25lZCBhcnJheXMgb2YgY2FyYm9uIG5hbm90dWJlcyBieSBwbGFzbWEtYXNzaXN0ZWQgY2F0YWx5c3QgcHJldHJlYXRtZW50LnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgECAQcBDwPzA/UD+gQFBA4EHAQgBCcEMAQ1BEIERQRXBFoEXwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAARh}, bdsk-url-1 = {http://dx.doi.org/10.1063/1.3256012}, date-added = {2017-06-13 04:01:27 +0000}, date-modified = {2017-06-13 04:01:45 +0000}, doi = {10.1063/1.3256012}, eprint = {http://dx.doi.org/10.1063/1.3256012}, file = {:Growth of high-density vertically aligned arrays of carbon nanotubes by plasma-assisted catalyst pretreatment.pdf:PDF}, url = {http://dx.doi.org/10.1063/1.3256012}, } @Article{Esconjauregui:20112, author = {S. Esconjauregui and B. C. Bayer and M. Fouquet and C. T. Wirth and F. Yan and R. Xie and C. Ducati and C. Baehtz and C. Castellarin-Cudia and S. Bhardwaj and C. Cepek and S. Hofmann and J. Robertson}, title = {Use of plasma treatment to grow carbon nanotube forests on TiN substrate}, journal = {Journal of Applied Physics}, year = {2011}, volume = {109}, number = {11}, pages = {114312}, bdsk-file-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QTFVzZSBvZiBwbGFzbWEgdHJlYXRtZW50IHRvIGdyb3cgY2FyYm9uIG5hbm90dWJlIGZvcmVzdHMgb24gVGlOIHN1YnN0cmF0ZS5wZGbSFwsYGVdOUy5kYXRhTxECcAAAAAACcAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1VzZSBvZiBwbGFzbWEgdHJlYXQjMTAwOTFBQS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAkarVZL1BAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADVZRGhAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVXNlIG9mIHBsYXNtYSB0cmVhdCMxMDA5MUFBLnBkZgAOAJoATABVAHMAZQAgAG8AZgAgAHAAbABhAHMAbQBhACAAdAByAGUAYQB0AG0AZQBuAHQAIAB0AG8AIABnAHIAbwB3ACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABmAG8AcgBlAHMAdABzACAAbwBuACAAVABpAE4AIABzAHUAYgBzAHQAcgBhAHQAZQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB4VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Vc2Ugb2YgcGxhc21hIHRyZWF0bWVudCB0byBncm93IGNhcmJvbiBuYW5vdHViZSBmb3Jlc3RzIG9uIFRpTiBzdWJzdHJhdGUucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A3QDiAOoDXgNgA2UDcAN5A4cDiwOSA5sDoAOtA7ADwgPFA8oAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADzA==}, bdsk-url-1 = {http://dx.doi.org/10.1063/1.3587234}, date-added = {2017-06-13 03:55:10 +0000}, date-modified = {2017-06-13 03:55:41 +0000}, doi = {10.1063/1.3587234}, eprint = {http://dx.doi.org/10.1063/1.3587234}, file = {:Use of plasma treatment to grow carbon nanotube forests on TiN substrate.pdf:PDF}, url = {http://dx.doi.org/10.1063/1.3587234}, } @article{Sugime:2013, Author = {Hisashi Sugime and Santiago Esconjauregui and Junwei Yang and Lorenzo D'Arsi{\'e} and Rachel A. Oliver and Sunil Bhardwaj and Cinzia Cepek and John Robertson}, Date-Added = {2017-06-13 03:39:54 +0000}, Date-Modified = {2017-06-13 03:40:19 +0000}, Doi = {10.1063/1.4818619}, Eprint = {http://dx.doi.org/10.1063/1.4818619}, Journal = {Applied Physics Letters}, Number = {7}, Pages = {073116}, Title = {Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports}, Url = {http://dx.doi.org/10.1063/1.4818619}, Volume = {103}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QZExvdyB0ZW1wZXJhdHVyZSBncm93dGggb2YgdWx0cmEtaGlnaCBtYXNzIGRlbnNpdHkgY2FyYm9uIG5hbm90dWJlIGZvcmVzdHMgb24gY29uZHVjdGl2ZSBzdXBwb3J0cy5wZGbSFwsYGVdOUy5kYXRhTxECuAAAAAACuAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0xvdyB0ZW1wZXJhdHVyZSBncm8jMTAwMzZGQS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEANvrVZLqEAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADVZQ7kAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToATG93IHRlbXBlcmF0dXJlIGdybyMxMDAzNkZBLnBkZgAOAMoAZABMAG8AdwAgAHQAZQBtAHAAZQByAGEAdAB1AHIAZQAgAGcAcgBvAHcAdABoACAAbwBmACAAdQBsAHQAcgBhAC0AaABpAGcAaAAgAG0AYQBzAHMAIABkAGUAbgBzAGkAdAB5ACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABmAG8AcgBlAHMAdABzACAAbwBuACAAYwBvAG4AZAB1AGMAdABpAHYAZQAgAHMAdQBwAHAAbwByAHQAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCQVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Mb3cgdGVtcGVyYXR1cmUgZ3Jvd3RoIG9mIHVsdHJhLWhpZ2ggbWFzcyBkZW5zaXR5IGNhcmJvbiBuYW5vdHViZSBmb3Jlc3RzIG9uIGNvbmR1Y3RpdmUgc3VwcG9ydHMucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A9QD6AQIDvgPAA8UD0APZA+cD6wPyA/sEAAQNBBAEIgQlBCoAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAELA==}, Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.4818619}} @Article{Esconjauregui:2013, author = {Santiago Esconjauregui and Rongsie Xie and Martin Fouquet and Richard Cartwright and David Hardeman and Junwei Yang and John Robertson}, title = {Measurement of area density of vertically aligned carbon nanotube forests by the weight-gain method}, journal = {Journal of Applied Physics}, year = {2013}, volume = {113}, number = {14}, pages = {144309}, abstract = { The area density of vertically aligned carbon nanotubes forests is measured and analysed by the weight gain method. The mass density of a close packed array of single- and multi-walled nanotubes is analysed as a function of the average nanotube diameter and number of walls, and this is used to derive the area density, from which the filling factor can be extracted. Densities of order 1013 cm−2 tubes are grown from cyclic catalyst methods. }, bdsk-file-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QZ01lYXN1cmVtZW50IG9mIGFyZWEgZGVuc2l0eSBvZiB2ZXJ0aWNhbGx5IGFsaWduZWQgY2FyYm9uIG5hbm90dWJlIGZvcmVzdHMgYnkgdGhlIHdlaWdodC1nYWluIG1ldGhvZC5wZGbSFwsYGVdOUy5kYXRhTxECwgAAAAACwgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH01lYXN1cmVtZW50IG9mIGFyZWEjMTAwMzI4My5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAMoPVZLl6AAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADVZQ3aAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToATWVhc3VyZW1lbnQgb2YgYXJlYSMxMDAzMjgzLnBkZgAOANAAZwBNAGUAYQBzAHUAcgBlAG0AZQBuAHQAIABvAGYAIABhAHIAZQBhACAAZABlAG4AcwBpAHQAeQAgAG8AZgAgAHYAZQByAHQAaQBjAGEAbABsAHkAIABhAGwAaQBnAG4AZQBkACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABmAG8AcgBlAHMAdABzACAAYgB5ACAAdABoAGUAIAB3AGUAaQBnAGgAdAAtAGcAYQBpAG4AIABtAGUAdABoAG8AZAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCTVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NZWFzdXJlbWVudCBvZiBhcmVhIGRlbnNpdHkgb2YgdmVydGljYWxseSBhbGlnbmVkIGNhcmJvbiBuYW5vdHViZSBmb3Jlc3RzIGJ5IHRoZSB3ZWlnaHQtZ2FpbiBtZXRob2QucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAPgA/QEFA8sDzQPSA90D5gP0A/gD/wQIBA0EGgQdBC8EMgQ3AAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABDk=}, bdsk-url-1 = {http://dx.doi.org/10.1063/1.4799417}, date-added = {2017-06-13 03:35:51 +0000}, date-modified = {2017-06-13 03:36:02 +0000}, doi = {10.1063/1.4799417}, eprint = {http://dx.doi.org/10.1063/1.4799417}, file = {:Measurement of area density of vertically aligned carbon nanotube forests by the weight-gain method.pdf:PDF}, url = {http://dx.doi.org/10.1063/1.4799417}, } @article{Esconjauregui:2010, Abstract = { We present a general catalyst design to synthesize ultrahigh density, aligned forests of carbon nanotubes by cyclic deposition and annealing of catalyst thin films. This leads to nanotube forests with an area density of at least 1013 cm−2, over 1 order of magnitude higher than existing values, and close to the limit of a fully dense forest. The technique consists of cycles of ultrathin metal film deposition, annealing, and immobilization. These ultradense forests are needed to use carbon nanotubes as vias and interconnects in integrated circuits and thermal interface materials. Further density increase to 1014 cm−2 by reducing nanotube diameter is possible, and it is also applicable to nanowires. }, Author = {Esconjauregui, Santiago and Fouquet, Martin and Bayer, Bernhard C. and Ducati, Caterina and Smajda, Rita and Hofmann, Stephan and Robertson, John}, Date-Added = {2017-06-13 03:28:14 +0000}, Date-Modified = {2017-06-13 03:28:32 +0000}, Doi = {10.1021/nn1025675}, Eprint = {http://dx.doi.org/10.1021/nn1025675}, Journal = {ACS Nano}, Note = {PMID: 21128669}, Number = {12}, Pages = {7431-7436}, Title = {Growth of Ultrahigh Density Vertically Aligned Carbon Nanotube Forests for Interconnects}, Url = {http://dx.doi.org/10.1021/nn1025675}, Volume = {4}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QXEdyb3d0aCBvZiBVbHRyYWhpZ2ggRGVuc2l0eSBWZXJ0aWNhbGx5IEFsaWduZWQgQ2FyYm9uIE5hbm90dWJlIEZvcmVzdHMgZm9yIEludGVyY29ubmVjdHMucGRm0hcLGBlXTlMuZGF0YU8RAqAAAAAAAqAAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9Hcm93dGggb2YgVWx0cmFoaWdoICNGRkQyNTYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9JW1WS3xQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA1WUMJQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEdyb3d0aCBvZiBVbHRyYWhpZ2ggI0ZGRDI1Ni5wZGYADgC6AFwARwByAG8AdwB0AGgAIABvAGYAIABVAGwAdAByAGEAaABpAGcAaAAgAEQAZQBuAHMAaQB0AHkAIABWAGUAcgB0AGkAYwBhAGwAbAB5ACAAQQBsAGkAZwBuAGUAZAAgAEMAYQByAGIAbwBuACAATgBhAG4AbwB0AHUAYgBlACAARgBvAHIAZQBzAHQAcwAgAGYAbwByACAASQBuAHQAZQByAGMAbwBuAG4AZQBjAHQAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCIVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Hcm93dGggb2YgVWx0cmFoaWdoIERlbnNpdHkgVmVydGljYWxseSBBbGlnbmVkIENhcmJvbiBOYW5vdHViZSBGb3Jlc3RzIGZvciBJbnRlcmNvbm5lY3RzLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAO0A8gD6A54DoAOlA7ADuQPHA8sD0gPbA+AD7QPwBAIEBQQKAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABAw=}, Bdsk-Url-1 = {http://dx.doi.org/10.1021/nn1025675}} @Article{Esconjauregui:2011, author = {S. Esconjauregui and M. Fouquet and B. C. Bayer and S. Eslava and S. Khachadorian and S. Hofmann and J. Robertson}, title = {Manipulation of the catalyst-support interactions for inducing nanotube forest growth}, journal = {Journal of Applied Physics}, year = {2011}, volume = {109}, number = {4}, pages = {044303-044303-7}, bdsk-file-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QWU1hbmlwdWxhdGlvbiBvZiB0aGUgY2F0YWx5c3Qtc3VwcG9ydCBpbnRlcmFjdGlvbnMgZm9yIGluZHVjaW5nIG5hbm90dWJlIGZvcmVzdCBncm93dGgucGRm0hcLGBlXTlMuZGF0YU8RApgAAAAAApgAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9NYW5pcHVsYXRpb24gb2YgdGhlICNGRkEyNjkucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/6Jp1WSstAAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA1WUBFAAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AE1hbmlwdWxhdGlvbiBvZiB0aGUgI0ZGQTI2OS5wZGYADgC0AFkATQBhAG4AaQBwAHUAbABhAHQAaQBvAG4AIABvAGYAIAB0AGgAZQAgAGMAYQB0AGEAbAB5AHMAdAAtAHMAdQBwAHAAbwByAHQAIABpAG4AdABlAHIAYQBjAHQAaQBvAG4AcwAgAGYAbwByACAAaQBuAGQAdQBjAGkAbgBnACAAbgBhAG4AbwB0AHUAYgBlACAAZgBvAHIAZQBzAHQAIABnAHIAbwB3AHQAaAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCFVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NYW5pcHVsYXRpb24gb2YgdGhlIGNhdGFseXN0LXN1cHBvcnQgaW50ZXJhY3Rpb25zIGZvciBpbmR1Y2luZyBuYW5vdHViZSBmb3Jlc3QgZ3Jvd3RoLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDqAO8A9wOTA5UDmgOlA64DvAPAA8cD0APVA+ID5QP3A/oD/wAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQB}, bdsk-url-1 = {http://dx.doi.org/10.1063/1.3549813}, date-added = {2017-06-13 02:39:31 +0000}, date-modified = {2017-06-13 02:39:51 +0000}, doi = {10.1063/1.3549813}, eprint = {http://dx.doi.org/10.1063/1.3549813}, file = {:Manipulation of the catalyst-support interactions for inducing nanotube forest growth.pdf:PDF}, url = {http://dx.doi.org/10.1063/1.3549813}, } @article{JUNG:2001150, Abstract = {It has been well known that vertically aligned carbon nanotubes (CNTs) can be grown by thermal CVD in NH3 environment. However, the mechanism of the vertically aligned CNT growth is yet to be clarified. In the present work, we investigated the effect of NH3 gas on the CNT growth in the viewpoint of catalyst passivation. The particles of Ni or Co of diameter ranging from 17 to 58 nm were used as the catalyst. CNTs were deposited at 950$\,^{\circ}$C using C2H2 in various environments of NH3, H2, or their mixtures. In H2 environment, significant catalyst passivation was observed at the C2H2 concentration of 2.4 vol.% due to the excessive supply of carbon. However, vertically aligned CNTs were deposited in NH3 environment even when the C2H2 concentration was 16.7 vol.%. From the composition analysis of the catalyst surface, we could show that activated nitrogen atoms were generated by the decomposition of NH3. Two possible roles of the nitrogen were suggested based on the bamboo growth model. The nitrogen atoms enhance the formation of graphitic layer and/or improve the separation kinetics of the graphitic layer from the catalyst. The growth behaviors without the pre-treatment for 1 h in NH3 environment showed that the role of the nitrogen appeared in different ways depending on the catalyst materials. In the case of Co catalyst, where vertically aligned CNT growth was observed without the pre-treatment, enhanced formation of the graphitic layer might be the significant role of the nitrogen. However, when using Ni catalyst, the pre-treatment in NH3 environment was required for the CNT growth, which implies that both the formation and the separation of the graphitic layer were essential.}, Author = {Minjae Jung and Kwang Yong Eun and Young-Joon Baik and Kwang-Ryeol Lee and Jin-Koog Shin and Sung-Tae Kim}, Date-Added = {2017-06-13 02:34:57 +0000}, Date-Modified = {2017-06-13 02:38:47 +0000}, Doi = {http://dx.doi.org/10.1016/S0040-6090(01)01442-0}, Issn = {0040-6090}, Journal = {Thin Solid Films}, Keywords = {Growth mechanism}, Note = {Proceedings of the 28th International Conference on Metallurgic Coatings and Thin Films}, Pages = {150 - 155}, Title = {Effect of NH3 environmental gas on the growth of aligned carbon nanotube in catalystically pyrolizing C2H2}, Url = {http://www.sciencedirect.com/science/article/pii/S0040609001014420}, Volume = {398}, Year = {2001}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QbkVmZmVjdCBvZiBOSDMgZW52aXJvbm1lbnRhbCBnYXMgb24gdGhlIGdyb3d0aCBvZiBhbGlnbmVkIGNhcmJvbiBuYW5vdHViZSBpbiBjYXRhbHlzdGljYWxseSBweXJvbGl6aW5nIEMySDIucGRm0hcLGBlXTlMuZGF0YU8RAtYAAAAAAtYAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9FZmZlY3Qgb2YgTkgzIGVudmlybyNGRDA3MDkucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/QcJ1WSrTAAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA1WT/rAAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEVmZmVjdCBvZiBOSDMgZW52aXJvI0ZEMDcwOS5wZGYADgDeAG4ARQBmAGYAZQBjAHQAIABvAGYAIABOAEgAMwAgAGUAbgB2AGkAcgBvAG4AbQBlAG4AdABhAGwAIABnAGEAcwAgAG8AbgAgAHQAaABlACAAZwByAG8AdwB0AGgAIABvAGYAIABhAGwAaQBnAG4AZQBkACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABpAG4AIABjAGEAdABhAGwAeQBzAHQAaQBjAGEAbABsAHkAIABwAHkAcgBvAGwAaQB6AGkAbgBnACAAQwAyAEgAMgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCaVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9FZmZlY3Qgb2YgTkgzIGVudmlyb25tZW50YWwgZ2FzIG9uIHRoZSBncm93dGggb2YgYWxpZ25lZCBjYXJib24gbmFub3R1YmUgaW4gY2F0YWx5c3RpY2FsbHkgcHlyb2xpemluZyBDMkgyLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAP8BBAEMA+YD6APtA/gEAQQPBBMEGgQjBCgENQQ4BEoETQRSAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABFQ=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0040609001014420}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0040-6090(01)01442-0}} @article{VERONESE:200721, Abstract = {An investigation of the effects of substrate type and various treatments on carbon nanotubes (CNT) growth, using an evaporated Ni thin film as a catalyst, is presented. Barrier layers of SiO2, Si3N4, and TiN on Si were used as substrates. The catalyst-insulating substrate systems have been processed in several gaseous atmospheres (Ar, NH3 and H2) and in the temperature range 700--900$\,^{\circ}$C, in order to obtain the most appropriate morphology, size and density of catalyst particles as seeds for the subsequent CNT growth. On this kind of substrates, the smallest nanoparticles were obtained on SiO2 layers, in H2 or NH3 atmosphere even at 700$\,^{\circ}$C. However, the best vertically aligned and well-graphitized CNT resulted from the NH3 annealing process, followed by the CNT deposition at 900$\,^{\circ}$C in C2H2 and H2. On TiN conducting substrates, the best vertically aligned CNT were deposited using a shorter annealing step and a deposition process at reduced pressure. The samples were characterized by means of scanning electron microscopy (SEM) and Raman spectroscopy analysis.}, Author = {G.P. Veronese and R. Rizzoli and R. Angelucci and M. Cuffiani and L. Malferrari and A. Montanari and F. Odorici}, Date-Added = {2017-06-13 00:31:08 +0000}, Date-Modified = {2017-06-13 00:31:18 +0000}, Doi = {http://dx.doi.org/10.1016/j.physe.2006.09.002}, Issn = {1386-9477}, Journal = {Physica E: Low-dimensional Systems and Nanostructures}, Keywords = {CVD}, Number = {1}, Pages = {21 - 25}, Title = {Effects of Ni catalyst--substrate interaction on carbon nanotubes growth by CVD}, Url = {http://www.sciencedirect.com/science/article/pii/S1386947706004905}, Volume = {37}, Year = {2007}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YW8QUgBFAGYAZgBlAGMAdABzACAAbwBmACAATgBpACAAYwBhAHQAYQBsAHkAcwB0IBMAcwB1AGIAcwB0AHIAYQB0AGUAIABpAG4AdABlAHIAYQBjAHQAaQBvAG4AIABvAG4AIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQBzACAAZwByAG8AdwB0AGgAIABiAHkAIABDAFYARAAuAHAAZABm0hcLGBlXTlMuZGF0YU8RAoQAAAAAAoQAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9FZmZlY3RzIG9mIE5pIGNhdGFseSNGQ0MxQUUucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/MGu1WSOJAAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA1WTihAAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEVmZmVjdHMgb2YgTmkgY2F0YWx5I0ZDQzFBRS5wZGYADgCmAFIARQBmAGYAZQBjAHQAcwAgAG8AZgAgAE4AaQAgAGMAYQB0AGEAbAB5AHMAdCATAHMAdQBiAHMAdAByAGEAdABlACAAaQBuAHQAZQByAGEAYwB0AGkAbwBuACAAbwBuACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAgAGcAcgBvAHcAdABoACAAYgB5ACAAQwBWAEQALgBwAGQAZgAPABAABwBMAHUAbgBkAFMAUwBEABIAgFVzZXJzL2phc29uL0RvY3VtZW50cy9SZXNlYXJjaC9CaWJsaW9ncmFwaHkvRWZmZWN0cyBvZiBOaSBjYXRhbHlzdOKAk3N1YnN0cmF0ZSBpbnRlcmFjdGlvbiBvbiBjYXJib24gbmFub3R1YmVzIGdyb3d0aCBieSBDVkQucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BNQE6AUIDygPMA9ED3APlA/MD9wP+BAcEDAQZBBwELgQxBDYAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEOA==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S1386947706004905}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.physe.2006.09.002}} @article{LEE:2000554, Abstract = {We have grown vertically well-aligned multiwalled carbon nanotubes (CNT) on a large area of cobalt--nickel (Co--Ni) co-deposited silicon oxide substrate by thermal chemical vapor deposition using C2H2 gas, at 950$\,^{\circ}$C. The diameter of CNTs is in the range of 50--120 nm and the length is about 130 μm. The grown CNTs have a bamboo structure and closed tip with no catalytic particles inside. As the particle size of Co--Ni catalyst decreases, the vertical alignment is enhanced. The CNTs exhibits a low turn-on voltage of 0.8 V/μm with an emission current density of 0.1 μA cm−2.}, Author = {Cheol Jin Lee and Jeunghee Park and Seung Youl Kang and Jin Ho Lee}, Date-Added = {2017-06-12 16:47:40 +0000}, Date-Modified = {2017-06-12 16:47:52 +0000}, Doi = {http://dx.doi.org/10.1016/S0009-2614(00)00521-2}, Issn = {0009-2614}, Journal = {Chemical Physics Letters}, Number = {5}, Pages = {554 - 559}, Title = {Growth of well-aligned carbon nanotubes on a large area of Co--Ni co-deposited silicon oxide substrate by thermal chemical vapor deposition}, Url = {http://www.sciencedirect.com/science/article/pii/S0009261400005212}, Volume = {323}, Year = {2000}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YW8QjgBHAHIAbwB3AHQAaAAgAG8AZgAgAHcAZQBsAGwALQBhAGwAaQBnAG4AZQBkACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAgAG8AbgAgAGEAIABsAGEAcgBnAGUAIABhAHIAZQBhACAAbwBmACAAQwBvIBMATgBpACAAYwBvAC0AZABlAHAAbwBzAGkAdABlAGQAIABzAGkAbABpAGMAbwBuACAAbwB4AGkAZABlACAAcwB1AGIAcwB0AHIAYQB0AGUAIABiAHkAIAB0AGgAZQByAG0AYQBsACAAYwBoAGUAbQBpAGMAYQBsACAAdgBhAHAAbwByACAAZABlAHAAbwBzAGkAdABpAG8AbgAuAHAAZABm0hcLGBlXTlMuZGF0YU8RAzgAAAAAAzgAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9Hcm93dGggb2Ygd2VsbC1hbGlnbiNGQzY4RDcucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/GjX1WQhiwAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA1WR16wAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEdyb3d0aCBvZiB3ZWxsLWFsaWduI0ZDNjhENy5wZGYADgEeAI4ARwByAG8AdwB0AGgAIABvAGYAIAB3AGUAbABsAC0AYQBsAGkAZwBuAGUAZAAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlAHMAIABvAG4AIABhACAAbABhAHIAZwBlACAAYQByAGUAYQAgAG8AZgAgAEMAbyATAE4AaQAgAGMAbwAtAGQAZQBwAG8AcwBpAHQAZQBkACAAcwBpAGwAaQBjAG8AbgAgAG8AeABpAGQAZQAgAHMAdQBiAHMAdAByAGEAdABlACAAYgB5ACAAdABoAGUAcgBtAGEAbAAgAGMAaABlAG0AaQBjAGEAbAAgAHYAYQBwAG8AcgAgAGQAZQBwAG8AcwBpAHQAaQBvAG4ALgBwAGQAZgAPABAABwBMAHUAbgBkAFMAUwBEABIAvFVzZXJzL2phc29uL0RvY3VtZW50cy9SZXNlYXJjaC9CaWJsaW9ncmFwaHkvR3Jvd3RoIG9mIHdlbGwtYWxpZ25lZCBjYXJib24gbmFub3R1YmVzIG9uIGEgbGFyZ2UgYXJlYSBvZiBDb+KAk05pIGNvLWRlcG9zaXRlZCBzaWxpY29uIG94aWRlIHN1YnN0cmF0ZSBieSB0aGVybWFsIGNoZW1pY2FsIHZhcG9yIGRlcG9zaXRpb24ucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BrQGyAboE9gT4BP0FCAURBR8FIwUqBTMFOAVFBUgFWgVdBWIAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAFZA==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0009261400005212}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0009-2614(00)00521-2}} @article{LEE:20041232, Abstract = {In order to synthesize carbon nanotubes (CNTs) on the templates for diameter, density or alignment control, we prepared porous structure templates by electrochemical method. The p-Si(100) wafer was anodized in hydrofluoric acid (HF) aqueous solution under constant current density. The HF solution concentration is varied for controlling desired pore size and density. Following the anodization process, patterned Ni-catalyst of thickness 10 nm by e-gun evaporation and lift-off process were prepared. After 900 $\,^{\circ}$C thermal pre-treatment process, the density of catalytic metal particles on porous silicon template was dramatically dropped off in each pattern because the catalyst particles only formed on edges of some pore mouths, and most of the nickel cleaved into the porous structure. After the thermal pre-treament process, CNTs were grown by thermal-CVD method using argon (Ar), ammonia (NH3), methane (CH4) mixing gas and by high-density-plasma (HDP)-CVD method using acetylene (C2H2) and hydrogen (H2), respectively. For thermal-CVD method, the ratio of NH3/CH4 was found very sensitive in CNTs growth on plain silicon, but not on porous silicon. It was also discovered that CNTs grew on plain silicon by base growth mechanism in thermal-CVD, whereas they grew on porous template by tip growth mechanism, which suggested that porous structure effectively provided channels to help methane reaching the nickel catalyst particles from the top surfaces before they were passivated by amorphous carbon. On contrast, CNTs grew on both plain and porous template by tip growth in HDP-CVD.}, Author = {W.Y. Lee and T.X. Liao and Z.Y. Juang and C.H. Tsai}, Date-Added = {2017-06-12 16:23:39 +0000}, Date-Modified = {2017-06-12 16:23:45 +0000}, Doi = {http://dx.doi.org/10.1016/j.diamond.2004.01.030}, Issn = {0925-9635}, Journal = {Diamond and Related Materials}, Keywords = {Growth mechanism}, Note = {14th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide}, Number = {4}, Pages = {1232 - 1236}, Title = {Patterned aligned growth of carbon nanotubes on porous structure templates using chemical vapor deposition methods}, Url = {http://www.sciencedirect.com/science/article/pii/S0925963504000664}, Volume = {13}, Year = {2004}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QdlBhdHRlcm5lZCBhbGlnbmVkIGdyb3d0aCBvZiBjYXJib24gbmFub3R1YmVzIG9uIHBvcm91cyBzdHJ1Y3R1cmUgdGVtcGxhdGVzIHVzaW5nIGNoZW1pY2FsIHZhcG9yIGRlcG9zaXRpb24gbWV0aG9kcy5wZGbSFwsYGVdOUy5kYXRhTxEC7gAAAAAC7gACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1BhdHRlcm5lZCBhbGlnbmVkIGdyI0ZDNjZDRS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8Zs7VZBv+AAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADVZHBeAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAUGF0dGVybmVkIGFsaWduZWQgZ3IjRkM2NkNFLnBkZgAOAO4AdgBQAGEAdAB0AGUAcgBuAGUAZAAgAGEAbABpAGcAbgBlAGQAIABnAHIAbwB3AHQAaAAgAG8AZgAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlAHMAIABvAG4AIABwAG8AcgBvAHUAcwAgAHMAdAByAHUAYwB0AHUAcgBlACAAdABlAG0AcABsAGEAdABlAHMAIAB1AHMAaQBuAGcAIABjAGgAZQBtAGkAYwBhAGwAIAB2AGEAcABvAHIAIABkAGUAcABvAHMAaQB0AGkAbwBuACAAbQBlAHQAaABvAGQAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCiVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9QYXR0ZXJuZWQgYWxpZ25lZCBncm93dGggb2YgY2FyYm9uIG5hbm90dWJlcyBvbiBwb3JvdXMgc3RydWN0dXJlIHRlbXBsYXRlcyB1c2luZyBjaGVtaWNhbCB2YXBvciBkZXBvc2l0aW9uIG1ldGhvZHMucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BBwEMARQEBgQIBA0EGAQhBC8EMwQ6BEMESARVBFgEagRtBHIAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEdA==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0925963504000664}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.diamond.2004.01.030}} @article{HERMANN:20081979, Abstract = {Our interest is the integration of carbon nanotubes (CNT) in electronic devices (IC, NEMS). In the scope of this work, we present a study on the preparation of the catalyst Ni particles from ultrathin films and the synthesis of carbon nanotubes by the chemical vapour deposition method. For the preparation, we use a cold-wall CVD reactor especially designed for handling samples up to a size of a 4'' wafer. We show the influence of different process conditions like temperature, initial layer thickness of catalyst and substrate on particle formation characterized by scanning electron microscopy (SEM). We show that the optimization of process conditions in the catalyst preparation phase is constitutive for dense CNT films. Regarding the application of CNTs as electrical interconnects, we studied the arrangement of nanoparticles on Al and TiN supporting layer. Furthermore, we fabricated the first test structures for the selective growth of CNTs out of contact holes on a Cu/TiN metallization layer system. The growth of multi-walled nanotubes (MWNTs) was performed with thermal CVD with ethylene as a precursor gas and hydrogen as supporting gas mixed in a nitrogen gas flow. The effects of growth condition on the quality and morphology of the CNTs were characterized by scanning electron microscopy, transmission electron microscopy (TEM) and Raman spectroscopy. The influence of temperature, gas composition and substrate on CNT growth will be presented. We managed to grow dense CNTs even at temperatures as low as 500$\,^{\circ}$C.}, Author = {Sascha Hermann and Ramona Ecke and Stefan Schulz and Thomas Gessner}, Date-Added = {2017-06-12 15:42:07 +0000}, Date-Modified = {2017-06-12 15:42:18 +0000}, Doi = {http://dx.doi.org/10.1016/j.mee.2008.06.019}, Issn = {0167-9317}, Journal = {Microelectronic Engineering}, Keywords = {Via}, Note = {Materials for Advanced Metallization 2008}, Number = {10}, Pages = {1979 - 1983}, Title = {Controlling the formation of nanoparticles for definite growth of carbon nanotubes for interconnect applications}, Url = {http://www.sciencedirect.com/science/article/pii/S0167931708003067}, Volume = {85}, Year = {2008}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QdENvbnRyb2xsaW5nIHRoZSBmb3JtYXRpb24gb2YgbmFub3BhcnRpY2xlcyBmb3IgZGVmaW5pdGUgZ3Jvd3RoIG9mIGNhcmJvbiBuYW5vdHViZXMgZm9yIGludGVyY29ubmVjdCBhcHBsaWNhdGlvbnMucGRm0hcLGBlXTlMuZGF0YU8RAugAAAAAAugAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9Db250cm9sbGluZyB0aGUgZm9ybSNGQzYzNTEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/GNR1WQSUQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA1WRmsQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AENvbnRyb2xsaW5nIHRoZSBmb3JtI0ZDNjM1MS5wZGYADgDqAHQAQwBvAG4AdAByAG8AbABsAGkAbgBnACAAdABoAGUAIABmAG8AcgBtAGEAdABpAG8AbgAgAG8AZgAgAG4AYQBuAG8AcABhAHIAdABpAGMAbABlAHMAIABmAG8AcgAgAGQAZQBmAGkAbgBpAHQAZQAgAGcAcgBvAHcAdABoACAAbwBmACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAgAGYAbwByACAAaQBuAHQAZQByAGMAbwBuAG4AZQBjAHQAIABhAHAAcABsAGkAYwBhAHQAaQBvAG4AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCgVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Db250cm9sbGluZyB0aGUgZm9ybWF0aW9uIG9mIG5hbm9wYXJ0aWNsZXMgZm9yIGRlZmluaXRlIGdyb3d0aCBvZiBjYXJib24gbmFub3R1YmVzIGZvciBpbnRlcmNvbm5lY3QgYXBwbGljYXRpb25zLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAQUBCgESA/4EAAQFBBAEGQQnBCsEMgQ7BEAETQRQBGIEZQRqAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABGw=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0167931708003067}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.mee.2008.06.019}} @article{Hermann:2010438, Abstract = {In this work we demonstrate a new approach for ultra fine flip chip interconnections based on carbon nanotubes as a wiring material. In contrast to other works we show patterned growth of multi walled \{CNTs\} on substrates with pre-structured bond pads including a complete metallization system for electrical characterization. Furthermore, we succeeded achieving a reliable flip chip connection between CNT-covered contact pads and metal pads at temperatures lower than 200 $\,^{\circ}$C. Our goal is a reversible electrical and mechanical chip assembly with \{CNT\} bumps. For bonding experiments and electrical characterization a test structure with a damascene metallization including a layer stack of TiN/Cu/TiN was prepared. For \{CNT\} growth a thin nickel catalyst layer was selectively deposited with sputtering and a lift-off technique on the contact pads. The \{CNTs\} were grown by thermal \{CVD\} with ethylene as carbon source. \{CNT\} growth parameters like catalyst thickness, gas composition, growth time and temperature were optimized to get dense \{CNT\} growth. The metal bumps of the counter chip consist of electroless deposited Ni. With the selected layout we can obtain daisy chain and four-point measurements for lossless determination of single contact resistance. We have obtained reliable electrical contacts with relatively small resistance reaching values as low as 2.2 Ω. As CNT-quality is strongly dependent on the growth temperature we observed a strong change in resistivity of the flip chip connection as the growth temperature was varied. Reliability tests showed long time stability under thermal stress proving a reliable electrical contact between the contact pads. There is an appropriate potential for further optimization of the \{CNT\} bump resistance and applying this technology for IC-devices. }, Author = {Sascha Hermann and Barbara Pahl and Ramona Ecke and Stefan E. Schulz and Thomas Gessner}, Date-Added = {2017-06-12 15:31:35 +0000}, Date-Modified = {2017-06-12 15:31:45 +0000}, Doi = {https://doi.org/10.1016/j.mee.2009.05.027}, Issn = {0167-9317}, Journal = {Microelectronic Engineering}, Keywords = {ALD}, Note = {Materials for Advanced Metallization 2009Proceedings of the eighteenth European Workshop on Materials for Advanced Metallization 2009}, Number = {3}, Pages = {438 - 442}, Title = {Carbon nanotubes for nanoscale low temperature flip chip connections}, Url = {http://www.sciencedirect.com/science/article/pii/S0167931709004511}, Volume = {87}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QSENhcmJvbiBuYW5vdHViZXMgZm9yIG5hbm9zY2FsZSBsb3cgdGVtcGVyYXR1cmUgZmxpcCBjaGlwIGNvbm5lY3Rpb25zLnBkZtIXCxgZV05TLmRhdGFPEQJkAAAAAAJkAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfQ2FyYm9uIG5hbm90dWJlcyBmb3IjRkM2MjEyLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxiEtVkD8kAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANVkZCkAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBDYXJib24gbmFub3R1YmVzIGZvciNGQzYyMTIucGRmAA4AkgBIAEMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlAHMAIABmAG8AcgAgAG4AYQBuAG8AcwBjAGEAbABlACAAbABvAHcAIAB0AGUAbQBwAGUAcgBhAHQAdQByAGUAIABmAGwAaQBwACAAYwBoAGkAcAAgAGMAbwBuAG4AZQBjAHQAaQBvAG4AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB0VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9DYXJib24gbmFub3R1YmVzIGZvciBuYW5vc2NhbGUgbG93IHRlbXBlcmF0dXJlIGZsaXAgY2hpcCBjb25uZWN0aW9ucy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDZAN4A5gNOA1ADVQNgA2kDdwN7A4IDiwOQA50DoAOyA7UDugAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAO8}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0167931709004511}, Bdsk-Url-2 = {https://doi.org/10.1016/j.mee.2009.05.027}} @article{Shahi:2015, Abstract = {Nanometric Carbid Silicon (SiC) supported monometallic and bimetallic catalysts containing Fe, Co, Ni transition metals were prepared by wet impregnation method. Multiwall carbon nanotubes (MWCNTs) were synthesized over the prepared catalysts from catalytic decomposition of acetylene at 850$\,^{\circ}$C by thermal chemical vapor deposition (TCVD) technique. The synthesized nanomaterials (catalysts and CNTs) were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Raman spectroscopy. In this paper, using of nanometric SiC powder as catalyst support was examined and the effect of applied catalyst type on characteristics of grown CNTs was investigated. The results revealed that iron, cobalt and nickel are in oxide, cobalt ferrite (CoFe2O4) and nickel ferrite (NiFe2O4) forms and nanometric SiC powder can be applied as an appropriate catalyst support in CNT growth process. It was observed that the produced CNTs on bimetallic Fe-Co possess smaller average diameter, less amorphous carbon and denser morphology compared to other binary metallic combinations. It was found that the catalytic activity of bimetallic composition decreased in the order of Fe-Co> Fe-Ni> Co-Ni. Furthermore, the monometallic Fe catalyst has the most catalytic activity compared to monometallic Co and Ni catalysts.}, Author = {Shahi, F. and Akbarzadeh Pasha, M. and Hosseini, A. A. and Arabshahi, Z. S.}, Date-Added = {2017-06-12 15:02:31 +0000}, Date-Modified = {2017-06-12 15:03:28 +0000}, Journal = {Journal of Nanostructures}, Number = {2}, Pages = {87--95}, Title = {Synthesis of MWCNTs Using Monometallic and Bimetallic Combinations of Fe, Co and Ni Catalysts Supported on Nanometric SiC via TCVD}, Volume = {5}, Year = {2015}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QhlN5bnRoZXNpcyBvZiBNV0NOVHMgVXNpbmcgTW9ub21ldGFsbGljIGFuZCBCaW1ldGFsbGljIENvbWJpbmF0aW9ucyBvZiBGZSwgQ28gYW5kIE5pIENhdGFseXN0cyBTdXBwb3J0ZWQgb24gTmFub21ldHJpYyBTaUMgdmlhIFRDVkQucGRm0hcLGBlXTlMuZGF0YU8RAx4AAAAAAx4AAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9TeW50aGVzaXMgb2YgTVdDTlRzICNGQzVGQzYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/F/G1WQJqQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA1WReCQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFN5bnRoZXNpcyBvZiBNV0NOVHMgI0ZDNUZDNi5wZGYADgEOAIYAUwB5AG4AdABoAGUAcwBpAHMAIABvAGYAIABNAFcAQwBOAFQAcwAgAFUAcwBpAG4AZwAgAE0AbwBuAG8AbQBlAHQAYQBsAGwAaQBjACAAYQBuAGQAIABCAGkAbQBlAHQAYQBsAGwAaQBjACAAQwBvAG0AYgBpAG4AYQB0AGkAbwBuAHMAIABvAGYAIABGAGUALAAgAEMAbwAgAGEAbgBkACAATgBpACAAQwBhAHQAYQBsAHkAcwB0AHMAIABTAHUAcABwAG8AcgB0AGUAZAAgAG8AbgAgAE4AYQBuAG8AbQBlAHQAcgBpAGMAIABTAGkAQwAgAHYAaQBhACAAVABDAFYARAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCyVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TeW50aGVzaXMgb2YgTVdDTlRzIFVzaW5nIE1vbm9tZXRhbGxpYyBhbmQgQmltZXRhbGxpYyBDb21iaW5hdGlvbnMgb2YgRmUsIENvIGFuZCBOaSBDYXRhbHlzdHMgU3VwcG9ydGVkIG9uIE5hbm9tZXRyaWMgU2lDIHZpYSBUQ1ZELnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOARcBHAEkBEYESARNBFgEYQRvBHMEegSDBIgElQSYBKoErQSyAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABLQ=}} @inproceedings{Keyn:2014, Abstract = {In this work we use atomic force microscopy to investigate the influence of the annealing temperature on the formation of nano-clusters in our growth technique for carbon nanotubes. Cluster formation is carried out just before in situ growth of carbon nanotubes from a methane feedstock by means of catalytic chemical vapor deposition where the clusters act as the catalyst. Since cluster size and distribution are directly connected to diameter and amount of the grown carbon nanotubes, respectively, the cluster formation process is of great interest.}, Author = {M. Keyn and A. Kramer and U. Schwalke}, Booktitle = {2014 9th IEEE International Conference on Design Technology of Integrated Systems in Nanoscale Era (DTIS)}, Date-Added = {2017-06-12 14:54:10 +0000}, Date-Modified = {2017-06-12 14:55:34 +0000}, Keywords = {aluminium compounds;annealing;atomic force microscopy;carbon nanotubes;catalysis;catalysts;chemical vapour deposition;field effect transistors;nanofabrication;nickel;semiconductor nanotubes;AlxOy-C-Ni;FET;annealing temperature dependence;atomic force microscopy;carbon nanotube in situ growth;catalyst;catalytic chemical vapor deposition;cluster distribution;cluster size;field effect transistor;methane feedstock;nanocluster formation;semiconducting carbon nanotube;Annealing;Carbon nanotubes;Nickel;Plasmas;Pollution measurement;Silicon;Temperature measurement;annealing;atomic force microscopy;carbon nanotube field-effect transistor;carbon nanotubes;catalytic chemical vapor deposition;nano-cluster}, Month = {May}, Pages = {1-5}, Title = {Dependence of annealing temperature on cluster formation during in situ growth of CNTs}, Year = {2014}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QWkRlcGVuZGVuY2Ugb2YgYW5uZWFsaW5nIHRlbXBlcmF0dXJlIG9uIGNsdXN0ZXIgZm9ybWF0aW9uIGR1cmluZyBpbiBzaXR1IGdyb3d0aCBvZiBDTlRzLnBkZtIXCxgZV05TLmRhdGFPEQKaAAAAAAKaAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfRGVwZW5kZW5jZSBvZiBhbm5lYWwjRkM1Q0ExLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxcodVkBr4AAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANVkWx4AAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBEZXBlbmRlbmNlIG9mIGFubmVhbCNGQzVDQTEucGRmAA4AtgBaAEQAZQBwAGUAbgBkAGUAbgBjAGUAIABvAGYAIABhAG4AbgBlAGEAbABpAG4AZwAgAHQAZQBtAHAAZQByAGEAdAB1AHIAZQAgAG8AbgAgAGMAbAB1AHMAdABlAHIAIABmAG8AcgBtAGEAdABpAG8AbgAgAGQAdQByAGkAbgBnACAAaQBuACAAcwBpAHQAdQAgAGcAcgBvAHcAdABoACAAbwBmACAAQwBOAFQAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCGVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9EZXBlbmRlbmNlIG9mIGFubmVhbGluZyB0ZW1wZXJhdHVyZSBvbiBjbHVzdGVyIGZvcm1hdGlvbiBkdXJpbmcgaW4gc2l0dSBncm93dGggb2YgQ05Ucy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDrAPAA+AOWA5gDnQOoA7EDvwPDA8oD0wPYA+UD6AP6A/0EAgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQE}} @article{FAZLEKIBRIA:20021241, Abstract = {Carbon nanotubes (CNTs) were synthesized by the catalytic decomposition of acetylene over 40Fe:60Al2O3, 40Ni:60Al2O3 and 20Fe:20Ni:60Al2O3 catalysts. High density CNTs of 20 nm diameter were grown over the 20Fe:20Ni:60Al2O3 catalyst, whereas low growth density CNTs of 40 and 50 nm diameter were found over 40Fe:60Al2O3 and 40Ni:60Al2O3 catalysts. Smaller catalyst particles enabled the synthesis of highly dense, long and narrow-diameter CNTs. It was found that a homogeneous dispersion of the catalyst was an essential factor in achieving high growth density. The carbon yield and the quality of CNTs increased with increasing temperature. For the 20Fe:20Ni:60Al2O3 catalyst, the carbon yield reached 121% after 90 min at 700 $\,^{\circ}$C. The CNTs were grown according to the tip growth mode. Based on reports regarding hydrocarbon adsorption and decomposition over different faces of Ni and Fe, the growth mechanism of CNTs over the 20Fe:20Ni:60Al2O3 catalyst are discussed.}, Author = {A.K.M. Fazle Kibria and Y.H. Mo and K.S. Nahm and M.J. Kim}, Date-Added = {2017-06-12 14:46:13 +0000}, Date-Modified = {2017-06-12 14:46:28 +0000}, Doi = {http://dx.doi.org/10.1016/S0008-6223(01)00298-6}, Issn = {0008-6223}, Journal = {Carbon}, Keywords = {C. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM)}, Number = {8}, Pages = {1241 - 1247}, Title = {Synthesis of narrow-diameter carbon nanotubes from acetylene decomposition over an iron--nickel catalyst supported on alumina}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622301002986}, Volume = {40}, Year = {2002}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YW8QgABTAHkAbgB0AGgAZQBzAGkAcwAgAG8AZgAgAG4AYQByAHIAbwB3AC0AZABpAGEAbQBlAHQAZQByACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAgAGYAcgBvAG0AIABhAGMAZQB0AHkAbABlAG4AZQAgAGQAZQBjAG8AbQBwAG8AcwBpAHQAaQBvAG4AIABvAHYAZQByACAAYQBuACAAaQByAG8AbiATAG4AaQBjAGsAZQBsACAAYwBhAHQAYQBsAHkAcwB0ACAAcwB1AHAAcABvAHIAdABlAGQAIABvAG4AIABhAGwAdQBtAGkAbgBhAC4AcABkAGbSFwsYGVdOUy5kYXRhTxEDDgAAAAADDgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1N5bnRoZXNpcyBvZiBuYXJyb3ctI0ZDNUMxMi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8XBLVZAUnAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADVZFmHAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAU3ludGhlc2lzIG9mIG5hcnJvdy0jRkM1QzEyLnBkZgAOAQIAgABTAHkAbgB0AGgAZQBzAGkAcwAgAG8AZgAgAG4AYQByAHIAbwB3AC0AZABpAGEAbQBlAHQAZQByACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAgAGYAcgBvAG0AIABhAGMAZQB0AHkAbABlAG4AZQAgAGQAZQBjAG8AbQBwAG8AcwBpAHQAaQBvAG4AIABvAHYAZQByACAAYQBuACAAaQByAG8AbiATAG4AaQBjAGsAZQBsACAAYwBhAHQAYQBsAHkAcwB0ACAAcwB1AHAAcABvAHIAdABlAGQAIABvAG4AIABhAGwAdQBtAGkAbgBhAC4AcABkAGYADwAQAAcATAB1AG4AZABTAFMARAASAK5Vc2Vycy9qYXNvbi9Eb2N1bWVudHMvUmVzZWFyY2gvQmlibGlvZ3JhcGh5L1N5bnRoZXNpcyBvZiBuYXJyb3ctZGlhbWV0ZXIgY2FyYm9uIG5hbm90dWJlcyBmcm9tIGFjZXR5bGVuZSBkZWNvbXBvc2l0aW9uIG92ZXIgYW4gaXJvbuKAk25pY2tlbCBjYXRhbHlzdCBzdXBwb3J0ZWQgb24gYWx1bWluYS5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgGRAZYBngSwBLIEtwTCBMsE2QTdBOQE7QTyBP8FAgUUBRcFHAAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAUe}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622301002986}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0008-6223(01)00298-6}} @article{MOSHKALYOV:2004147, Abstract = {The results of a study of multi-walled carbon nanotubes (CNTs) growth using two different chemical vapor deposition (CVD) techniques (low pressure plasma enhanced and atmospheric pressure thermal CVD) are presented. Thin films of Ni were used as a catalyst. The process of nickel nanoparticles formation during thermal pre-treatment of the catalyst was studied using AFM in a non-contact mode. The effect of different gases used for the catalyst surface pre-treatment (N2, H2 or NH3) was also analyzed. Higher density of nucleation and growth was obtained using hydrogen and ammonia. The results show the critical importance of the initial stage of nanotubes nucleation.}, Author = {S.A. Moshkalyov and A.L.D. Moreau and H.R. Gutti{\'e}rrez and M.A. Cotta and J.W. Swart}, Date-Added = {2017-06-12 14:42:44 +0000}, Date-Modified = {2017-06-12 14:42:58 +0000}, Doi = {http://dx.doi.org/10.1016/j.mseb.2004.05.038}, Issn = {0921-5107}, Journal = {Materials Science and Engineering: B}, Keywords = {Nickel}, Note = {Current Trends in Nanostructured Materials and Systems}, Number = {2}, Pages = {147 - 153}, Title = {Carbon nanotubes growth by chemical vapor deposition using thin film nickel catalyst}, Url = {http://www.sciencedirect.com/science/article/pii/S0921510704002259}, Volume = {112}, Year = {2004}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QWENhcmJvbiBuYW5vdHViZXMgZ3Jvd3RoIGJ5IGNoZW1pY2FsIHZhcG9yIGRlcG9zaXRpb24gdXNpbmcgdGhpbiBmaWxtIG5pY2tlbCBjYXRhbHlzdC5wZGbSFwsYGVdOUy5kYXRhTxEClAAAAAAClAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0NhcmJvbiBuYW5vdHViZXMgZ3JvI0ZDNUE3Ny5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8WnfVZARcAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADVZFi8AAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAQ2FyYm9uIG5hbm90dWJlcyBncm8jRkM1QTc3LnBkZgAOALIAWABDAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQBzACAAZwByAG8AdwB0AGgAIABiAHkAIABjAGgAZQBtAGkAYwBhAGwAIAB2AGEAcABvAHIAIABkAGUAcABvAHMAaQB0AGkAbwBuACAAdQBzAGkAbgBnACAAdABoAGkAbgAgAGYAaQBsAG0AIABuAGkAYwBrAGUAbAAgAGMAYQB0AGEAbAB5AHMAdAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCEVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9DYXJib24gbmFub3R1YmVzIGdyb3d0aCBieSBjaGVtaWNhbCB2YXBvciBkZXBvc2l0aW9uIHVzaW5nIHRoaW4gZmlsbSBuaWNrZWwgY2F0YWx5c3QucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A6QDuAPYDjgOQA5UDoAOpA7cDuwPCA8sD0APdA+AD8gP1A/oAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD/A==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0921510704002259}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.mseb.2004.05.038}} @article{Juang:20042140, Abstract = {The role of ammonia (NH3) on obtaining good quality vertically aligned multi-walled carbon nanotubes (CNTs) in thermal chemical vapor deposition (CVD) method has been widely studied. It was generally agreed that \{NH3\} helps to maintain catalyst metal surface active by reacting with amorphous carbon. In this article, a systematic study in varying the temperature and mixing ratio of gases was conducted in order to clarify the role of \{NH3\} and revealed a criterion for optimized condition window in the growth processes. In addition, this study has also carried out a statistical analysis through intensive \{TEM\} observations on the tube diameters, bamboo spacing, and the formation rate of each diaphragm under various temperatures and carbon source/NH3 ratios. While the formation of the separation diaphragms were indeed a result of bulk diffusion of carbon atoms from bottom of the Ni nanoparticle following thermal dehydrogenization to the top of the Ni nanoparticle, there were other carbon atoms diffusing presumably via surface diffusion to the CNT-metal interface and contributed to the growth of tube wall; in other words, the \{CNTs\} growth is simultaneous renucleation and growth processes, instead of a continuous renucleation and growth process. This kinetics-based mechanism in combination with the proposed role of \{NH3\} could not only successfully explain the effects of the process parameters including temperature and the mixing gas ratio, but also could be used for pursuing the goal of lower growth temperature for thermal \{CVD\} method which is very important for many applications of CNTs. }, Author = {Z.Y. Juang and J.F. Lai and C.H. Weng and J.H. Lee and H.J. Lai and T.S. Lai and C.H. Tsai}, Date-Added = {2017-06-09 14:30:31 +0000}, Date-Modified = {2017-06-09 14:31:09 +0000}, Doi = {https://doi.org/10.1016/j.diamond.2004.03.007}, Issn = {0925-9635}, Journal = {Diamond and Related Materials}, Keywords = {Ammonia}, Note = {Proceedings of the 9th International Conference on New Diamond Science and Technology (ICNDST-9)}, Number = {11--12}, Pages = {2140 - 2146}, Title = {On the kinetics of carbon nanotube growth by thermal \{CVD\} method}, Url = {http://www.sciencedirect.com/science/article/pii/S0925963504001608}, Volume = {13}, Year = {2004}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QQ09uIHRoZSBraW5ldGljcyBvZiBjYXJib24gbmFub3R1YmUgZ3Jvd3RoIGJ5IHRoZXJtYWwgQ1ZEIG1ldGhvZC5wZGbSFwsYGVdOUy5kYXRhTxECVgAAAAACVgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH09uIHRoZSBraW5ldGljcyBvZiBjI0ZCRDFCQS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD70brVYA0/AAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADVYGGfAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAT24gdGhlIGtpbmV0aWNzIG9mIGMjRkJEMUJBLnBkZgAOAIgAQwBPAG4AIAB0AGgAZQAgAGsAaQBuAGUAdABpAGMAcwAgAG8AZgAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlACAAZwByAG8AdwB0AGgAIABiAHkAIAB0AGgAZQByAG0AYQBsACAAQwBWAEQAIABtAGUAdABoAG8AZAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBvVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9PbiB0aGUga2luZXRpY3Mgb2YgY2FyYm9uIG5hbm90dWJlIGdyb3d0aCBieSB0aGVybWFsIENWRCBtZXRob2QucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOANQA2QDhAzsDPQNCA00DVgNkA2gDbwN4A30DigONA58DogOnAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA6k=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0925963504001608}, Bdsk-Url-2 = {https://doi.org/10.1016/j.diamond.2004.03.007}} @article{LI:20063220, Abstract = {In large-area field emission display applications where high stress point glass substrate is used for vacuum-sealed packaging and low cost considerations, the CNTs synthesis temperature lower than the stress point of ∼570 $\,^{\circ}$C is required. In the thermal CVD processes, the catalyst passivation due to the slow carbon diffusion rate limiting and the consequent amorphous carbon formation on the catalyst surface was considered to be the main reason hampering carbon nanotube growth at low temperatures. The amount of amorphous carbon decreases apparently with the decrease of the process pressure for the low-temperature growth of CNTs. In this paper, we report a successful synthesis of vertically aligned-MWNTs on Ni/Cr coated glass (PD200) substrate at 550 and 500 $\,^{\circ}$C by low pressure (8 Torr) thermal CVD with reasonably good field emission characteristics of approximate milliampere per square centimeter emission current density.}, Author = {C.H. Li and S.C. Tseng and S.C. Lo and K.F. Chen and Z.Y. Juang and K.C. Leou and C.H. Tsai}, Date-Added = {2017-06-09 14:26:13 +0000}, Date-Modified = {2017-06-09 14:27:06 +0000}, Doi = {http://dx.doi.org/10.1016/j.surfcoat.2005.12.001}, Issn = {0257-8972}, Journal = {Surface and Coatings Technology}, Keywords = {Field emission}, Note = {Proceedings of The Third Asian Conference on Chemical Vapor Deposition (Third Asian-CVD)}, Number = {10}, Pages = {3220 - 3223}, Title = {Pressure effect of low-temperature growth of multi-wall carbon nanotubes on Nickel catalyst/barrier-coated glass by thermal-CVD}, Url = {http://www.sciencedirect.com/science/article/pii/S0257897205013423}, Volume = {200}, Year = {2006}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qg1ByZXNzdXJlIGVmZmVjdCBvZiBsb3ctdGVtcGVyYXR1cmUgZ3Jvd3RoIG9mIG11bHRpLXdhbGwgY2FyYm9uIG5hbm90dWJlcyBvbiBOaWNrZWwgY2F0YWx5c3Q6YmFycmllci1jb2F0ZWQgZ2xhc3MgYnkgdGhlcm1hbC1DVkQucGRm0hcLGBlXTlMuZGF0YU8RAxYAAAAAAxYAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9QcmVzc3VyZSBlZmZlY3Qgb2YgbCNGQkQxM0IucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+9E71WAMSwAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA1WBgqwAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFByZXNzdXJlIGVmZmVjdCBvZiBsI0ZCRDEzQi5wZGYADgEIAIMAUAByAGUAcwBzAHUAcgBlACAAZQBmAGYAZQBjAHQAIABvAGYAIABsAG8AdwAtAHQAZQBtAHAAZQByAGEAdAB1AHIAZQAgAGcAcgBvAHcAdABoACAAbwBmACAAbQB1AGwAdABpAC0AdwBhAGwAbAAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlAHMAIABvAG4AIABOAGkAYwBrAGUAbAAgAGMAYQB0AGEAbAB5AHMAdAAvAGIAYQByAHIAaQBlAHIALQBjAG8AYQB0AGUAZAAgAGcAbABhAHMAcwAgAGIAeQAgAHQAaABlAHIAbQBhAGwALQBDAFYARAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCvVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9QcmVzc3VyZSBlZmZlY3Qgb2YgbG93LXRlbXBlcmF0dXJlIGdyb3d0aCBvZiBtdWx0aS13YWxsIGNhcmJvbiBuYW5vdHViZXMgb24gTmlja2VsIGNhdGFseXN0OmJhcnJpZXItY29hdGVkIGdsYXNzIGJ5IHRoZXJtYWwtQ1ZELnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgEUARkBIQQ7BD0EQgRNBFYEZARoBG8EeAR9BIoEjQSfBKIEpwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAASp}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0257897205013423}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.surfcoat.2005.12.001}} @article{CHANG:20081572, Abstract = {To find the possibility of using a low-temperature process in growing carbon nanotubes (CNTs), nickel catalyst converted from film into particles by microwave H2/N2 plasma and the following CNT growth are all kept at a low temperature of 250$\,^{\circ}$C. The flat panel display industry requests low-temperature rather than the traditional high-temperature process for CNT growth. It was found that H2/N2 proportion is very sensitive to nickel morphology and the subsequent CNT growth. Better nickel and CNTs morphology are obtained for the proportion H2/N2=3/1 than those for the generally used pure hydrogen environment. The process pressure selection during pretreatment can determine whether CNTs are grown or not. The diameter of growing CNTs is proportional to nickel particle size. Field emission results support field amplification coefficient claim. The long tube length and high tube density of growing CNTs demonstrate low threshold electric field. This work shows the potential to use H2/N2 instead of pure hydrogen plasma in growing qualified CNTs applied in display industry.}, Author = {Shang-Chou Chang and Tien-Chai Lin and To-Sing Li and Sheng-Han Huang}, Date-Added = {2017-06-08 23:53:01 +0000}, Date-Modified = {2017-06-08 23:53:38 +0000}, Doi = {http://dx.doi.org/10.1016/j.mejo.2008.02.025}, Issn = {0026-2692}, Journal = {Microelectronics Journal}, Keywords = {H/N plasma}, Number = {12}, Pages = {1572 - 1575}, Title = {Carbon nanotubes grown from nickel catalyst pretreated with H2/N2 plasma}, Url = {http://www.sciencedirect.com/science/article/pii/S0026269208001535}, Volume = {39}, Year = {2008}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QTENhcmJvbiBuYW5vdHViZXMgZ3Jvd24gZnJvbSBuaWNrZWwgY2F0YWx5c3QgcHJldHJlYXRlZCB3aXRoIEgyOk4yIHBsYXNtYS5wZGbSFwsYGVdOUy5kYXRhTxECcAAAAAACcAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0NhcmJvbiBuYW5vdHViZXMgZ3JvI0ZCQ0JCNC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7y7TVXz+RAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADVX5PxAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAQ2FyYm9uIG5hbm90dWJlcyBncm8jRkJDQkI0LnBkZgAOAJoATABDAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQBzACAAZwByAG8AdwBuACAAZgByAG8AbQAgAG4AaQBjAGsAZQBsACAAYwBhAHQAYQBsAHkAcwB0ACAAcAByAGUAdAByAGUAYQB0AGUAZAAgAHcAaQB0AGgAIABIADIALwBOADIAIABwAGwAYQBzAG0AYQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB4VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9DYXJib24gbmFub3R1YmVzIGdyb3duIGZyb20gbmlja2VsIGNhdGFseXN0IHByZXRyZWF0ZWQgd2l0aCBIMjpOMiBwbGFzbWEucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A3QDiAOoDXgNgA2UDcAN5A4cDiwOSA5sDoAOtA7ADwgPFA8oAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADzA==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0026269208001535}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.mejo.2008.02.025}} @article{Acomb:2016497, Abstract = {Abstract Nickel, iron, cobalt and copper catalysts were prepared by impregnation and used to produce carbon nanotubes and hydrogen gas from a \{LDPE\} feedstock. A two stage catalytic pyrolysis process was used to enable large yields of both products. Plastics samples were pyrolysed in nitrogen at 600 $\,^{\circ}$C, before the evolved gases were passed to a second stage and allowed to deposit carbon onto the catalyst at a temperature of 800 $\,^{\circ}$C. Carbon nanotubes were successfully generated on nickel, iron and cobalt but were barely observed on the copper catalyst. Iron and nickel catalysts gave the largest yield of both hydrogen and carbon nanotubes as a result of metal-support interactions which were neither too strong, like cobalts, nor too weak like copper. These metal support interactions proved a key factor in \{CNT\} production. A nickel catalyst with a weaker interaction was prepared using a lower calcination temperature. Yields of both carbon nanotubes and hydrogen gas were lower on the Ni-catalyst prepared at the lower calcination temperature, as a result of sintering of the nickel particles. In addition, the catalyst prepared at a lower calcination temperature produced metal particles which were too large for \{CNT\} growth, producing amorphous carbons which deactivate the catalyst instead. Overall the iron catalyst gave the largest yield of CNTs, which is attributed to both its good metal-support interactions and irons large carbon solubility. }, Author = {Jonathan C. Acomb and Chunfei Wu and Paul T. Williams}, Date-Added = {2017-06-08 23:46:02 +0000}, Date-Modified = {2017-06-08 23:46:40 +0000}, Doi = {https://doi.org/10.1016/j.apcatb.2015.06.054}, Issn = {0926-3373}, Journal = {Applied Catalysis B: Environmental}, Keywords = {Waste}, Pages = {497 - 510}, Title = {The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks}, Url = {http://www.sciencedirect.com/science/article/pii/S0926337315300072}, Volume = {180}, Year = {2016}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QjlRoZSB1c2Ugb2YgZGlmZmVyZW50IG1ldGFsIGNhdGFseXN0cyBmb3IgdGhlIHNpbXVsdGFuZW91cyBwcm9kdWN0aW9uIG9mIGNhcmJvbiBuYW5vdHViZXMgYW5kIGh5ZHJvZ2VuIGZyb20gcHlyb2x5c2lzIG9mIHBsYXN0aWMgZmVlZHN0b2Nrcy5wZGbSFwsYGVdOUy5kYXRhTxEDNgAAAAADNgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1RoZSB1c2Ugb2YgZGlmZmVyZW50I0ZCQ0EyQi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7yivVXz3wAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADVX5JQAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVGhlIHVzZSBvZiBkaWZmZXJlbnQjRkJDQTJCLnBkZgAOAR4AjgBUAGgAZQAgAHUAcwBlACAAbwBmACAAZABpAGYAZgBlAHIAZQBuAHQAIABtAGUAdABhAGwAIABjAGEAdABhAGwAeQBzAHQAcwAgAGYAbwByACAAdABoAGUAIABzAGkAbQB1AGwAdABhAG4AZQBvAHUAcwAgAHAAcgBvAGQAdQBjAHQAaQBvAG4AIABvAGYAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQBzACAAYQBuAGQAIABoAHkAZAByAG8AZwBlAG4AIABmAHIAbwBtACAAcAB5AHIAbwBsAHkAcwBpAHMAIABvAGYAIABwAGwAYQBzAHQAaQBjACAAZgBlAGUAZABzAHQAbwBjAGsAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgC6VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGUgdXNlIG9mIGRpZmZlcmVudCBtZXRhbCBjYXRhbHlzdHMgZm9yIHRoZSBzaW11bHRhbmVvdXMgcHJvZHVjdGlvbiBvZiBjYXJib24gbmFub3R1YmVzIGFuZCBoeWRyb2dlbiBmcm9tIHB5cm9seXNpcyBvZiBwbGFzdGljIGZlZWRzdG9ja3MucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BHwEkASwEZgRoBG0EeASBBI8EkwSaBKMEqAS1BLgEygTNBNIAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAE1A==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0926337315300072}, Bdsk-Url-2 = {https://doi.org/10.1016/j.apcatb.2015.06.054}} @article{ATTHIPALLI20111651, Abstract = {Growth of vertical, multiwalled carbon nanotubes (CNTs) on bulk copper foil substrates can be achieved by sputtering either Ni or Inconel thin films on Cu substrates followed by thermal chemical vapor deposition using a xylene and ferrocene mixture. During CVD growth, Fe nanoparticles from the ferrocene act as a vapor phase delivered catalyst in addition to the transition metal thin film, which breaks up into islands. Both the thin film and iron are needed for dense and uniform growth of CNTs on the copper substrates. The benefits of this relatively simple and cost effective method of directly integrating CNTs with highly conductive copper substrates are the resulting high density of nanotubes that do not require the use of additional binders and the potential for low contact resistance between the nanotubes and the substrate. This method is therefore of interest for charge storage applications such as double layer capacitors. Inconel thin films in conjunction with Fe from ferrocene appear to work better in comparison to Ni thin films in terms of CNT density and charge storage capability. We report here the power density and specific capacitance values of the double layer capacitors developed from the CNTs grown directly on copper substrates.}, Author = {G. Atthipalli and Y. Tang and A. Star and J.L. Gray}, Date-Added = {2017-06-08 15:56:15 +0000}, Date-Modified = {2017-06-08 15:56:15 +0000}, Doi = {http://dx.doi.org/10.1016/j.tsf.2011.08.105}, Issn = {0040-6090}, Journal = {Thin Solid Films}, Keywords = {Double layer capacitors}, Note = {38th International Conference on Metallurgical Coatings and Thin Films (ICMCTF 2011)}, Number = {5}, Pages = {1651 - 1655}, Title = {Electrochemical characterization of carbon nanotube forests grown on copper foil using transition metal catalysts}, Url = {http://www.sciencedirect.com/science/article/pii/S0040609011016099}, Volume = {520}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QdUVsZWN0cm9jaGVtaWNhbCBjaGFyYWN0ZXJpemF0aW9uIG9mIGNhcmJvbiBuYW5vdHViZSBmb3Jlc3RzIGdyb3duIG9uIGNvcHBlciBmb2lsIHVzaW5nIHRyYW5zaXRpb24gbWV0YWwgY2F0YWx5c3RzLnBkZtIXCxgZV05TLmRhdGFPEQLsAAAAAALsAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfRWxlY3Ryb2NoZW1pY2FsIGNoYXIjRkJCMTU3LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPuxV9Vez58AAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANVfI/8AAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBFbGVjdHJvY2hlbWljYWwgY2hhciNGQkIxNTcucGRmAA4A7AB1AEUAbABlAGMAdAByAG8AYwBoAGUAbQBpAGMAYQBsACAAYwBoAGEAcgBhAGMAdABlAHIAaQB6AGEAdABpAG8AbgAgAG8AZgAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlACAAZgBvAHIAZQBzAHQAcwAgAGcAcgBvAHcAbgAgAG8AbgAgAGMAbwBwAHAAZQByACAAZgBvAGkAbAAgAHUAcwBpAG4AZwAgAHQAcgBhAG4AcwBpAHQAaQBvAG4AIABtAGUAdABhAGwAIABjAGEAdABhAGwAeQBzAHQAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgChVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9FbGVjdHJvY2hlbWljYWwgY2hhcmFjdGVyaXphdGlvbiBvZiBjYXJib24gbmFub3R1YmUgZm9yZXN0cyBncm93biBvbiBjb3BwZXIgZm9pbCB1c2luZyB0cmFuc2l0aW9uIG1ldGFsIGNhdGFseXN0cy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BBgELARMEAwQFBAoEFQQeBCwEMAQ3BEAERQRSBFUEZwRqBG8AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEcQ==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0040609011016099}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.tsf.2011.08.105}} @article{atthipalli:20115371, Abstract = {Growth of carbon nanotubes (CNTs) on bulk copper foil substrates has been achieved by sputtering a nickel thin film on Cu substrates followed by thermal chemical vapor deposition. The characteristics of the nanotubes are strongly dependent on the Ni film thickness and reaction temperature. Specifically, a correlation between the thin film nickel catalyst thickness and the CNT diameter was found. Two hydrocarbon sources investigated were methane and acetylene to determine the best conditions for growth of CNTs on copper. These results demonstrate the effectiveness of this simple method of directly integrating CNTs with highly conductive substrates for use in applications where a conductive CNT network is desirable.}, Author = {G. Atthipalli and R. Epur and P.N. Kumta and B.L. Allen and Y. Tang and A. Star and J.L. Gray}, Date-Added = {2017-06-08 15:53:30 +0000}, Date-Modified = {2017-06-08 15:53:51 +0000}, Doi = {http://dx.doi.org/10.1016/j.tsf.2011.02.046}, Issn = {0040-6090}, Journal = {Thin Solid Films}, Keywords = {Scanning electron microscopy}, Number = {16}, Pages = {5371 - 5375}, Title = {The effect of temperature on the growth of carbon nanotubes on copper foil using a nickel thin film as catalyst}, Url = {http://www.sciencedirect.com/science/article/pii/S0040609011005633}, Volume = {519}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qc1RoZSBlZmZlY3Qgb2YgdGVtcGVyYXR1cmUgb24gdGhlIGdyb3d0aCBvZiBjYXJib24gbmFub3R1YmVzIG9uIGNvcHBlciBmb2lsIHVzaW5nIGEgbmlja2VsIHRoaW4gZmlsbSBhcyBjYXRhbHlzdC5wZGbSFwsYGVdOUy5kYXRhTxEC5gAAAAAC5gACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1RoZSBlZmZlY3Qgb2YgdGVtcGVyI0ZCQjBGQi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7sPvVXs7HAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADVXyMnAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVGhlIGVmZmVjdCBvZiB0ZW1wZXIjRkJCMEZCLnBkZgAOAOgAcwBUAGgAZQAgAGUAZgBmAGUAYwB0ACAAbwBmACAAdABlAG0AcABlAHIAYQB0AHUAcgBlACAAbwBuACAAdABoAGUAIABnAHIAbwB3AHQAaAAgAG8AZgAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlAHMAIABvAG4AIABjAG8AcABwAGUAcgAgAGYAbwBpAGwAIAB1AHMAaQBuAGcAIABhACAAbgBpAGMAawBlAGwAIAB0AGgAaQBuACAAZgBpAGwAbQAgAGEAcwAgAGMAYQB0AGEAbAB5AHMAdAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCfVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGUgZWZmZWN0IG9mIHRlbXBlcmF0dXJlIG9uIHRoZSBncm93dGggb2YgY2FyYm9uIG5hbm90dWJlcyBvbiBjb3BwZXIgZm9pbCB1c2luZyBhIG5pY2tlbCB0aGluIGZpbG0gYXMgY2F0YWx5c3QucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAQQBCQERA/sD/QQCBA0EFgQkBCgELwQ4BD0ESgRNBF8EYgRnAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABGk=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0040609011005633}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.tsf.2011.02.046}} @inbook{rizzoli:2006, Author = {R. RIZZOLI and R. ANGELUCCI and S. GUERRI and F. CORTICELLI}, Date-Added = {2017-06-08 15:44:31 +0000}, Date-Modified = {2017-06-08 15:47:02 +0000}, Pages = {61-62}, Publisher = {Springer}, Title = {INFLUENCE OF THE SUBSTRATE TYPES AND TREATMENTS ON CARBON NANOTUBE GROWTH BY CHEMICAL VAPOR DEPOSITION WITH NICKEL CATALYST}, Year = {2006}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qf0lORkxVRU5DRSBPRiBUSEUgU1VCU1RSQVRFIFRZUEVTIEFORCBUUkVBVE1FTlRTIE9OIENBUkJPTiBOQU5PVFVCRSBHUk9XVEggQlkgQ0hFTUlDQUwgVkFQT1IgREVQT1NJVElPTiBXSVRIIE5JQ0tFTCBDQVRBTFlTVC5wZGbSFwsYGVdOUy5kYXRhTxEDCgAAAAADCgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0lORkxVRU5DRSBPRiBUSEUgU1VCI0ZCQjA1OC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7sFjVXsygAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADVXyEAAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToASU5GTFVFTkNFIE9GIFRIRSBTVUIjRkJCMDU4LnBkZgAOAQAAfwBJAE4ARgBMAFUARQBOAEMARQAgAE8ARgAgAFQASABFACAAUwBVAEIAUwBUAFIAQQBUAEUAIABUAFkAUABFAFMAIABBAE4ARAAgAFQAUgBFAEEAVABNAEUATgBUAFMAIABPAE4AIABDAEEAUgBCAE8ATgAgAE4AQQBOAE8AVABVAEIARQAgAEcAUgBPAFcAVABIACAAQgBZACAAQwBIAEUATQBJAEMAQQBMACAAVgBBAFAATwBSACAARABFAFAATwBTAEkAVABJAE8ATgAgAFcASQBUAEgAIABOAEkAQwBLAEUATAAgAEMAQQBUAEEATABZAFMAVAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCrVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9JTkZMVUVOQ0UgT0YgVEhFIFNVQlNUUkFURSBUWVBFUyBBTkQgVFJFQVRNRU5UUyBPTiBDQVJCT04gTkFOT1RVQkUgR1JPV1RIIEJZIENIRU1JQ0FMIFZBUE9SIERFUE9TSVRJT04gV0lUSCBOSUNLRUwgQ0FUQUxZU1QucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOARABFQEdBCsELQQyBD0ERgRUBFgEXwRoBG0EegR9BI8EkgSXAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABJk=}} @article{saghafi:2014252, Abstract = {Abstract Vertically aligned carbon nanotubes (VACNTs) were grown on highly n-doped silicon substrates by direct current plasma enhanced chemical vapor deposition to be used as supercapacitor electrodes from a gas mixture of acetylene and hydrogen on nickel islands as the catalyst particles. Scanning electron microscopy and transmission electron microscopy have been exploited to characterize the VACNTs. Electrochemical properties of electrodes were studied by cyclic voltammetry, galvanostatic charge--discharge and impedance spectroscopy technique. According to \{SEM\} and \{TEM\} images growth mechanism was tip-initiated. Capacitances for four different growth durations of 20, 40, 60 and 120 min were measured to be 1.5, 5.8, 7.5 and 15 mF cm−2, respectively, at 1 mA discharge current. \{VACNT\} electrodes fabricated by this method contributed to better electrode capacitance as compared with results of similar previous studies. Furthermore the rate capability of electrodes was found to be excellent. The specific capacitances of a fabricated \{VACNT\} electrode and an entangled carbon nanotube (ECNT) electrode in 0.5 M \{KCl\} aqueous solution electrolyte were 70 and 8 Fg−1, respectively. Compared with \{ECNT\} electrode, \{VACNT\} electrode achieved higher specific capacitance. The higher specific capacitance of \{VACNT\} was attributed to the high surface area as well as to defects on the VACNTs, which may be formed by the H2-plasma during growth. The maximum specific energy and power of the \{VACNT\} electrode were 3.5 Wh kg−1 and 22 kW kg−1, respectively. The results indicate that the \{VACNTs\} are promising candidates as electrode materials in supercapacitors. }, Author = {M. Saghafi and F. Mahboubi and S. Mohajerzadeh and R. Holze}, Date-Added = {2017-06-08 15:22:28 +0000}, Date-Modified = {2017-06-08 15:23:20 +0000}, Doi = {https://doi.org/10.1016/j.synthmet.2014.06.012}, Issn = {0379-6779}, Journal = {Synthetic Metals}, Keywords = {Capacitance}, Pages = {252 - 259}, Title = {Preparation of vertically aligned carbon nanotubes and their electrochemical performance in supercapacitors}, Url = {http://www.sciencedirect.com/science/article/pii/S0379677914002173}, Volume = {195}, Year = {2014}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qb1ByZXBhcmF0aW9uIG9mIHZlcnRpY2FsbHkgYWxpZ25lZCBjYXJib24gbmFub3R1YmVzIGFuZCB0aGVpciBlbGVjdHJvY2hlbWljYWwgcGVyZm9ybWFuY2UgaW4gc3VwZXJjYXBhY2l0b3JzLnBkZtIXCxgZV05TLmRhdGFPEQLaAAAAAALaAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfUHJlcGFyYXRpb24gb2YgdmVydGkjRkJBRTcyLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPuuctVeyEUAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANVfHKUAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBQcmVwYXJhdGlvbiBvZiB2ZXJ0aSNGQkFFNzIucGRmAA4A4ABvAFAAcgBlAHAAYQByAGEAdABpAG8AbgAgAG8AZgAgAHYAZQByAHQAaQBjAGEAbABsAHkAIABhAGwAaQBnAG4AZQBkACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAgAGEAbgBkACAAdABoAGUAaQByACAAZQBsAGUAYwB0AHIAbwBjAGgAZQBtAGkAYwBhAGwAIABwAGUAcgBmAG8AcgBtAGEAbgBjAGUAIABpAG4AIABzAHUAcABlAHIAYwBhAHAAYQBjAGkAdABvAHIAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCbVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9QcmVwYXJhdGlvbiBvZiB2ZXJ0aWNhbGx5IGFsaWduZWQgY2FyYm9uIG5hbm90dWJlcyBhbmQgdGhlaXIgZWxlY3Ryb2NoZW1pY2FsIHBlcmZvcm1hbmNlIGluIHN1cGVyY2FwYWNpdG9ycy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BAAEFAQ0D6wPtA/ID/QQGBBQEGAQfBCgELQQ6BD0ETwRSBFcAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEWQ==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0379677914002173}, Bdsk-Url-2 = {https://doi.org/10.1016/j.synthmet.2014.06.012}} @mastersthesis{acosta:2010, Author = {Roberto I. Acosta}, Date-Added = {2017-05-23 20:58:01 +0000}, Date-Modified = {2017-05-23 20:58:43 +0000}, School = {Wright State University}, Title = {Ostwald Ripening of Iron (Fe) Catalyst Nanoparticles on Aluminum Oxide Surfaces (Al2O3) for the Growth of Carbon Nanotubes}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QRE9zdHdhbGQgUmlwZW5pbmcgb2YgSXJvbiAoRmUpIENhdGFseXN0IE5hbm9wYXJ0aWNsZXMgb24gQWx1bWludW0ucGRm0hcLGBlXTlMuZGF0YU8RAlgAAAAAAlgAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9Pc3R3YWxkIFJpcGVuaW5nIG9mICNGNUU3ODcucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9eeH1Un9/QAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA1UpSXQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AE9zdHdhbGQgUmlwZW5pbmcgb2YgI0Y1RTc4Ny5wZGYADgCKAEQATwBzAHQAdwBhAGwAZAAgAFIAaQBwAGUAbgBpAG4AZwAgAG8AZgAgAEkAcgBvAG4AIAAoAEYAZQApACAAQwBhAHQAYQBsAHkAcwB0ACAATgBhAG4AbwBwAGEAcgB0AGkAYwBsAGUAcwAgAG8AbgAgAEEAbAB1AG0AaQBuAHUAbQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBwVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Pc3R3YWxkIFJpcGVuaW5nIG9mIElyb24gKEZlKSBDYXRhbHlzdCBOYW5vcGFydGljbGVzIG9uIEFsdW1pbnVtLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOANUA2gDiAz4DQANFA1ADWQNnA2sDcgN7A4ADjQOQA6IDpQOqAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA6w=}} @article{Hunter:2007, Abstract = {Matplotlib is a 2D graphics package used for Python for application development, interactive scripting, and publication-quality image generation across user interfaces and operating systems.}, Author = {Hunter, J. D.}, Date-Added = {2017-05-20 11:01:11 +0000}, Date-Modified = {2017-05-20 11:03:11 +0000}, Journal = {Computing In Science \& Engineering}, Number = {3}, Pages = {90--95}, Title = {Matplotlib: A 2D graphics environment}, Volume = {9}, Year = {2007}} @article{jin:20131128, Abstract = {Abstract Germanium oxide is a promising anode material for lithium ion batteries due to its theoretical capacity (1100 mAh/g) is 3 times higher than the commercial graphite anode (only 372 mAh/g). However, so far only a few studies have reported the application of germanium oxide in \{LIBs\} and the cycling performance is unsatisfactory. In this report, we have prepared a unique VAG@ amorphous GeOx sandwich nanostructure by a non-toxic, low temperature \{CVD\} method with vertically aligned graphene(VAG) as templates. The graphene sheets form a fast electron transport channel duo to its superior electron conductivity and the vertically aligned sandwich nanoflakes can offer a short pathway for lithium ion thanks to the unified orientation. Additionally, the GeOx sediments that evenly distribute on the surface of graphene flakes have an amorphous structure and their thickness is less than 10 nm, which can mitigate the mechanical stress generating in the lithiation/delithiation process. Owing to these advantages, the as-prepared anode shows a stable capacity of 1008 mAh/g for 100 cycles (with capacity retention of 96%). Rate performance reveals the anode can maintain a capacity of 545 mAh/g even at the rate of 15C. Our results are demonstrated to be so far the most stable performance for germanium oxide anodes. }, Author = {Shuaixing Jin and Na Li and Hao Cui and Chengxin Wang}, Date-Added = {2017-03-16 11:14:03 +0000}, Date-Modified = {2017-03-16 11:14:12 +0000}, Doi = {http://dx.doi.org/10.1016/j.nanoen.2013.09.008}, Issn = {2211-2855}, Journal = {Nano Energy}, Keywords = {Cyclability}, Number = {6}, Pages = {1128 - 1136}, Title = {Growth of the vertically aligned graphene@ amorphous GeOx sandwich nanoflakes and excellent Li storage properties}, Url = {http://www.sciencedirect.com/science/article/pii/S221128551300164X}, Volume = {2}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QdUdyb3d0aCBvZiB0aGUgdmVydGljYWxseSBhbGlnbmVkIGdyYXBoZW5lQCBhbW9ycGhvdXMgR2VPeCBzYW5kd2ljaCBuYW5vZmxha2VzIGFuZCBleGNlbGxlbnQgTGkgc3RvcmFnZSBwcm9wZXJ0aWVzLnBkZtIXCxgZV05TLmRhdGFPEQLsAAAAAALsAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfR3Jvd3RoIG9mIHRoZSB2ZXJ0aWMjRTk2MTNDLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOlhPNTvz+cAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANTwJEcAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBHcm93dGggb2YgdGhlIHZlcnRpYyNFOTYxM0MucGRmAA4A7AB1AEcAcgBvAHcAdABoACAAbwBmACAAdABoAGUAIAB2AGUAcgB0AGkAYwBhAGwAbAB5ACAAYQBsAGkAZwBuAGUAZAAgAGcAcgBhAHAAaABlAG4AZQBAACAAYQBtAG8AcgBwAGgAbwB1AHMAIABHAGUATwB4ACAAcwBhAG4AZAB3AGkAYwBoACAAbgBhAG4AbwBmAGwAYQBrAGUAcwAgAGEAbgBkACAAZQB4AGMAZQBsAGwAZQBuAHQAIABMAGkAIABzAHQAbwByAGEAZwBlACAAcAByAG8AcABlAHIAdABpAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgChVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Hcm93dGggb2YgdGhlIHZlcnRpY2FsbHkgYWxpZ25lZCBncmFwaGVuZUAgYW1vcnBob3VzIEdlT3ggc2FuZHdpY2ggbmFub2ZsYWtlcyBhbmQgZXhjZWxsZW50IExpIHN0b3JhZ2UgcHJvcGVydGllcy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BBgELARMEAwQFBAoEFQQeBCwEMAQ3BEAERQRSBFUEZwRqBG8AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEcQ==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S221128551300164X}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.nanoen.2013.09.008}} @article{mi:6101437, Abstract = {In this paper, Isopropanol (IPA) availability during the anisotropic etching of silicon in Potassium Hydroxide (KOH) solutions was investigated. Squares of 8 to 40 µm were patterned to (100) oriented silicon wafers through DWL (Direct Writing Laser) photolithography. The wet etching process was performed inside an open HDPE (High Density Polyethylene) flask with ultrasonic agitation. IPA volume and evaporation was studied in a dynamic etching process, and subsequent influence on the silicon etching was inspected. For the tested conditions, evaporation rates for water vapor and IPA were determined as approximately 0.0417 mL/min and 0.175 mL/min, respectively. Results demonstrate that IPA availability, and not concentration, plays an important role in the definition of the final structure. Transversal SEM (Scanning Electron Microscopy) analysis demonstrates a correlation between microloading effects (as a consequence of structure spacing) and the angle formed towards the (100) plane.}, Author = {Monteiro, Tiago S. and Kastytis, Pamak{\v s}tys and Gon{\c c}alves, Lu{\'\i}s M. and Minas, Gra{\c c}a and Cardoso, Susana}, Date-Added = {2017-03-14 21:24:22 +0000}, Date-Modified = {2017-03-14 21:25:41 +0000}, Doi = {10.3390/mi6101437}, Issn = {2072-666X}, Journal = {Micromachines}, Number = {10}, Pages = {1534--1545}, Title = {Dynamic Wet Etching of Silicon through Isopropanol Alcohol Evaporation}, Url = {http://www.mdpi.com/2072-666X/6/10/1437}, Volume = {6}, Year = {2015}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QSkR5bmFtaWMgV2V0IEV0Y2hpbmcgb2YgU2lsaWNvbiB0aHJvdWdoIElzb3Byb3Bhbm9sIEFsY29ob2wgRXZhcG9yYXRpb24ucGRm0hcLGBlXTlMuZGF0YU8RAmoAAAAAAmoAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9EeW5hbWljIFdldCBFdGNoaW5nICNFOEJGRkQucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6L/91O274gAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA1O4QQgAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AER5bmFtaWMgV2V0IEV0Y2hpbmcgI0U4QkZGRC5wZGYADgCWAEoARAB5AG4AYQBtAGkAYwAgAFcAZQB0ACAARQB0AGMAaABpAG4AZwAgAG8AZgAgAFMAaQBsAGkAYwBvAG4AIAB0AGgAcgBvAHUAZwBoACAASQBzAG8AcAByAG8AcABhAG4AbwBsACAAQQBsAGMAbwBoAG8AbAAgAEUAdgBhAHAAbwByAGEAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB2VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9EeW5hbWljIFdldCBFdGNoaW5nIG9mIFNpbGljb24gdGhyb3VnaCBJc29wcm9wYW5vbCBBbGNvaG9sIEV2YXBvcmF0aW9uLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOANsA4ADoA1YDWANdA2gDcQN/A4MDigOTA5gDpQOoA7oDvQPCAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA8Q=}, Bdsk-Url-1 = {http://www.mdpi.com/2072-666X/6/10/1437}, Bdsk-Url-2 = {http://dx.doi.org/10.3390/mi6101437}} @article{qin:20097618, Abstract = {The field emission properties of electrophoretic deposition(EPD) carbon nanotubes (CNTs) film have been improved by depositing \{CNTs\} onto the titanium (Ti)-coated Si substrate, followed by vacuum annealing at 900 $\,^{\circ}$C for 2 h, and the enhanced emission mechanism has been studied using X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectroscopy. Field emission measurements showed that the threshold electric field was decreased and the emission current stability was improved compared to that of \{EPD\} \{CNTs\} film on bare Si substrate. \{XRD\} and Raman spectroscopy investigations revealed that vacuum annealing treatment not only decreased the structural defects of \{CNTs\} but made a titanium carbide interfacial layer formed between \{CNTs\} and substrate. The field emission enhancement could be attributed to the improved graphitization of \{CNTs\} and the improved contact properties between \{CNTs\} and substrate including electrical conductivity and adhesive strength due to the formed conductive titanium carbide. }, Author = {Yuxiang Qin and Ming Hu}, Date-Added = {2017-03-14 21:04:10 +0000}, Date-Modified = {2017-03-14 21:04:23 +0000}, Doi = {http://dx.doi.org/10.1016/j.apsusc.2009.04.038}, Issn = {0169-4332}, Journal = {Applied Surface Science}, Keywords = {Adhesion}, Number = {17}, Pages = {7618 - 7622}, Title = {Field emission properties of electrophoretic deposition carbon nanotubes film}, Url = {http://www.sciencedirect.com/science/article/pii/S0169433209004140}, Volume = {255}, Year = {2009}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUUZpZWxkIGVtaXNzaW9uIHByb3BlcnRpZXMgb2YgZWxlY3Ryb3Bob3JldGljIGRlcG9zaXRpb24gY2FyYm9uIG5hbm90dWJlcyBmaWxtLnBkZtIXCxgZV05TLmRhdGFPEQKAAAAAAAKAAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfRmllbGQgZW1pc3Npb24gcHJvcGUjRThCQ0JDLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOi8vNTttxoAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANTuC3oAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBGaWVsZCBlbWlzc2lvbiBwcm9wZSNFOEJDQkMucGRmAA4ApABRAEYAaQBlAGwAZAAgAGUAbQBpAHMAcwBpAG8AbgAgAHAAcgBvAHAAZQByAHQAaQBlAHMAIABvAGYAIABlAGwAZQBjAHQAcgBvAHAAaABvAHIAZQB0AGkAYwAgAGQAZQBwAG8AcwBpAHQAaQBvAG4AIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQBzACAAZgBpAGwAbQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB9VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9GaWVsZCBlbWlzc2lvbiBwcm9wZXJ0aWVzIG9mIGVsZWN0cm9waG9yZXRpYyBkZXBvc2l0aW9uIGNhcmJvbiBuYW5vdHViZXMgZmlsbS5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A4gDnAO8DcwN1A3oDhQOOA5wDoAOnA7ADtQPCA8UD1wPaA98AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD4Q==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0169433209004140}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.apsusc.2009.04.038}} @article{ominami:2006, Author = {Yusuke Ominami and Quoc Ngo and Makoto Suzuki and Alexander J. Austin and Cary Y. Yang and Alan M. Cassell and Jun Li}, Date-Added = {2017-03-14 20:47:29 +0000}, Date-Modified = {2017-03-14 20:47:49 +0000}, Doi = {10.1063/1.2423241}, Eprint = {http://dx.doi.org/10.1063/1.2423241}, Journal = {Applied Physics Letters}, Number = {26}, Pages = {263114}, Title = {Interface characteristics of vertically aligned carbon nanofibers for interconnect applications}, Url = {http://dx.doi.org/10.1063/1.2423241}, Volume = {89}, Year = {2006}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QY0ludGVyZmFjZSBjaGFyYWN0ZXJpc3RpY3Mgb2YgdmVydGljYWxseSBhbGlnbmVkIGNhcmJvbiBuYW5vZmliZXJzIGZvciBpbnRlcmNvbm5lY3QgYXBwbGljYXRpb25zLnBkZtIXCxgZV05TLmRhdGFPEQK2AAAAAAK2AAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfSW50ZXJmYWNlIGNoYXJhY3RlcmkjRThCQURELnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOi63dTtskwAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANTuBqwAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBJbnRlcmZhY2UgY2hhcmFjdGVyaSNFOEJBREQucGRmAA4AyABjAEkAbgB0AGUAcgBmAGEAYwBlACAAYwBoAGEAcgBhAGMAdABlAHIAaQBzAHQAaQBjAHMAIABvAGYAIAB2AGUAcgB0AGkAYwBhAGwAbAB5ACAAYQBsAGkAZwBuAGUAZAAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwBmAGkAYgBlAHIAcwAgAGYAbwByACAAaQBuAHQAZQByAGMAbwBuAG4AZQBjAHQAIABhAHAAcABsAGkAYwBhAHQAaQBvAG4AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCPVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9JbnRlcmZhY2UgY2hhcmFjdGVyaXN0aWNzIG9mIHZlcnRpY2FsbHkgYWxpZ25lZCBjYXJib24gbmFub2ZpYmVycyBmb3IgaW50ZXJjb25uZWN0IGFwcGxpY2F0aW9ucy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A9AD5AQEDuwO9A8IDzQPWA+QD6APvA/gD/QQKBA0EHwQiBCcAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEKQ==}, Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2423241}} @article{su:2010805, Abstract = {The effect of microwave (MW) treatment to improve the adhesion of carbon nanotubes (CNTs) to a Ni/Ti/Au/SiO2/Si substrate was examined. \{CNTs\} were synthesized at a low temperature (400 $\,^{\circ}$C) by thermal chemical vapor deposition to avoid metal peeling. Results demonstrated that nearly 100% of MW-treated \{CNTs\} remained on the substrates even after sonication in a buffer solution. This was a significant improvement of adhesion compared to preparations not undergoing \{MW\} treatment, where almost no \{CNTs\} remained. Transmission electron microscopy of cross sections showed that before \{MW\} treatment, \{CNTs\} with Ni nanoparticles were located on the upper part of the Ti underlayer, whereas after \{MW\} treatment they were embedded in the Ti underlayer. Based on these results, a mechanism of adhesion improvement by \{MW\} treatment is proposed. }, Author = {Huan-Chieh Su and Chang-Hsiao Chen and Yung-Chan Chen and Da-Jeng Yao and Hsin Chen and Yen-Chung Chang and Tri-Rung Yew}, Date-Added = {2017-03-14 20:30:07 +0000}, Date-Modified = {2017-03-14 20:30:23 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2009.10.032}, Issn = {0008-6223}, Journal = {Carbon}, Number = {3}, Pages = {805 - 812}, Title = {Improving the adhesion of carbon nanotubes to a substrate using microwave treatment}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622309007052}, Volume = {48}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QV0ltcHJvdmluZyB0aGUgYWRoZXNpb24gb2YgY2FyYm9uIG5hbm90dWJlcyB0byBhIHN1YnN0cmF0ZSB1c2luZyBtaWNyb3dhdmUgdHJlYXRtZW50LnBkZtIXCxgZV05TLmRhdGFPEQKSAAAAAAKSAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfSW1wcm92aW5nIHRoZSBhZGhlc2kjRThCOUVGLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOi579TtrxgAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANTuA3gAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBJbXByb3ZpbmcgdGhlIGFkaGVzaSNFOEI5RUYucGRmAA4AsABXAEkAbQBwAHIAbwB2AGkAbgBnACAAdABoAGUAIABhAGQAaABlAHMAaQBvAG4AIABvAGYAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQBzACAAdABvACAAYQAgAHMAdQBiAHMAdAByAGEAdABlACAAdQBzAGkAbgBnACAAbQBpAGMAcgBvAHcAYQB2AGUAIAB0AHIAZQBhAHQAbQBlAG4AdAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCDVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9JbXByb3ZpbmcgdGhlIGFkaGVzaW9uIG9mIGNhcmJvbiBuYW5vdHViZXMgdG8gYSBzdWJzdHJhdGUgdXNpbmcgbWljcm93YXZlIHRyZWF0bWVudC5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A6ADtAPUDiwONA5IDnQOmA7QDuAO/A8gDzQPaA90D7wPyA/cAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD+Q==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622309007052}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2009.10.032}} @article{ageev:2016, Abstract = {The adhesion to a substrate of vertically aligned carbon nanotubes (VA CNT) produced by plasmaenhanced chemical vapor deposition has been experimentally studied by atomic-force microscopy in the current spectroscopy mode. The longitudinal deformation of VA CNT by applying an external electric field has been simulated. Based on the results, a technique of determining VA CNT adhesion to a substrate has been developed that is used to measure the adhesion strength of connecting VA CNT to a substrate. The adhesion to a substrate of VA CNT 70--120 nm in diameter varies from 0.55 to 1.19 mJ/m2, and the adhesion force from 92.5 to 226.1 nN. When applying a mechanical load, the adhesion strength of the connecting VA CNT to a substrate is 714.1 {\textpm} 138.4 MPa, and the corresponding detachment force increases from 1.93 to 10.33 $\mu$N with an increase in the VA CNT diameter. As an external electric field is applied, the adhesion strength is almost doubled and is 1.43 {\textpm} 0.29 GPa, and the corresponding detachment force is changed from 3.83 to 20.02 $\mu$N. The results can be used in the design of technological processes of formation of emission structures, VA CNT-based elements for vacuum microelectronics and micro- and nanosystem engineering, and also the methods of probe nanodiagnostics of VA CNT.}, Annote = {Estimated adhesion force of 92.5 to 226.1 nN per tube (70-120 nm in diameter). 10 nm Ni on 20 nm titanium - can I use TiO2 as oxide/diffusion barrier? The CNTs in this work are much larger than those I work with. Can try to get square function from data plotted. }, Author = {Ageev, O. A. and Blinov, Yu. F. and Il'ina, M. V. and Il'in, O. I. and Smirnov, V. A. and Tsukanova, O. G.}, Date-Added = {2017-03-14 19:48:39 +0000}, Date-Modified = {2017-03-14 19:50:58 +0000}, Doi = {10.1134/S1063783416020037}, Issn = {1090-6460}, Journal = {Physics of the Solid State}, Number = {2}, Pages = {309--314}, Title = {Study of adhesion of vertically aligned carbon nanotubes to a substrate by atomic-force microscopy}, Url = {http://dx.doi.org/10.1134/S1063783416020037}, Volume = {58}, Year = {2016}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QZlN0dWR5IG9mIGFkaGVzaW9uIG9mIHZlcnRpY2FsbHkgYWxpZ25lZCBjYXJib24gbmFub3R1YmVzIHRvIGEgc3Vic3RyYXRlIGJ5IGF0b21pYy1mb3JjZSBtaWNyb3Njb3B5LnBkZtIXCxgZV05TLmRhdGFPEQK+AAAAAAK+AAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfU3R1ZHkgb2YgYWRoZXNpb24gb2YjRThBRDc2LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOitdtTtpVwAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANTt+bwAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBTdHVkeSBvZiBhZGhlc2lvbiBvZiNFOEFENzYucGRmAA4AzgBmAFMAdAB1AGQAeQAgAG8AZgAgAGEAZABoAGUAcwBpAG8AbgAgAG8AZgAgAHYAZQByAHQAaQBjAGEAbABsAHkAIABhAGwAaQBnAG4AZQBkACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAgAHQAbwAgAGEAIABzAHUAYgBzAHQAcgBhAHQAZQAgAGIAeQAgAGEAdABvAG0AaQBjAC0AZgBvAHIAYwBlACAAbQBpAGMAcgBvAHMAYwBvAHAAeQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCSVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TdHVkeSBvZiBhZGhlc2lvbiBvZiB2ZXJ0aWNhbGx5IGFsaWduZWQgY2FyYm9uIG5hbm90dWJlcyB0byBhIHN1YnN0cmF0ZSBieSBhdG9taWMtZm9yY2UgbWljcm9zY29weS5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgD3APwBBAPGA8gDzQPYA+ED7wPzA/oEAwQIBBUEGAQqBC0EMgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQ0}, Bdsk-Url-1 = {http://dx.doi.org/10.1134/S1063783416020037}} @article{wang:2010868, Abstract = {Dry treatment using a combination of \{UV\} and ozone can readily change the surface of vertically aligned carbon nanotubes from superhydrophobic to superhydrophilic. This treatment is also effective for buckypapers. Heating in a vacuum at an elevated temperature (650--750 $\,^{\circ}$C) can reverse the surface state from superhydrophilic to superhydrophobic. The \{UV\} & ozone treatment causes the least amount of damage to the stripe-like carbon nanotube patterns. The effect of rough surface on apparent contact angles of \{CNT\} forests was discussed to explain the origin of superhydrophilicity and superhydrophobicity. }, Author = {H.Z. Wang and Z.P. Huang and Q.J. Cai and K. Kulkarni and C.-L. Chen and D. Carnahan and Z.F. Ren}, Date-Added = {2016-08-03 23:29:19 +0000}, Date-Modified = {2016-08-03 23:29:32 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2009.10.041}, Issn = {0008-6223}, Journal = {Carbon}, Number = {3}, Pages = {868 - 875}, Title = {Reversible transformation of hydrophobicity and hydrophilicity of aligned carbon nanotube arrays and buckypapers by dry processes}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622309007143}, Volume = {48}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QhVJldmVyc2libGUgdHJhbnNmb3JtYXRpb24gb2YgaHlkcm9waG9iaWNpdHkgYW5kIGh5ZHJvcGhpbGljaXR5IG9mIGFsaWduZWQgY2FyYm9uIG5hbm90dWJlIGFycmF5cyBhbmQgYnVja3lwYXBlcnMgYnkgZHJ5IHByb2Nlc3Nlcy5wZGbSFwsYGVdOUy5kYXRhTxEDHAAAAAADHAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1JldmVyc2libGUgdHJhbnNmb3JtI0NCMzM5Ni5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADLM5bTx9qZAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTyC75AAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAUmV2ZXJzaWJsZSB0cmFuc2Zvcm0jQ0IzMzk2LnBkZgAOAQwAhQBSAGUAdgBlAHIAcwBpAGIAbABlACAAdAByAGEAbgBzAGYAbwByAG0AYQB0AGkAbwBuACAAbwBmACAAaAB5AGQAcgBvAHAAaABvAGIAaQBjAGkAdAB5ACAAYQBuAGQAIABoAHkAZAByAG8AcABoAGkAbABpAGMAaQB0AHkAIABvAGYAIABhAGwAaQBnAG4AZQBkACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABhAHIAcgBhAHkAcwAgAGEAbgBkACAAYgB1AGMAawB5AHAAYQBwAGUAcgBzACAAYgB5ACAAZAByAHkAIABwAHIAbwBjAGUAcwBzAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCxVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9SZXZlcnNpYmxlIHRyYW5zZm9ybWF0aW9uIG9mIGh5ZHJvcGhvYmljaXR5IGFuZCBoeWRyb3BoaWxpY2l0eSBvZiBhbGlnbmVkIGNhcmJvbiBuYW5vdHViZSBhcnJheXMgYW5kIGJ1Y2t5cGFwZXJzIGJ5IGRyeSBwcm9jZXNzZXMucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOARYBGwEjBEMERQRKBFUEXgRsBHAEdwSABIUEkgSVBKcEqgSvAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABLE=}, Bdsk-File-2 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QhVJldmVyc2libGUgdHJhbnNmb3JtYXRpb24gb2YgaHlkcm9waG9iaWNpdHkgYW5kIGh5ZHJvcGhpbGljaXR5IG9mIGFsaWduZWQgY2FyYm9uIG5hbm90dWJlIGFycmF5cyBhbmQgYnVja3lwYXBlcnMgYnkgZHJ5IHByb2Nlc3Nlcy5wZGbSFwsYGVdOUy5kYXRhTxEDHAAAAAADHAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1JldmVyc2libGUgdHJhbnNmb3JtI0NCMzM5Ni5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADLM5bTx9qZAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTyC75AAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAUmV2ZXJzaWJsZSB0cmFuc2Zvcm0jQ0IzMzk2LnBkZgAOAQwAhQBSAGUAdgBlAHIAcwBpAGIAbABlACAAdAByAGEAbgBzAGYAbwByAG0AYQB0AGkAbwBuACAAbwBmACAAaAB5AGQAcgBvAHAAaABvAGIAaQBjAGkAdAB5ACAAYQBuAGQAIABoAHkAZAByAG8AcABoAGkAbABpAGMAaQB0AHkAIABvAGYAIABhAGwAaQBnAG4AZQBkACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABhAHIAcgBhAHkAcwAgAGEAbgBkACAAYgB1AGMAawB5AHAAYQBwAGUAcgBzACAAYgB5ACAAZAByAHkAIABwAHIAbwBjAGUAcwBzAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCxVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9SZXZlcnNpYmxlIHRyYW5zZm9ybWF0aW9uIG9mIGh5ZHJvcGhvYmljaXR5IGFuZCBoeWRyb3BoaWxpY2l0eSBvZiBhbGlnbmVkIGNhcmJvbiBuYW5vdHViZSBhcnJheXMgYW5kIGJ1Y2t5cGFwZXJzIGJ5IGRyeSBwcm9jZXNzZXMucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOARYBGwEjBEMERQRKBFUEXgRsBHAEdwSABIUEkgSVBKcEqgSvAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABLE=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622309007143}} @article{nessim:2008, Abstract = { By controlling the timing and duration of hydrogen exposure in a fixed thermal process, we tuned the diameters of carbon nanotubes (CNTs) within a vertically aligned film by a factor of 2, and tuned the areal densities by an order of magnitude. The CNT structure is correlated with the catalyst morphology, suggesting that while chemical reduction of the catalyst layer is required for growth, prolonged H2 exposure not only reduces the iron oxide and enables agglomeration of the Fe film, but also leads to catalyst coarsening. Control of this coarsening process allows tuning of CNT characteristics. }, Author = {Gilbert D. Nessim and A. John Hart and Jin S. Kim and Donatello Acquaviva and Jihun Oh and Caitlin D. Morgan and Matteo Seita and Jeffrey S. Leib and Carl V. Thompson}, Date-Added = {2016-07-27 23:33:29 +0000}, Date-Modified = {2016-07-27 23:33:37 +0000}, Doi = {10.1021/nl801437c}, Eprint = {http://dx.doi.org/10.1021/nl801437c}, Journal = {Nano Letters}, Note = {PMID: 18837566}, Number = {11}, Pages = {3587-3593}, Title = {Tuning of Vertically-Aligned Carbon Nanotube Diameter and Areal Density through Catalyst Pre-Treatment}, Url = {http://dx.doi.org/10.1021/nl801437c}, Volume = {8}, Year = {2008}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QalR1bmluZyBvZiBWZXJ0aWNhbGx5LUFsaWduZWQgQ2FyYm9uIE5hbm90dWJlIERpYW1ldGVyIGFuZCBBcmVhbCBEZW5zaXR5IHRocm91Z2ggQ2F0YWx5c3QgUHJlLVRyZWF0bWVudC5wZGbSFwsYGVdOUy5kYXRhTxECygAAAAACygACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1R1bmluZyBvZiBWZXJ0aWNhbGx5I0M5OEE2RC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJim3TvqDWAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTvvU2AAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVHVuaW5nIG9mIFZlcnRpY2FsbHkjQzk4QTZELnBkZgAOANYAagBUAHUAbgBpAG4AZwAgAG8AZgAgAFYAZQByAHQAaQBjAGEAbABsAHkALQBBAGwAaQBnAG4AZQBkACAAQwBhAHIAYgBvAG4AIABOAGEAbgBvAHQAdQBiAGUAIABEAGkAYQBtAGUAdABlAHIAIABhAG4AZAAgAEEAcgBlAGEAbAAgAEQAZQBuAHMAaQB0AHkAIAB0AGgAcgBvAHUAZwBoACAAQwBhAHQAYQBsAHkAcwB0ACAAUAByAGUALQBUAHIAZQBhAHQAbQBlAG4AdAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCWVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UdW5pbmcgb2YgVmVydGljYWxseS1BbGlnbmVkIENhcmJvbiBOYW5vdHViZSBEaWFtZXRlciBhbmQgQXJlYWwgRGVuc2l0eSB0aHJvdWdoIENhdGFseXN0IFByZS1UcmVhdG1lbnQucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A+wEAAQgD1gPYA90D6APxA/8EAwQKBBMEGAQlBCgEOgQ9BEIAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAERA==}, Bdsk-Url-1 = {http://dx.doi.org/10.1021/nl801437c}} @article{bedewy:2009, Abstract = { We explain the evolution and termination of vertically aligned carbon nanotube (CNT) ``forests'' by a collective mechanism, which is verified by temporal measurements of forest mass and height, as well as quantitative spatial mapping of CNT alignment by synchrotron X-ray scattering. We propose that forest growth consists of four stages: (I) self-organization; (II) steady growth with a constant CNT number density; (III) decay with a decreasing number density; and (IV) abrupt self-termination, which is coincident with a loss of alignment at the base of the forest. The abrupt loss of CNT alignment has been observed experimentally in many systems, yet termination of forest growth has previously been explained using models for individual CNTs, which do not consider the evolution of the CNT population. We propose that abrupt termination of CNT forest growth is caused by loss of the self-supporting structure, which is essential for formation of a CNT forest in the first place, and that this event is triggered by accumulating growth termination of individual CNTs. A finite element model accurately predicts the critical CNT number density at which forest growth terminates and demonstrates the essential role of mechanical contact in maintaining growth of self-assembled films of filamentary nanostructures. }, Author = {Mostafa Bedewy and Eric R. Meshot and Haicheng Guo and Eric A. Verploegen and Wei Lu and A. John Hart}, Date-Added = {2016-07-27 23:25:49 +0000}, Date-Modified = {2016-07-27 23:26:01 +0000}, Doi = {10.1021/jp904152v}, Eprint = {http://dx.doi.org/10.1021/jp904152v}, Journal = {The Journal of Physical Chemistry C}, Number = {48}, Pages = {20576-20582}, Title = {Collective Mechanism for the Evolution and Self-Termination of Vertically Aligned Carbon Nanotube Growth}, Url = {http://dx.doi.org/10.1021/jp904152v}, Volume = {113}, Year = {2009}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QbENvbGxlY3RpdmUgTWVjaGFuaXNtIGZvciB0aGUgRXZvbHV0aW9uIGFuZCBTZWxmLVRlcm1pbmF0aW9uIG9mIFZlcnRpY2FsbHkgQWxpZ25lZCBDYXJib24gTmFub3R1YmUgR3Jvd3RoLnBkZtIXCxgZV05TLmRhdGFPEQLQAAAAAALQAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfQ29sbGVjdGl2ZSBNZWNoYW5pc20jQzk4OUYwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMmJ8NO+n0MAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANO+86MAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBDb2xsZWN0aXZlIE1lY2hhbmlzbSNDOTg5RjAucGRmAA4A2gBsAEMAbwBsAGwAZQBjAHQAaQB2AGUAIABNAGUAYwBoAGEAbgBpAHMAbQAgAGYAbwByACAAdABoAGUAIABFAHYAbwBsAHUAdABpAG8AbgAgAGEAbgBkACAAUwBlAGwAZgAtAFQAZQByAG0AaQBuAGEAdABpAG8AbgAgAG8AZgAgAFYAZQByAHQAaQBjAGEAbABsAHkAIABBAGwAaQBnAG4AZQBkACAAQwBhAHIAYgBvAG4AIABOAGEAbgBvAHQAdQBiAGUAIABHAHIAbwB3AHQAaAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCYVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Db2xsZWN0aXZlIE1lY2hhbmlzbSBmb3IgdGhlIEV2b2x1dGlvbiBhbmQgU2VsZi1UZXJtaW5hdGlvbiBvZiBWZXJ0aWNhbGx5IEFsaWduZWQgQ2FyYm9uIE5hbm90dWJlIEdyb3d0aC5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgD9AQIBCgPeA+AD5QPwA/kEBwQLBBIEGwQgBC0EMARCBEUESgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAARM}, Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp904152v}} @article{delhaes:2002, Abstract = {The chemical vapor deposition (CVD) and the chemical vapor infiltration (CVI) processes of carbon materials are reviewed starting from the historical aspects and including the latest developments in the preparation of C/C composites. Our presentation is based on an analysis of the different types of reactors, of the composite materials with different types of pyrocarbon as matrices and a comparison between the different processes. In particular, the classical isothermal--isobaric technique and temperature or pressure gradient reactors, which lead to a higher deposition efficiency, are compared. A complementary aspect is the structural and physical analysis of the deposited pyrocarbons: they are considered as reproducible metastable phases which are obtained under non-equilibrium thermodynamic conditions. The final relevant point concerns the relationship between the process parameters and the type of pyrocarbon. In particular, the so-called rough laminar microstructure, useful for most composite applications, is described. }, Author = {P Delhaes}, Date-Added = {2016-07-15 09:33:03 +0000}, Date-Modified = {2016-07-15 09:33:12 +0000}, Doi = {http://dx.doi.org/10.1016/S0008-6223(01)00195-6}, Issn = {0008-6223}, Journal = {Carbon}, Keywords = {B. Chemical vapor deposition, Chemical vapor infiltration}, Number = {5}, Pages = {641 - 657}, Title = {Chemical vapor deposition and infiltration processes of carbon materials}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622301001956}, Volume = {40}, Year = {2002}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622301001956}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0008-6223(01)00195-6}} @article{xu:1998, Abstract = {Three-dimensional carbon/silicon carbide composites were fabricated by chemical vapor infiltration, and the microstructure and mechanical properties were investigated. For the composites (CSiC) with no pyrolytic carbon interfacial layer, the mechanical properties (flexural strength, flexural elastic modulus, shear strength and fracture toughness) are increased with density of the composites. High density (p = 2.1 g cm−3) CSiC composites exhibit high fracture toughness (16.5 MPa m12) but brittle fracture behavior because of strong bonding between the fiber/matrix. Low density composites show non-catastrophic failure mode with bundle pull-out. The composites (C/PyC/SiC) with pyrolytic carbon interfacial layer exhibit good mechanical properties and a typical failure behavior involving fiber pull-out and brittle fracture of sub-bundle. Microstructural observations and theoretical analysis reveal that the tortuosity and bottleneck effect of the pores and large molar mass of reactant agent (methyltrichlorosilane) are three key issues to hinder the densification of composites. Cracks formed in the SiC matrix by thermal stress have two influences on the mechanical properties of the composites: to decrease mechanical properties and have some contribution on toughness and failure behavior by deflecting cracks.}, Author = {Yongdong Xu and Litong Zhang and Laifei Cheng and Dantao Yan}, Date-Added = {2016-07-15 09:23:29 +0000}, Date-Modified = {2016-07-15 09:25:15 +0000}, Doi = {http://dx.doi.org/10.1016/S0008-6223(98)00076-1}, Issn = {0008-6223}, Journal = {Carbon}, Keywords = {D. fracture}, Number = {7}, Pages = {1051 - 1056}, Title = {Microstructure and mechanical properties of three-dimensional carbon/silicon carbide composites fabricated by chemical vapor infiltration}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622398000761}, Volume = {36}, Year = {1998}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QjU1pY3Jvc3RydWN0dXJlIGFuZCBtZWNoYW5pY2FsIHByb3BlcnRpZXMgb2YgdGhyZWUtZGltZW5zaW9uYWwgY2FyYm9uOnNpbGljb24gY2FyYmlkZSBjb21wb3NpdGVzIGZhYnJpY2F0ZWQgYnkgY2hlbWljYWwgdmFwb3IgaW5maWx0cmF0aW9uLnBkZtIXCxgZV05TLmRhdGFPEQM0AAAAAAM0AAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfTWljcm9zdHJ1Y3R1cmUgYW5kIG0jQzdBQTI1LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMeqJdOuB/4AAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANOuXF4AAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBNaWNyb3N0cnVjdHVyZSBhbmQgbSNDN0FBMjUucGRmAA4BHACNAE0AaQBjAHIAbwBzAHQAcgB1AGMAdAB1AHIAZQAgAGEAbgBkACAAbQBlAGMAaABhAG4AaQBjAGEAbAAgAHAAcgBvAHAAZQByAHQAaQBlAHMAIABvAGYAIAB0AGgAcgBlAGUALQBkAGkAbQBlAG4AcwBpAG8AbgBhAGwAIABjAGEAcgBiAG8AbgAvAHMAaQBsAGkAYwBvAG4AIABjAGEAcgBiAGkAZABlACAAYwBvAG0AcABvAHMAaQB0AGUAcwAgAGYAYQBiAHIAaQBjAGEAdABlAGQAIABiAHkAIABjAGgAZQBtAGkAYwBhAGwAIAB2AGEAcABvAHIAIABpAG4AZgBpAGwAdAByAGEAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgC5VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NaWNyb3N0cnVjdHVyZSBhbmQgbWVjaGFuaWNhbCBwcm9wZXJ0aWVzIG9mIHRocmVlLWRpbWVuc2lvbmFsIGNhcmJvbjpzaWxpY29uIGNhcmJpZGUgY29tcG9zaXRlcyBmYWJyaWNhdGVkIGJ5IGNoZW1pY2FsIHZhcG9yIGluZmlsdHJhdGlvbi5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BHgEjASsEYwRlBGoEdQR+BIwEkASXBKAEpQSyBLUExwTKBM8AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAE0Q==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622398000761}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0008-6223(98)00076-1}} @article{mizuno:2005, Abstract = { We have studied the compatibility of various catalysts for ethylene and ethanol chemical vapor deposition (CVD) syntheses of single-walled carbon nanotubes (SWNTs) on Si substrates. A strong selectivity between the catalyst elemental species and carbon source was found; SWNT yield for Fe (Co) catalysts was much higher for ethylene (ethanol) CVD than for ethanol (ethylene) CVD. This strong and completely opposite selectivity implies significantly different SWNT growth mechanisms for ethanol and ethylene CVD on Si substrates. }, Author = {Kohei Mizuno, and Kenji Hata,* and Takeshi Saito, and Satoshi Ohshima, and Motoo Yumura, and and Sumio Iijima}, Date-Added = {2016-07-12 10:39:46 +0000}, Date-Modified = {2016-07-12 10:40:01 +0000}, Doi = {10.1021/jp0454117}, Eprint = {http://dx.doi.org/10.1021/jp0454117}, Journal = {The Journal of Physical Chemistry B}, Note = {PMID: 16851268}, Number = {7}, Pages = {2632-2637}, Title = {Selective Matching of Catalyst Element and Carbon Source in Single-Walled Carbon Nanotube Synthesis on Silicon Substrates}, Url = {http://dx.doi.org/10.1021/jp0454117}, Volume = {109}, Year = {2005}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QfVNlbGVjdGl2ZSBNYXRjaGluZyBvZiBDYXRhbHlzdCBFbGVtZW50IGFuZCBDYXJib24gU291cmNlIGluIFNpbmdsZS1XYWxsZWQgQ2FyYm9uIE5hbm90dWJlIFN5bnRoZXNpcyBvbiBTaWxpY29uIFN1YnN0cmF0ZXMucGRm0hcLGBlXTlMuZGF0YU8RAwQAAAAAAwQAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9TZWxlY3RpdmUgTWF0Y2hpbmcgbyNDNjVDN0UucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxlx+06okzQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA06p5LQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFNlbGVjdGl2ZSBNYXRjaGluZyBvI0M2NUM3RS5wZGYADgD8AH0AUwBlAGwAZQBjAHQAaQB2AGUAIABNAGEAdABjAGgAaQBuAGcAIABvAGYAIABDAGEAdABhAGwAeQBzAHQAIABFAGwAZQBtAGUAbgB0ACAAYQBuAGQAIABDAGEAcgBiAG8AbgAgAFMAbwB1AHIAYwBlACAAaQBuACAAUwBpAG4AZwBsAGUALQBXAGEAbABsAGUAZAAgAEMAYQByAGIAbwBuACAATgBhAG4AbwB0AHUAYgBlACAAUwB5AG4AdABoAGUAcwBpAHMAIABvAG4AIABTAGkAbABpAGMAbwBuACAAUwB1AGIAcwB0AHIAYQB0AGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCpVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TZWxlY3RpdmUgTWF0Y2hpbmcgb2YgQ2F0YWx5c3QgRWxlbWVudCBhbmQgQ2FyYm9uIFNvdXJjZSBpbiBTaW5nbGUtV2FsbGVkIENhcmJvbiBOYW5vdHViZSBTeW50aGVzaXMgb24gU2lsaWNvbiBTdWJzdHJhdGVzLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgEOARMBGwQjBCUEKgQ1BD4ETARQBFcEYARlBHIEdQSHBIoEjwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAASR}, Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0454117}} @article{robertson:2002, Abstract = {Diamond-like carbon (DLC) is a metastable form of amorphous carbon with significant sp3 bonding. \{DLC\} is a semiconductor with a high mechanical hardness, chemical inertness, and optical transparency. This review will describe the deposition methods, deposition mechanisms, characterisation methods, electronic structure, gap states, defects, doping, luminescence, field emission, mechanical properties and some applications of DLCs. The films have widespread applications as protective coatings in areas, such as magnetic storage disks, optical windows and micro-electromechanical devices (MEMs). }, Author = {J. Robertson}, Date-Added = {2016-07-11 13:32:20 +0000}, Date-Modified = {2016-07-11 13:32:49 +0000}, Doi = {http://dx.doi.org/10.1016/S0927-796X(02)00005-0}, Issn = {0927-796X}, Journal = {Materials Science and Engineering: R: Reports}, Keywords = {Applications}, Number = {4--6}, Pages = {129 - 281}, Title = {Diamond-like amorphous carbon}, Url = {http://www.sciencedirect.com/science/article/pii/S0927796X02000050}, Volume = {37}, Year = {2002}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QIWRpYW1vbmRfbGlrZSBhbW9ycGhvdXMgY2FyYm9uLnBkZtIXCxgZV05TLmRhdGFPEQHwAAAAAAHwAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfZGlhbW9uZF9saWtlIGFtb3JwaG8jQzRCMTk5LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMSxmdOo+4EAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANOpT+EAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBkaWFtb25kX2xpa2UgYW1vcnBobyNDNEIxOTkucGRmAA4ARAAhAGQAaQBhAG0AbwBuAGQAXwBsAGkAawBlACAAYQBtAG8AcgBwAGgAbwB1AHMAIABjAGEAcgBiAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBNVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9kaWFtb25kX2xpa2UgYW1vcnBob3VzIGNhcmJvbi5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4AsgC3AL8CswK1AroCxQLOAtwC4ALnAvAC9QMCAwUDFwMaAx8AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADIQ==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0927796X02000050}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0927-796X(02)00005-0}} @article{marins:2011, Abstract = {Hydrogenated amorphous carbon (a-C:H) films were grown at room temperature on glass and polished silicon substrates using RF-PECVD (Radio-Frequency Plasma Enhanced Chemical Vapor Deposition). Plasmas composed by 30% of acetylene and 70% of argon were excited by the application of \{RF\} signal to the sample holder with power ranging from 5 to 125 W. After deposition, the films were submitted to SF6-plasma treatment for 5 minutes. \{SF6\} plasmas were generated at a pressure of 13.3 Pa by a \{RF\} power supply operating at 13.56 \{MHz\} with the output fixed at 70 W. The resulting films were characterized in terms of their molecular structure, chemical composition, surface morphology, thickness, contact angle, and surface free energy. During the \{SF6\} plasma treatment, fluorine species were incorporated in the film structure causing chemical alterations. The interaction of chemical species generated in the \{SF6\} plasmas with surface species was responsible for the decrease of the film thickness and surface energy, and for the increase of the film roughness and hydrophobicity. }, Author = {N.M.S. Marins and R.P. Mota and R.Y. Honda and P.A.P. Nascente and M.E. Kayama and K.G. Kostov and M.A. Algatti and N.C. Cruz and E.C. Rangel}, Date-Added = {2016-07-11 13:27:15 +0000}, Date-Modified = {2016-07-11 13:27:36 +0000}, Doi = {http://dx.doi.org/10.1016/j.surfcoat.2011.06.058}, Issn = {0257-8972}, Journal = {Surface and Coatings Technology}, Keywords = {Chemical composition}, Note = {Carbon-Based Nanostructured Coatings and Composite Films}, Number = {4}, Pages = {640 - 645}, Title = {Properties of hydrogenated amorphous carbon films deposited by \{PECVD\} and modified by \{SF6\} plasma}, Url = {http://www.sciencedirect.com/science/article/pii/S0257897211006803}, Volume = {206}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QY1Byb3BlcnRpZXMgb2YgaHlkcm9nZW5hdGVkIGFtb3JwaG91cyBjYXJib24gZmlsbXMgZGVwb3NpdGVkIGJ5IFBFQ1ZEIGFuZCBtb2RpZmllZCBieSBTRjYgcGxhc21hLnBkZtIXCxgZV05TLmRhdGFPEQK2AAAAAAK2AAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfUHJvcGVydGllcyBvZiBoeWRyb2cjQzQ1ODgxLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMRYgdOo+XQAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANOpTdQAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBQcm9wZXJ0aWVzIG9mIGh5ZHJvZyNDNDU4ODEucGRmAA4AyABjAFAAcgBvAHAAZQByAHQAaQBlAHMAIABvAGYAIABoAHkAZAByAG8AZwBlAG4AYQB0AGUAZAAgAGEAbQBvAHIAcABoAG8AdQBzACAAYwBhAHIAYgBvAG4AIABmAGkAbABtAHMAIABkAGUAcABvAHMAaQB0AGUAZAAgAGIAeQAgAFAARQBDAFYARAAgAGEAbgBkACAAbQBvAGQAaQBmAGkAZQBkACAAYgB5ACAAUwBGADYAIABwAGwAYQBzAG0AYQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCPVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Qcm9wZXJ0aWVzIG9mIGh5ZHJvZ2VuYXRlZCBhbW9ycGhvdXMgY2FyYm9uIGZpbG1zIGRlcG9zaXRlZCBieSBQRUNWRCBhbmQgbW9kaWZpZWQgYnkgU0Y2IHBsYXNtYS5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A9AD5AQEDuwO9A8IDzQPWA+QD6APvA/gD/QQKBA0EHwQiBCcAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEKQ==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0257897211006803}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.surfcoat.2011.06.058}} @article{caschera:2007, Abstract = {Diamond-like carbon (DLC) films have been largely studied for their excellent mechanical properties and their high potential in many industrial applications. Although \{DLC\} films have poorer physical properties than diamond films, their lower thermal stability and high internal residual stress can be avoided with the incorporation of other elements, such as silicon, nitrogen and some metals. Nanostructured \{DLC\} coatings are usually deposited by a combined plasma assisted PVD/CVD technique and sputtering system. We have prepared Ti-containing \{DLC\} films deposited by plasma decomposition of CH4/H2/Ar gas mixture with titanium isopropoxide (Ti[OCH2CH3]4), as a metal precursor. The deposited films were found to be composed of amorphous titanium oxide and nanocrystalline titanium carbide, embedded in an amorphous hydrogenated (a-C:H) matrix (DLC). The TiC/TiO2 ratio in the \{DLC\} matrix was dependent on the process parameters. The films' composition was monitored as a function of gaseous fluxes. The structural and chemical--physical characterization has been performed by means of \{XRD\} and \{XPS\} techniques. }, Author = {D. Caschera and F. Federici and S. Kaciulis and L. Pandolfi and A. Cusm{\`a} and G. Padeletti}, Date-Added = {2016-07-11 05:58:17 +0000}, Date-Modified = {2016-07-11 05:58:38 +0000}, Doi = {http://dx.doi.org/10.1016/j.msec.2006.06.027}, Issn = {0928-4931}, Journal = {Materials Science and Engineering: C}, Keywords = {PECVD}, Note = {\{EMRS\} 2006 Symposium A: Current Trends in Nanoscience - from Materials to Applications}, Number = {5--8}, Pages = {1328 - 1330}, Title = {Deposition of Ti-containing diamond-like carbon (DLC) films by \{PECVD\} technique}, Url = {http://www.sciencedirect.com/science/article/pii/S0928493106002049}, Volume = {27}, Year = {2007}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUkRlcG9zaXRpb24gb2YgVGktY29udGFpbmluZyBkaWFtb25kLWxpa2UgY2FyYm9uIChETEMpIGZpbG1zIGJ5IFBFQ1ZEIHRlY2huaXF1ZS5wZGbSFwsYGVdOUy5kYXRhTxECggAAAAACggACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0RlcG9zaXRpb24gb2YgVGktY29uI0MzRUJFMy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADD6+PTqJF3AAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTqOXXAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToARGVwb3NpdGlvbiBvZiBUaS1jb24jQzNFQkUzLnBkZgAOAKYAUgBEAGUAcABvAHMAaQB0AGkAbwBuACAAbwBmACAAVABpAC0AYwBvAG4AdABhAGkAbgBpAG4AZwAgAGQAaQBhAG0AbwBuAGQALQBsAGkAawBlACAAYwBhAHIAYgBvAG4AIAAoAEQATABDACkAIABmAGkAbABtAHMAIABiAHkAIABQAEUAQwBWAEQAIAB0AGUAYwBoAG4AaQBxAHUAZQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB+VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9EZXBvc2l0aW9uIG9mIFRpLWNvbnRhaW5pbmcgZGlhbW9uZC1saWtlIGNhcmJvbiAoRExDKSBmaWxtcyBieSBQRUNWRCB0ZWNobmlxdWUucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A4wDoAPADdgN4A30DiAORA58DowOqA7MDuAPFA8gD2gPdA+IAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD5A==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0928493106002049}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.msec.2006.06.027}} @article{prakash:1995, Abstract = {Silica films with refractive indices in the range of 1.006 -- 1.036 (equivalent porosity 98.5--91%) have been prepared at ambient pressure by a process wherein organo-siloxane polymers are deposited on a silicon substrate by conventional dip-coating at 25$\,^{\circ}$C and 0.85 bar (atmospheric pressure in Albuquerque) and heating to 450$\,^{\circ}$C. The film thicknesses (from scanning electron microscopy) vary from 0.1 to 3.5 μm, depending upon the dip-coating rate (0.05 -- 1.9 cm/s) and concentration of the sol. The process was optimized by varying the dilution, aging, organic modification, heat treatment and dip-coating conditions, allowing control of film porosity in the range ∼ 30--99%. Imaging ellipsometry has been used to study the evolution of film porosity and thickness in situ. It is observed that the high porosity in these films is mainly attributable to dilation or `springback' of the film during the final stage of drying.}, Author = {Sai S. Prakash and C.Jeffrey Brinker and Alan J. Hurd}, Date-Added = {2016-06-28 16:58:23 +0000}, Date-Modified = {2016-06-28 16:58:41 +0000}, Doi = {http://dx.doi.org/10.1016/0022-3093(95)00024-0}, Issn = {0022-3093}, Journal = {Journal of Non-Crystalline Solids}, Number = {3}, Pages = {264 - 275}, Title = {Silica aerogel films at ambient pressure}, Url = {http://www.sciencedirect.com/science/article/pii/0022309395000240}, Volume = {190}, Year = {1995}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/0022309395000240}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/0022-3093(95)00024-0}} @article{zhang:2011, Abstract = {In this experimental work, the influence of carbon fibers (CFs) added to polyimide (PI) composite plastics was investigated. Also, the effect of carbon nanotubes (CNTs) on the fiber-matrix interface was studied. The results obtained show that the mechanical properties of CF/CNT/PI nanocomposites are superior to those of CF/PI composites.}, Author = {Zhang, J. G.}, Date-Added = {2016-06-26 01:40:25 +0000}, Date-Modified = {2016-06-26 01:40:33 +0000}, Doi = {10.1007/s11029-011-9222-x}, Issn = {1573-8922}, Journal = {Mechanics of Composite Materials}, Number = {4}, Pages = {447--450}, Title = {The effect of carbon fibers and carbon nanotubes on the mechanical properties of polyimide composites}, Url = {http://dx.doi.org/10.1007/s11029-011-9222-x}, Volume = {47}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QaVRIRSBFRkZFQ1QgT0YgQ0FSQk9OIEZJQkVSUyBBTkQgQ0FSQk9OIE5BTk9UVUJFUyBPTiBUSEUgTUVDSEFOSUNBTCBQUk9QRVJUSUVTIE9GIFBPTFlJTUlERSBDT01QT1NJVEVTLnBkZtIXCxgZV05TLmRhdGFPEQLIAAAAAALIAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfVEhFIEVGRkVDVCBPRiBDQVJCT04jQkUyNkZFLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL4m/tOUjm4AAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANOU4s4AAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBUSEUgRUZGRUNUIE9GIENBUkJPTiNCRTI2RkUucGRmAA4A1ABpAFQASABFACAARQBGAEYARQBDAFQAIABPAEYAIABDAEEAUgBCAE8ATgAgAEYASQBCAEUAUgBTACAAQQBOAEQAIABDAEEAUgBCAE8ATgAgAE4AQQBOAE8AVABVAEIARQBTACAATwBOACAAVABIAEUAIABNAEUAQwBIAEEATgBJAEMAQQBMACAAUABSAE8AUABFAFIAVABJAEUAUwAgAE8ARgAgAFAATwBMAFkASQBNAEkARABFACAAQwBPAE0AUABPAFMASQBUAEUAUwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCVVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9USEUgRUZGRUNUIE9GIENBUkJPTiBGSUJFUlMgQU5EIENBUkJPTiBOQU5PVFVCRVMgT04gVEhFIE1FQ0hBTklDQUwgUFJPUEVSVElFUyBPRiBQT0xZSU1JREUgQ09NUE9TSVRFUy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A+gD/AQcD0wPVA9oD5QPuA/wEAAQHBBAEFQQiBCUENwQ6BD8AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEQQ==}, Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11029-011-9222-x}} @article{brahim:2008, Author = {Brahim, Sean and Colbern, Steve and Gump, Robert and Grigorian, Leonid}, Date-Added = {2016-06-26 01:18:30 +0000}, Date-Modified = {2016-06-26 01:18:39 +0000}, Doi = {http://dx.doi.org/10.1063/1.2956395}, Eid = 024502, Journal = {Journal of Applied Physics}, Number = {2}, Title = {Tailoring gas sensing properties of carbon nanotubes}, Url = {http://scitation.aip.org/content/aip/journal/jap/104/2/10.1063/1.2956395}, Volume = {104}, Year = {2008}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QOFRhaWxvcmluZyBnYXMgc2Vuc2luZyBwcm9wZXJ0aWVzIG9mIGNhcmJvbiBuYW5vdHViZXMucGRm0hcLGBlXTlMuZGF0YU8RAjQAAAAAAjQAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9UYWlsb3JpbmcgZ2FzIHNlbnNpbiNCRTI0RjIucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAviTy05SJYQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA05TdwQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFRhaWxvcmluZyBnYXMgc2Vuc2luI0JFMjRGMi5wZGYADgByADgAVABhAGkAbABvAHIAaQBuAGcAIABnAGEAcwAgAHMAZQBuAHMAaQBuAGcAIABwAHIAbwBwAGUAcgB0AGkAZQBzACAAbwBmACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBkVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UYWlsb3JpbmcgZ2FzIHNlbnNpbmcgcHJvcGVydGllcyBvZiBjYXJib24gbmFub3R1YmVzLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAMkAzgDWAw4DEAMVAyADKQM3AzsDQgNLA1ADXQNgA3IDdQN6AAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA3w=}, Bdsk-Url-1 = {http://scitation.aip.org/content/aip/journal/jap/104/2/10.1063/1.2956395}, Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2956395}} @article{zhou:2010, Author = {Zhou, Jian and Dong, Jinming}, Date-Added = {2016-06-26 01:06:23 +0000}, Date-Modified = {2016-06-26 01:06:31 +0000}, Doi = {http://dx.doi.org/10.1063/1.3283921}, Eid = 024306, Journal = {Journal of Applied Physics}, Number = {2}, Title = {Infrared properties of single-walled carbon nanotubes calculated from first principles}, Url = {http://scitation.aip.org/content/aip/journal/jap/107/2/10.1063/1.3283921}, Volume = {107}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QWkluZnJhcmVkIHByb3BlcnRpZXMgb2Ygc2luZ2xlLXdhbGxlZCBjYXJib24gbmFub3R1YmVzIGNhbGN1bGF0ZWQgZnJvbSBmaXJzdCBwcmluY2lwbGVzLnBkZtIXCxgZV05TLmRhdGFPEQKaAAAAAAKaAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfSW5mcmFyZWQgcHJvcGVydGllcyAjQkUyNDBELnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL4kDdOUhkwAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANOU2qwAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBJbmZyYXJlZCBwcm9wZXJ0aWVzICNCRTI0MEQucGRmAA4AtgBaAEkAbgBmAHIAYQByAGUAZAAgAHAAcgBvAHAAZQByAHQAaQBlAHMAIABvAGYAIABzAGkAbgBnAGwAZQAtAHcAYQBsAGwAZQBkACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAgAGMAYQBsAGMAdQBsAGEAdABlAGQAIABmAHIAbwBtACAAZgBpAHIAcwB0ACAAcAByAGkAbgBjAGkAcABsAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCGVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9JbmZyYXJlZCBwcm9wZXJ0aWVzIG9mIHNpbmdsZS13YWxsZWQgY2FyYm9uIG5hbm90dWJlcyBjYWxjdWxhdGVkIGZyb20gZmlyc3QgcHJpbmNpcGxlcy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDrAPAA+AOWA5gDnQOoA7EDvwPDA8oD0wPYA+UD6AP6A/0EAgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQE}, Bdsk-Url-1 = {http://scitation.aip.org/content/aip/journal/jap/107/2/10.1063/1.3283921}, Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3283921}} @article{shtogun:2010, Author = {Shtogun, Yaroslav V. and Woods, Lilia M.}, Date-Added = {2016-06-26 01:02:00 +0000}, Date-Modified = {2016-06-26 01:02:11 +0000}, Doi = {http://dx.doi.org/10.1063/1.3340519}, Eid = 061803, Journal = {Journal of Applied Physics}, Number = {6}, Title = {Mechanical properties of defective single wall carbon nanotubes}, Url = {http://scitation.aip.org/content/aip/journal/jap/107/6/10.1063/1.3340519}, Volume = {107}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QQ01lY2hhbmljYWwgcHJvcGVydGllcyBvZiBkZWZlY3RpdmUgc2luZ2xlIHdhbGwgY2FyYm9uIG5hbm90dWJlcy5wZGbSFwsYGVdOUy5kYXRhTxECVgAAAAACVgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH01lY2hhbmljYWwgcHJvcGVydGllI0JFMjJCOS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+IrnTlIVvAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTlNnPAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToATWVjaGFuaWNhbCBwcm9wZXJ0aWUjQkUyMkI5LnBkZgAOAIgAQwBNAGUAYwBoAGEAbgBpAGMAYQBsACAAcAByAG8AcABlAHIAdABpAGUAcwAgAG8AZgAgAGQAZQBmAGUAYwB0AGkAdgBlACAAcwBpAG4AZwBsAGUAIAB3AGEAbABsACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBvVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NZWNoYW5pY2FsIHByb3BlcnRpZXMgb2YgZGVmZWN0aXZlIHNpbmdsZSB3YWxsIGNhcmJvbiBuYW5vdHViZXMucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOANQA2QDhAzsDPQNCA00DVgNkA2gDbwN4A30DigONA58DogOnAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA6k=}, Bdsk-Url-1 = {http://scitation.aip.org/content/aip/journal/jap/107/6/10.1063/1.3340519}, Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3340519}} @article{bunder:2010, Author = {Bunder, J. E. and Hill, James M.}, Date-Added = {2016-06-26 00:58:02 +0000}, Date-Modified = {2016-06-26 00:58:10 +0000}, Doi = {http://dx.doi.org/10.1063/1.3289320}, Eid = 023511, Journal = {Journal of Applied Physics}, Number = {2}, Title = {Electronic properties of carbon nanotubes with distinct bond lengths}, Url = {http://scitation.aip.org/content/aip/journal/jap/107/2/10.1063/1.3289320}, Volume = {107}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QSEVsZWN0cm9uaWMgcHJvcGVydGllcyBvZiBjYXJib24gbmFub3R1YmVzIHdpdGggZGlzdGluY3QgYm9uZCBsZW5ndGhzLnBkZtIXCxgZV05TLmRhdGFPEQJkAAAAAAJkAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfRWxlY3Ryb25pYyBwcm9wZXJ0aWUjQkUyMjlBLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL4imtOUhLEAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANOU2REAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBFbGVjdHJvbmljIHByb3BlcnRpZSNCRTIyOUEucGRmAA4AkgBIAEUAbABlAGMAdAByAG8AbgBpAGMAIABwAHIAbwBwAGUAcgB0AGkAZQBzACAAbwBmACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAgAHcAaQB0AGgAIABkAGkAcwB0AGkAbgBjAHQAIABiAG8AbgBkACAAbABlAG4AZwB0AGgAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB0VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9FbGVjdHJvbmljIHByb3BlcnRpZXMgb2YgY2FyYm9uIG5hbm90dWJlcyB3aXRoIGRpc3RpbmN0IGJvbmQgbGVuZ3Rocy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDZAN4A5gNOA1ADVQNgA2kDdwN7A4IDiwOQA50DoAOyA7UDugAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAO8}, Bdsk-Url-1 = {http://scitation.aip.org/content/aip/journal/jap/107/2/10.1063/1.3289320}, Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3289320}} @article{jiang:2011, Author = {Jiang, Jin-Wu and Wang, Jian-Sheng}, Date-Added = {2016-06-26 00:54:23 +0000}, Date-Modified = {2016-06-26 00:54:32 +0000}, Doi = {http://dx.doi.org/10.1063/1.3671069}, Eid = 124319, Journal = {Journal of Applied Physics}, Number = {12}, Title = {Joule heating and thermoelectric properties in short single-walled carbon nanotubes: Electron-phonon interaction effect}, Url = {http://scitation.aip.org/content/aip/journal/jap/110/12/10.1063/1.3671069}, Volume = {110}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qe0pvdWxlIGhlYXRpbmcgYW5kIHRoZXJtb2VsZWN0cmljIHByb3BlcnRpZXMgaW4gc2hvcnQgc2luZ2xlLXdhbGxlZCBjYXJib24gbmFub3R1YmVzLSBFbGVjdHJvbi1waG9ub24gaW50ZXJhY3Rpb24gZWZmZWN0LnBkZtIXCxgZV05TLmRhdGFPEQL+AAAAAAL+AAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfSm91bGUgaGVhdGluZyBhbmQgdGgjQkUyMjIxLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL4iIdOUg6sAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANOU2AsAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBKb3VsZSBoZWF0aW5nIGFuZCB0aCNCRTIyMjEucGRmAA4A+AB7AEoAbwB1AGwAZQAgAGgAZQBhAHQAaQBuAGcAIABhAG4AZAAgAHQAaABlAHIAbQBvAGUAbABlAGMAdAByAGkAYwAgAHAAcgBvAHAAZQByAHQAaQBlAHMAIABpAG4AIABzAGgAbwByAHQAIABzAGkAbgBnAGwAZQAtAHcAYQBsAGwAZQBkACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAtACAARQBsAGUAYwB0AHIAbwBuAC0AcABoAG8AbgBvAG4AIABpAG4AdABlAHIAYQBjAHQAaQBvAG4AIABlAGYAZgBlAGMAdAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCnVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Kb3VsZSBoZWF0aW5nIGFuZCB0aGVybW9lbGVjdHJpYyBwcm9wZXJ0aWVzIGluIHNob3J0IHNpbmdsZS13YWxsZWQgY2FyYm9uIG5hbm90dWJlcy0gRWxlY3Ryb24tcGhvbm9uIGludGVyYWN0aW9uIGVmZmVjdC5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BDAERARkEGwQdBCIELQQ2BEQESARPBFgEXQRqBG0EfwSCBIcAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEiQ==}, Bdsk-Url-1 = {http://scitation.aip.org/content/aip/journal/jap/110/12/10.1063/1.3671069}, Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3671069}} @article{chen:2015, Abstract = {Abstract For carbon nanotube (CNT) networks, with increasing network density, there may be sudden changes in the properties, such as the sudden change in electrical conductivity at the electrical percolation threshold. In this paper, the change in stiffness of the \{CNT\} networks is studied and especially the existence of stiffness threshold is revealed. Two critical network densities are found to divide the stiffness behavior into three stages: zero stiffness, bending dominated and stretching dominated stages. The first critical network density is a criterion to judge whether or not the network is capable of carrying load, defined as the stiffness threshold. The second critical network density is a criterion to measure whether or not most of the \{CNTs\} in network are utilized effectively to carry load, defined as bending--stretching transitional threshold. Based on the geometric probability analysis, a theoretical methodology is set up to predict the two thresholds and explain their underlying mechanisms. The stiffness threshold is revealed to be determined by the statical determinacy of \{CNTs\} in the network, and can be estimated quantitatively by the stabilization fraction of network, a newly proposed parameter in this paper. The other threshold, bending--stretching transitional threshold, which signs the conversion of dominant deformation mode, is verified to be well evaluated by the proposed defect fraction of network. According to the theoretical analysis as well as the numerical simulation, the average intersection number on each \{CNT\} is revealed as the only dominant factor for the electrical percolation and the stiffness thresholds, it is approximately 3.7 for electrical percolation threshold, and 5.2 for the stiffness threshold of 2D networks. For 3D networks, they are 1.4 and 4.4. And it also affects the bending--stretching transitional threshold, together with the \{CNT\} aspect ratio. The average intersection number divided by the fourth root of \{CNT\} aspect ratio is found to be an invariant at the bending--stretching transitional threshold, which is 6.7 and 6.3 for 2D and 3D networks, respectively. Based on this study, a simple piecewise expression is summarized to describe the relative stiffness of \{CNT\} networks, in which the relative stiffness of networks depends on the relative network density as well as the \{CNT\} aspect ratio. This formula provides a solid theoretical foundation for the design optimization and property prediction of \{CNT\} networks. }, Author = {Yuli Chen and Fei Pan and Zaoyang Guo and Bin Liu and Jianyu Zhang}, Date-Added = {2016-06-26 00:43:19 +0000}, Date-Modified = {2016-06-26 00:43:29 +0000}, Doi = {http://dx.doi.org/10.1016/j.jmps.2015.07.016}, Issn = {0022-5096}, Journal = {Journal of the Mechanics and Physics of Solids}, Keywords = {Buckypaper}, Pages = {395 - 423}, Title = {Stiffness threshold of randomly distributed carbon nanotube networks}, Url = {http://www.sciencedirect.com/science/article/pii/S0022509615300429}, Volume = {84}, Year = {2015}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QSFN0aWZmbmVzcyB0aHJlc2hvbGQgb2YgcmFuZG9tbHkgZGlzdHJpYnV0ZWQgY2FyYm9uIG5hbm90dWJlIG5ldHdvcmtzLnBkZtIXCxgZV05TLmRhdGFPEQJkAAAAAAJkAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfU3RpZmZuZXNzIHRocmVzaG9sZCAjQkUyMTk3LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL4hl9OUgTcAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANOU1ZcAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBTdGlmZm5lc3MgdGhyZXNob2xkICNCRTIxOTcucGRmAA4AkgBIAFMAdABpAGYAZgBuAGUAcwBzACAAdABoAHIAZQBzAGgAbwBsAGQAIABvAGYAIAByAGEAbgBkAG8AbQBsAHkAIABkAGkAcwB0AHIAaQBiAHUAdABlAGQAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQAgAG4AZQB0AHcAbwByAGsAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB0VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TdGlmZm5lc3MgdGhyZXNob2xkIG9mIHJhbmRvbWx5IGRpc3RyaWJ1dGVkIGNhcmJvbiBuYW5vdHViZSBuZXR3b3Jrcy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDZAN4A5gNOA1ADVQNgA2kDdwN7A4IDiwOQA50DoAOyA7UDugAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAO8}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0022509615300429}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.jmps.2015.07.016}} @article{gspann:2015, Abstract = {Abstract Carbon nanotube (CNT) fibres, especially if perfect in terms of their purity and alignment, are extremely anisotropic. With their high axial strength but ready slippage between the CNTs, there is utmost difficulty in transferring uniformly any applied force. Finite element analysis is used to predict the stress distribution in \{CNT\} fibres loaded by grips attached to their surface, along with the resulting tensile stress--strain curves. This study demonstrates that, in accordance with St Venant's principle, very considerable length-to-diameter ratios (∼103) are required before the stress becomes uniform across the fibre, even at low strains. It is proposed that lack of perfect orientation and presence of carbonaceous material between bundles greatly enhances the stress transfer, thus increasing the load the fibre can carry before failing by shear. It is suggested that a very high strength batch of fibres previously observed experimentally had an unusually high concentration of internal particles, meaning that the pressure exerted by the grips would assist stress transfer between the layers. We conclude that the strength of \{CNT\} fibres depends on the specific testing geometries and that imperfections, whether by virtue of less-than-perfect orientation or of embedded impurities, can act as major positive contributors to the observed strength. }, Author = {Thurid S. Gspann and Nicola Montinaro and Antonio Pantano and James A. Elliott and Alan H. Windle}, Date-Added = {2016-06-26 00:37:22 +0000}, Date-Modified = {2016-06-26 00:37:36 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2015.05.065}, Issn = {0008-6223}, Journal = {Carbon}, Pages = {1021 - 1033}, Title = {Mechanical properties of carbon nanotube fibres: St Venant's principle at the limit and the role of imperfections}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622315004728}, Volume = {93}, Year = {2015}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YW8QdQBNAGUAYwBoAGEAbgBpAGMAYQBsACAAcAByAG8AcABlAHIAdABpAGUAcwAgAG8AZgAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlACAAZgBpAGIAcgBlAHMALQAgAFMAdAAgAFYAZQBuAGEAbgB0IBkAcwAgAHAAcgBpAG4AYwBpAHAAbABlACAAYQB0ACAAdABoAGUAIABsAGkAbQBpAHQAIABhAG4AZAAgAHQAaABlACAAcgBvAGwAZQAgAG8AZgAgAGkAbQBwAGUAcgBmAGUAYwB0AGkAbwBuAHMALgBwAGQAZtIXCxgZV05TLmRhdGFPEQLuAAAAAALuAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfTWVjaGFuaWNhbCBwcm9wZXJ0aWUjQkUyMEZBLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL4g+tOUf7QAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANOU1BQAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBNZWNoYW5pY2FsIHByb3BlcnRpZSNCRTIwRkEucGRmAA4A7AB1AE0AZQBjAGgAYQBuAGkAYwBhAGwAIABwAHIAbwBwAGUAcgB0AGkAZQBzACAAbwBmACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABmAGkAYgByAGUAcwAtACAAUwB0ACAAVgBlAG4AYQBuAHQgGQBzACAAcAByAGkAbgBjAGkAcABsAGUAIABhAHQAIAB0AGgAZQAgAGwAaQBtAGkAdAAgAGEAbgBkACAAdABoAGUAIAByAG8AbABlACAAbwBmACAAaQBtAHAAZQByAGYAZQBjAHQAaQBvAG4AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCjVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NZWNoYW5pY2FsIHByb3BlcnRpZXMgb2YgY2FyYm9uIG5hbm90dWJlIGZpYnJlcy0gU3QgVmVuYW504oCZcyBwcmluY2lwbGUgYXQgdGhlIGxpbWl0IGFuZCB0aGUgcm9sZSBvZiBpbXBlcmZlY3Rpb25zLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgF7AYABiAR6BHwEgQSMBJUEowSnBK4EtwS8BMkEzATeBOEE5gAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAATo}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622315004728}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2015.05.065}} @article{lee:1999, Abstract = {Aligned carbon nanotubes have been synthesized on transition metal-coated silicon substrates with \{C2H2\} using thermal chemical vapor deposition. It was found that nanotubes can be mostly vertically aligned on a large area of plain Si substrates when the density of metal domains reaches a certain value. Pretreatment of Co--Ni alloy by \{HF\} dipping and etching with \{NH3\} gas prior to the synthesis is crucial for vertical alignment. Steric hindrance between nanotubes at an initial stage of growth forces nanotubes to align vertically. Nanotubes are grown by a catalyst-cap growth mechanism. Applications to field emission displays are demonstrated with emission patterns. }, Author = {Cheol Jin Lee and Dae Woon Kim and Tae Jae Lee and Young Chul Choi and Young Soo Park and Young Hee Lee and Won Bong Choi and Nae Sung Lee and Gyeong-Su Park and Jong Min Kim}, Date-Added = {2016-06-21 00:31:12 +0000}, Date-Modified = {2016-06-21 00:31:20 +0000}, Doi = {http://dx.doi.org/10.1016/S0009-2614(99)01074-X}, Issn = {0009-2614}, Journal = {Chemical Physics Letters}, Number = {5--6}, Pages = {461 - 468}, Title = {Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition}, Url = {http://www.sciencedirect.com/science/article/pii/S000926149901074X}, Volume = {312}, Year = {1999}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUVN5bnRoZXNpcyBvZiBhbGlnbmVkIGNhcmJvbiBuYW5vdHViZXMgdXNpbmcgdGhlcm1hbCBjaGVtaWNhbCB2YXBvciBkZXBvc2l0aW9uLnBkZtIXCxgZV05TLmRhdGFPEQKAAAAAAAKAAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfU3ludGhlc2lzIG9mIGFsaWduZWQjQkQzQjM5LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL07OdON5pUAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANOOOvUAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBTeW50aGVzaXMgb2YgYWxpZ25lZCNCRDNCMzkucGRmAA4ApABRAFMAeQBuAHQAaABlAHMAaQBzACAAbwBmACAAYQBsAGkAZwBuAGUAZAAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlAHMAIAB1AHMAaQBuAGcAIAB0AGgAZQByAG0AYQBsACAAYwBoAGUAbQBpAGMAYQBsACAAdgBhAHAAbwByACAAZABlAHAAbwBzAGkAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB9VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TeW50aGVzaXMgb2YgYWxpZ25lZCBjYXJib24gbmFub3R1YmVzIHVzaW5nIHRoZXJtYWwgY2hlbWljYWwgdmFwb3IgZGVwb3NpdGlvbi5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A4gDnAO8DcwN1A3oDhQOOA5wDoAOnA7ADtQPCA8UD1wPaA98AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD4Q==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S000926149901074X}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0009-2614(99)01074-X}} @article{lee:jin:2001, Abstract = {The diameter and the growth rate of vertically aligned carbon nanotubes (CNTs) are controlled by modulating the size of catalytic particles using thermal chemical vapor deposition (CVD). The size of iron catalytic particles deposited on silicon oxide substrate is varied in a controlled manner by adjusting the condition of ammonia pretreatment. We found an inverse relation between the diameter and growth rate of carbon nanotubes. As the diameter increases, the compartment layers of bamboo-shaped carbon nanotubes appear more frequently, which is suitably explained by the base growth mechanism. }, Author = {Cheol Jin Lee and Seung Chul Lyu and Young Rae Cho and Jin Ho Lee and Kyoung Ik Cho}, Date-Added = {2016-06-21 00:27:04 +0000}, Date-Modified = {2016-06-21 00:27:38 +0000}, Doi = {http://dx.doi.org/10.1016/S0009-2614(01)00481-X}, Issn = {0009-2614}, Journal = {Chemical Physics Letters}, Number = {3--4}, Pages = {245 - 249}, Title = {Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition}, Url = {http://www.sciencedirect.com/science/article/pii/S000926140100481X}, Volume = {341}, Year = {2001}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QWkRpYW1ldGVyLWNvbnRyb2xsZWQgZ3Jvd3RoIG9mIGNhcmJvbiBuYW5vdHViZXMgdXNpbmcgdGhlcm1hbCBjaGVtaWNhbCB2YXBvciBkZXBvc2l0aW9uLnBkZtIXCxgZV05TLmRhdGFPEQKaAAAAAAKaAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfRGlhbWV0ZXItY29udHJvbGxlZCAjQkQzOUM4LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL05yNON5SwAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANOOOYwAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBEaWFtZXRlci1jb250cm9sbGVkICNCRDM5QzgucGRmAA4AtgBaAEQAaQBhAG0AZQB0AGUAcgAtAGMAbwBuAHQAcgBvAGwAbABlAGQAIABnAHIAbwB3AHQAaAAgAG8AZgAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlAHMAIAB1AHMAaQBuAGcAIAB0AGgAZQByAG0AYQBsACAAYwBoAGUAbQBpAGMAYQBsACAAdgBhAHAAbwByACAAZABlAHAAbwBzAGkAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCGVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9EaWFtZXRlci1jb250cm9sbGVkIGdyb3d0aCBvZiBjYXJib24gbmFub3R1YmVzIHVzaW5nIHRoZXJtYWwgY2hlbWljYWwgdmFwb3IgZGVwb3NpdGlvbi5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDrAPAA+AOWA5gDnQOoA7EDvwPDA8oD0wPYA+UD6AP6A/0EAgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQE}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S000926140100481X}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0009-2614(01)00481-X}} @article{lee:2001, Abstract = {Vertically aligned carbon nanotubes (CNTs) are grown on iron-deposited silicon oxide substrates by thermal chemical vapor deposition (CVD) of acetylene gas at the temperature range 750--950$\,^{\circ}$C. As the growth temperature increases from 750$\,^{\circ}$C to 950$\,^{\circ}$C, the growth rate increases by four times and the average diameter also increases from 30 nm to 130 nm while the density decreases by a factor of about two. The relative amount of crystalline graphitic sheets increases progressively with the growth temperature and a higher degree of crystalline perfection can be achieved at 950$\,^{\circ}$C. This result demonstrates that the growth rate, diameter, density, and crystallinity of \{CNT\} can be controlled with the growth temperature. }, Author = {Cheol Jin Lee and Jeunghee Park and Yoon Huh and Jeong Yong Lee}, Date-Added = {2016-06-21 00:19:52 +0000}, Date-Modified = {2016-06-21 00:20:02 +0000}, Doi = {http://dx.doi.org/10.1016/S0009-2614(01)00680-7}, Issn = {0009-2614}, Journal = {Chemical Physics Letters}, Number = {1--2}, Pages = {33 - 38}, Title = {Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition}, Url = {http://www.sciencedirect.com/science/article/pii/S0009261401006807}, Volume = {343}, Year = {2001}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QYFRlbXBlcmF0dXJlIGVmZmVjdCBvbiB0aGUgZ3Jvd3RoIG9mIGNhcmJvbiBuYW5vdHViZXMgdXNpbmcgdGhlcm1hbCBjaGVtaWNhbCB2YXBvciBkZXBvc2l0aW9uLnBkZtIXCxgZV05TLmRhdGFPEQKsAAAAAAKsAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfVGVtcGVyYXR1cmUgZWZmZWN0IG8jQkQzOTZCLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL05a9ON5B0AAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANOOOH0AAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBUZW1wZXJhdHVyZSBlZmZlY3QgbyNCRDM5NkIucGRmAA4AwgBgAFQAZQBtAHAAZQByAGEAdAB1AHIAZQAgAGUAZgBmAGUAYwB0ACAAbwBuACAAdABoAGUAIABnAHIAbwB3AHQAaAAgAG8AZgAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlAHMAIAB1AHMAaQBuAGcAIAB0AGgAZQByAG0AYQBsACAAYwBoAGUAbQBpAGMAYQBsACAAdgBhAHAAbwByACAAZABlAHAAbwBzAGkAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCMVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UZW1wZXJhdHVyZSBlZmZlY3Qgb24gdGhlIGdyb3d0aCBvZiBjYXJib24gbmFub3R1YmVzIHVzaW5nIHRoZXJtYWwgY2hlbWljYWwgdmFwb3IgZGVwb3NpdGlvbi5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDxAPYA/gOuA7ADtQPAA8kD1wPbA+ID6wPwA/0EAAQSBBUEGgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQc}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0009261401006807}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0009-2614(01)00680-7}} @article{lee:2002, Abstract = {The catalyst effect on the synthesis of carbon nanotubes (CNTs) using thermal chemical vapor deposition (CVD) was investigated. The respective growth rate of \{CNTs\} shows that the performance of catalysts is in the order of nickel (Ni)>cobalt (Co)>iron (Fe). The average diameter of \{CNTs\} follows the sequence of Fe, Co, and Ni catalysts. The structure of \{CNTs\} reveals almost same morphology regardless of catalyst but the crystallinity of \{CNTs\} is largely dependent on catalyst. The crystallinity of \{CNTs\} synthesized from Fe catalyst is higher than that from Ni or Co catalyst. The results indicate that the growth rate, the diameter, and the crystallinity can be manipulated by the selection of the catalyst. }, Author = {Cheol Jin Lee and Jeunghee Park and Jeong A Yu}, Date-Added = {2016-06-21 00:18:06 +0000}, Date-Modified = {2016-06-21 00:18:20 +0000}, Doi = {http://dx.doi.org/10.1016/S0009-2614(02)00831-X}, Issn = {0009-2614}, Journal = {Chemical Physics Letters}, Number = {3--4}, Pages = {250 - 255}, Title = {Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition}, Url = {http://www.sciencedirect.com/science/article/pii/S000926140200831X}, Volume = {360}, Year = {2002}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QWENhdGFseXN0IGVmZmVjdCBvbiBjYXJib24gbmFub3R1YmVzIHN5bnRoZXNpemVkIGJ5IHRoZXJtYWwgY2hlbWljYWwgdmFwb3IgZGVwb3NpdGlvbi5wZGbSFwsYGVdOUy5kYXRhTxEClAAAAAAClAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0NhdGFseXN0IGVmZmVjdCBvbiBjI0JEMzg1Ri5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC9OF/TjeOcAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTjjf8AAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAQ2F0YWx5c3QgZWZmZWN0IG9uIGMjQkQzODVGLnBkZgAOALIAWABDAGEAdABhAGwAeQBzAHQAIABlAGYAZgBlAGMAdAAgAG8AbgAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlAHMAIABzAHkAbgB0AGgAZQBzAGkAegBlAGQAIABiAHkAIAB0AGgAZQByAG0AYQBsACAAYwBoAGUAbQBpAGMAYQBsACAAdgBhAHAAbwByACAAZABlAHAAbwBzAGkAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCEVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9DYXRhbHlzdCBlZmZlY3Qgb24gY2FyYm9uIG5hbm90dWJlcyBzeW50aGVzaXplZCBieSB0aGVybWFsIGNoZW1pY2FsIHZhcG9yIGRlcG9zaXRpb24ucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A6QDuAPYDjgOQA5UDoAOpA7cDuwPCA8sD0APdA+AD8gP1A/oAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD/A==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S000926140200831X}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0009-2614(02)00831-X}} @article{caschera:2011, Abstract = {The properties of diamond-like carbon (DLC) are strongly affected by the amount of carbon atoms bonded in sp2 and sp3 electronic hybridizations. Also the amount of incorporated hydrogen and oxygen plays an important role in the final properties of \{DLC\} films. Usually, the structure and chemical composition of thin \{DLC\} films can be changed by varying the deposition parameters. Therefore, the influence of \{PECVD\} process parameters on the properties of \{DLC\} films, grown on Si substrates, was investigated in this work. Thin \{DLC\} films were deposited in a CH4/H2 plasma by using Ar as a gas carrier. Different ratios of gas flows were used as a variable parameter of the \{PECVD\} process. The effect of cathodic ion bombardment was also investigated. The chemical composition of \{DLC\} specimens was studied by X-ray photoelectron spectroscopy (XPS). The ratio of carbon in sp2 and sp3 hybridizations was determined by analyzing the first derivative of Auger C \{KLL\} spectra. These results were also confirmed by the measurements of electrical resistivity. The changes of surface morphology and microadhesion were analyzed by Atomic Force Microscopy (AFM). }, Author = {D. Caschera and P. Cossari and F. Federici and S. Kaciulis and A. Mezzi and G. Padeletti and D.M. Trucchi}, Date-Added = {2016-06-10 04:54:37 +0000}, Date-Modified = {2016-06-10 04:54:49 +0000}, Doi = {http://dx.doi.org/10.1016/j.tsf.2011.01.197}, Issn = {0040-6090}, Journal = {Thin Solid Films}, Keywords = {Electrical resistivity}, Note = {Carbon- or Nitrogen-Containing Nanostructured Composite Films}, Number = {12}, Pages = {4087 - 4091}, Title = {Influence of \{PECVD\} parameters on the properties of diamond-like carbon films}, Url = {http://www.sciencedirect.com/science/article/pii/S0040609011002562}, Volume = {519}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUEluZmx1ZW5jZSBvZiBQRUNWRCBwYXJhbWV0ZXJzIG9uIHRoZSBwcm9wZXJ0aWVzIG9mIGRpYW1vbmQtbGlrZSBjYXJib24gZmlsbXMucGRm0hcLGBlXTlMuZGF0YU8RAnwAAAAAAnwAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9JbmZsdWVuY2Ugb2YgUEVDVkQgcCM5MEU5MjEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkOkh0wzyiQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA0w1G6QAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEluZmx1ZW5jZSBvZiBQRUNWRCBwIzkwRTkyMS5wZGYADgCiAFAASQBuAGYAbAB1AGUAbgBjAGUAIABvAGYAIABQAEUAQwBWAEQAIABwAGEAcgBhAG0AZQB0AGUAcgBzACAAbwBuACAAdABoAGUAIABwAHIAbwBwAGUAcgB0AGkAZQBzACAAbwBmACAAZABpAGEAbQBvAG4AZAAtAGwAaQBrAGUAIABjAGEAcgBiAG8AbgAgAGYAaQBsAG0AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB8VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9JbmZsdWVuY2Ugb2YgUEVDVkQgcGFyYW1ldGVycyBvbiB0aGUgcHJvcGVydGllcyBvZiBkaWFtb25kLWxpa2UgY2FyYm9uIGZpbG1zLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOEA5gDuA24DcAN1A4ADiQOXA5sDogOrA7ADvQPAA9ID1QPaAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA9w=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0040609011002562}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.tsf.2011.01.197}} @article{wang:2010, Author = {Wang, X. J. and Wang, L. P. and Adewuyi, O. S. and Cola, B. A. and Zhang, Z. M.}, Date-Added = {2016-06-07 23:13:57 +0000}, Date-Modified = {2016-06-07 23:14:04 +0000}, Doi = {http://dx.doi.org/10.1063/1.3502597}, Eid = 163116, Journal = {Applied Physics Letters}, Number = {16}, Title = {Highly specular carbon nanotube absorbers}, Url = {http://scitation.aip.org/content/aip/journal/apl/97/16/10.1063/1.3502597}, Volume = {97}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QLUhpZ2hseSBzcGVjdWxhciBjYXJib24gbmFub3R1YmUgYWJzb3JiZXJzLnBkZtIXCxgZV05TLmRhdGFPEQIUAAAAAAIUAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfSGlnaGx5IHNwZWN1bGFyIGNhcmIjQjk1NzA0LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALlXBNN8sSAAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANN9BYAAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBIaWdobHkgc3BlY3VsYXIgY2FyYiNCOTU3MDQucGRmAA4AXAAtAEgAaQBnAGgAbAB5ACAAcwBwAGUAYwB1AGwAYQByACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABhAGIAcwBvAHIAYgBlAHIAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBZVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9IaWdobHkgc3BlY3VsYXIgY2FyYm9uIG5hbm90dWJlIGFic29yYmVycy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4AvgDDAMsC4wLlAuoC9QL+AwwDEAMXAyADJQMyAzUDRwNKA08AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADUQ==}, Bdsk-Url-1 = {http://scitation.aip.org/content/aip/journal/apl/97/16/10.1063/1.3502597}, Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3502597}} @article{jang:2002, Abstract = {In silicon surface micromachining, anhydrous HF GPE process was verified as a very effective method for the dry release of microstructures. The developed gas-phase etching (GPE) process with anhydrous hydrogen fluoride (HF) gas and alcoholic vapor such as methanol, isopropyl alcohol (IPA) was characterized and its selective etching properties were discussed. The structural layers are P-doped multi-stacked polysilicon and silicon-on-insulator (SOI) substrates and sacrificial layers are tetraethylorthosilicate (TEOS), low-temperature oxide (LTO), plasma enhanced chemical vapor deposition (PECVD) oxide, phosphosilicate glass (PSG) and thermal oxides on silicon nitride or polysilicon substrates. We successfully fabricated and characterized micro electro mechanical system (MEMS) devices with no virtually process-induced stiction and no residues. The characteristics of the MEMS devices for microsensor and microactuator, microfluidic elements and optical MEMS application were evaluated by experiment.}, Author = {Won Ick Jang and Chang Auck Choi and Myung Lae Lee and Chi Hoon Jun and Youn Tae Kim}, Date-Added = {2016-06-07 16:53:20 +0000}, Date-Modified = {2016-06-07 16:53:27 +0000}, Journal = {Journal of Micromechanics and Microengineering}, Number = {3}, Pages = {297}, Title = {Fabrication of MEMS devices by using anhydrous HF gas-phase etching with alcoholic vapor}, Url = {http://stacks.iop.org/0960-1317/12/i=3/a=316}, Volume = {12}, Year = {2002}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QXEZhYnJpY2F0aW9uIG9mIE1FTVMgZGV2aWNlcyBieSB1c2luZyBhbmh5ZHJvdXMgSEYgZ2FzLXBoYXNlIGV0Y2hpbmcgd2l0aCBhbGNvaG9saWMgdmFwb3IucGRm0hcLGBlXTlMuZGF0YU8RAqAAAAAAAqAAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9GYWJyaWNhdGlvbiBvZiBNRU1TICNCNzFDNkMucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtxxs03xYAgAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA03ysYgAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEZhYnJpY2F0aW9uIG9mIE1FTVMgI0I3MUM2Qy5wZGYADgC6AFwARgBhAGIAcgBpAGMAYQB0AGkAbwBuACAAbwBmACAATQBFAE0AUwAgAGQAZQB2AGkAYwBlAHMAIABiAHkAIAB1AHMAaQBuAGcAIABhAG4AaAB5AGQAcgBvAHUAcwAgAEgARgAgAGcAYQBzAC0AcABoAGEAcwBlACAAZQB0AGMAaABpAG4AZwAgAHcAaQB0AGgAIABhAGwAYwBvAGgAbwBsAGkAYwAgAHYAYQBwAG8AcgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCIVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9GYWJyaWNhdGlvbiBvZiBNRU1TIGRldmljZXMgYnkgdXNpbmcgYW5oeWRyb3VzIEhGIGdhcy1waGFzZSBldGNoaW5nIHdpdGggYWxjb2hvbGljIHZhcG9yLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAO0A8gD6A54DoAOlA7ADuQPHA8sD0gPbA+AD7QPwBAIEBQQKAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABAw=}, Bdsk-Url-1 = {http://stacks.iop.org/0960-1317/12/i=3/a=316}} @article{zaumseil:2003, Abstract = { This letter describes the use of nanotransfer printing (nTP) for forming three-dimensional (3D) structures with feature sizes between tens of nanometers and tens of microns over areas of several square millimeters. We demonstrate three different approaches−deep etching through printed hard masks, direct transfer of three-dimensional structures, and purely additive fabrication of multilayer stacks−for using nTP to fabricate a range of complex 3D nanostructures, including closed channels, suspended beams, and nanochannel stacks, that would be difficult or impossible to build with other methods. }, Author = {Jana Zaumseil,† and Matthew A. Meitl,‡ and Julia W. P. Hsu,† and Bharat R. Acharya,† and Kirk W. Baldwin,† and Yueh-Lin Loo,†,{\S} and and John A. Rogers*,†,‡}, Date-Added = {2016-06-06 21:40:58 +0000}, Date-Modified = {2016-06-06 21:41:08 +0000}, Doi = {10.1021/nl0344007}, Eprint = {http://dx.doi.org/10.1021/nl0344007}, Journal = {Nano Letters}, Number = {9}, Pages = {1223-1227}, Title = {Three-Dimensional and Multilayer Nanostructures Formed by Nanotransfer Printing}, Url = {http://dx.doi.org/10.1021/nl0344007}, Volume = {3}, Year = {2003}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QU1RocmVlLURpbWVuc2lvbmFsIGFuZCBNdWx0aWxheWVyIE5hbm9zdHJ1Y3R1cmVzIEZvcm1lZCBieSBOYW5vdHJhbnNmZXIgUHJpbnRpbmcucGRm0hcLGBlXTlMuZGF0YU8RAoYAAAAAAoYAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9UaHJlZS1EaW1lbnNpb25hbCBhbiNCMzk4NjkucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs5hp03tJ4gAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA03ueQgAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFRocmVlLURpbWVuc2lvbmFsIGFuI0IzOTg2OS5wZGYADgCoAFMAVABoAHIAZQBlAC0ARABpAG0AZQBuAHMAaQBvAG4AYQBsACAAYQBuAGQAIABNAHUAbAB0AGkAbABhAHkAZQByACAATgBhAG4AbwBzAHQAcgB1AGMAdAB1AHIAZQBzACAARgBvAHIAbQBlAGQAIABiAHkAIABOAGEAbgBvAHQAcgBhAG4AcwBmAGUAcgAgAFAAcgBpAG4AdABpAG4AZwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB/VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaHJlZS1EaW1lbnNpb25hbCBhbmQgTXVsdGlsYXllciBOYW5vc3RydWN0dXJlcyBGb3JtZWQgYnkgTmFub3RyYW5zZmVyIFByaW50aW5nLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDkAOkA8QN7A30DggONA5YDpAOoA68DuAO9A8oDzQPfA+ID5wAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAPp}, Bdsk-Url-1 = {http://dx.doi.org/10.1021/nl0344007}} @article{jackman:1998, Abstract = {Two concepts for use in the fabrication of three-dimensional (3D) microstructures with complex topologies are described. Both routes begin with a two-dimensional (2D) pattern and transform it into a 3D microstructure. The concepts are illustrated by use of soft lithographic techniques to transfer 2D patterns to cylindrical (pseudo-3D) substrates. Subsequent steps{\textemdash}application of uniaxial strain, connection of patterns on intersecting surfaces{\textemdash}transform these patterns into free-standing, 3D, noncylindrically symmetrical microstructures. Microelectrodeposition provides an additive method that strengthens thin metal designs produced by patterning, welds nonconnected structures, and enables the high-strain deformations required in one method to be carried out successfully.}, Author = {Jackman, Rebecca J. and Brittain, Scott T. and Adams, Allan and Prentiss, Mara G. and Whitesides, George M.}, Date-Added = {2016-06-06 21:37:58 +0000}, Date-Modified = {2016-06-06 21:38:08 +0000}, Doi = {10.1126/science.280.5372.2089}, Eprint = {http://science.sciencemag.org/content/280/5372/2089.full.pdf}, Issn = {0036-8075}, Journal = {Science}, Number = {5372}, Pages = {2089--2091}, Publisher = {American Association for the Advancement of Science}, Title = {Design and Fabrication of Topologically Complex, Three-Dimensional Microstructures}, Url = {http://science.sciencemag.org/content/280/5372/2089}, Volume = {280}, Year = {1998}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QaS4uLy4uLy4uL0Rvd25sb2Fkcy9kZXNpZ24tYW5kLWZhYnJpY2F0aW9uLW9mLXRvcG9sb2dpY2FsbHktY29tcGxleCwtdGhyZWUtZGltZW5zaW9uYWwtbWljcm9zdHJ1Y3R1cmVzLmJpYtIXCxgZV05TLmRhdGFPEQJWAAAAAAJWAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPs8kfZGVzaWduLWFuZC1mYWJyaWNhdGkjQjM5NDdELmJpYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALOUfdN7SUYAAAAAAAAAAAADAAIAAAkgAAAAAAAAAAAAAAAAAAAACURvd25sb2FkcwAAEAAIAADRqs8IAAAAEQAIAADTe52mAAAAAQAMAA+zyQAPocAAD6G8AAIAQEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb3dubG9hZHM6AGRlc2lnbi1hbmQtZmFicmljYXRpI0IzOTQ3RC5iaWIADgCuAFYAZABlAHMAaQBnAG4ALQBhAG4AZAAtAGYAYQBiAHIAaQBjAGEAdABpAG8AbgAtAG8AZgAtAHQAbwBwAG8AbABvAGcAaQBjAGEAbABsAHkALQBjAG8AbQBwAGwAZQB4ACwALQB0AGgAcgBlAGUALQBkAGkAbQBlAG4AcwBpAG8AbgBhAGwALQBtAGkAYwByAG8AcwB0AHIAdQBjAHQAdQByAGUAcwAuAGIAaQBiAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBsVXNlcnMvamFzb24vRG93bmxvYWRzL2Rlc2lnbi1hbmQtZmFicmljYXRpb24tb2YtdG9wb2xvZ2ljYWxseS1jb21wbGV4LC10aHJlZS1kaW1lbnNpb25hbC1taWNyb3N0cnVjdHVyZXMuYmliABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A+gD/AQcDYQNjA2gDcwN8A4oDjgOVA54DowOwA7MDxQPIA80AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADzw==}, Bdsk-Url-1 = {http://science.sciencemag.org/content/280/5372/2089}, Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.280.5372.2089}} @article{zakharov:2014, Author = {Zakharov,Dmitri N. and Bewedy,Mostafa and Czarnik,Cory and John Hart,A. and Misawa,Shigeki and Stach,Eric A.}, Date-Added = {2016-05-26 20:08:24 +0000}, Date-Modified = {2016-05-26 20:08:35 +0000}, Doi = {10.1017/S1431927614009490}, Issn = {1435-8115}, Issue = {Supplement S3}, Journal = {Microscopy and Microanalysis}, Month = {8}, Numpages = {2}, Pages = {1552--1553}, Title = {Fast Imaging of Carbon Nanotube Nucleation and Growth Processes using Environmental TEM}, Url = {http://journals.cambridge.org/article_S1431927614009490}, Volume = {20}, Year = {2014}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QW0Zhc3QgaW1hZ2luZyBvZiBjYXJib24gbmFub3R1YmUgbnVjbGVhdGlvbiBhbmQgZ3Jvd3RoIHByb2Nlc3NlcyB1c2luZyBlbnZpcm9ubWVudGFsIFRFTS5wZGbSFwsYGVdOUy5kYXRhTxECngAAAAACngACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0Zhc3QgaW1hZ2luZyBvZiBjYXJiI0FGQkY5Qy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACvv5zTbLO9AAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTbQgdAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToARmFzdCBpbWFnaW5nIG9mIGNhcmIjQUZCRjlDLnBkZgAOALgAWwBGAGEAcwB0ACAAaQBtAGEAZwBpAG4AZwAgAG8AZgAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlACAAbgB1AGMAbABlAGEAdABpAG8AbgAgAGEAbgBkACAAZwByAG8AdwB0AGgAIABwAHIAbwBjAGUAcwBzAGUAcwAgAHUAcwBpAG4AZwAgAGUAbgB2AGkAcgBvAG4AbQBlAG4AdABhAGwAIABUAEUATQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCHVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9GYXN0IGltYWdpbmcgb2YgY2FyYm9uIG5hbm90dWJlIG51Y2xlYXRpb24gYW5kIGdyb3d0aCBwcm9jZXNzZXMgdXNpbmcgZW52aXJvbm1lbnRhbCBURU0ucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOwA8QD5A5sDnQOiA60DtgPEA8gDzwPYA90D6gPtA/8EAgQHAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABAk=}, Bdsk-Url-1 = {http://journals.cambridge.org/article_S1431927614009490}, Bdsk-Url-2 = {http://dx.doi.org/10.1017/S1431927614009490}} @Article{volder:2014, author = {De Volder, M. and Park, S. and Tawfick, S. and Hart, A. J.}, title = {Strain-engineered manufacturing of freeform carbon nanotube microstructures}, journal = {Nature Communications}, year = {2014}, volume = {5}, month = {07}, abstract = {The skins of many plants and animals have intricate microscale surface features that give rise to properties such as directed water repellency and adhesion, camouflage, and resistance to fouling. However, engineered mimicry of these designs has been restrained by the limited capabilities of top--down fabrication processes. Here we demonstrate a new technique for scalable manufacturing of freeform microstructures via strain-engineered growth of aligned carbon nanotubes (CNTs). Offset patterning of the CNT growth catalyst is used to locally modulate the CNT growth rate. This causes the CNTs to collectively bend during growth, with exceptional uniformity over large areas. The final shape of the curved CNT microstructures can be designed via finite element modeling, and compound catalyst shapes produce microstructures with multidirectional curvature and unusual self-organized patterns. Conformal coating of the CNTs enables tuning of the mechanical properties independently from the microstructure geometry, representing a versatile principle for design and manufacturing of complex microstructured surfaces.}, annote = {Supplementary information available for this article at http://www.nature.com/ncomms/2014/140729/ncomms5512/suppinfo/ncomms5512{\_}S1.html}, bdsk-file-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUCBTdHJhaW4tZW5naW5lZXJlZCBtYW51ZmFjdHVyaW5nIG9mIGZyZWVmb3JtIGNhcmJvbiBuYW5vdHViZSBtaWNyb3N0cnVjdHVyZXMucGRm0hcLGBlXTlMuZGF0YU8RAnwAAAAAAnwAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB8gU3RyYWluLWVuZ2luZWVyZWQgbSNBRkJCQjIucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAr7uy02yyPgAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA020GngAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6ACBTdHJhaW4tZW5naW5lZXJlZCBtI0FGQkJCMi5wZGYADgCiAFAAIABTAHQAcgBhAGkAbgAtAGUAbgBnAGkAbgBlAGUAcgBlAGQAIABtAGEAbgB1AGYAYQBjAHQAdQByAGkAbgBnACAAbwBmACAAZgByAGUAZQBmAG8AcgBtACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABtAGkAYwByAG8AcwB0AHIAdQBjAHQAdQByAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB8VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS8gU3RyYWluLWVuZ2luZWVyZWQgbWFudWZhY3R1cmluZyBvZiBmcmVlZm9ybSBjYXJib24gbmFub3R1YmUgbWljcm9zdHJ1Y3R1cmVzLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOEA5gDuA24DcAN1A4ADiQOXA5sDogOrA7ADvQPAA9ID1QPaAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA9w=}, bdsk-url-1 = {http://dx.doi.org/10.1038/ncomms5512}, date = {2014/07/29/online}, date-added = {2016-05-26 20:03:43 +0000}, date-modified = {2016-05-26 20:03:43 +0000}, day = {29}, l3 = {10.1038/ncomms5512}, m3 = {Article}, publisher = {Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.}, ty = {JOUR}, url = {http://dx.doi.org/10.1038/ncomms5512}, } @article{futaba:2012, Abstract = {We present a rational field emitter array architecture composed of thin multi-walled carbon nanotube ``loops'' which simultaneously satisfies the important requirements for practical applications. We achieved low turn-on voltage (1.27 V/μm for 10 μA/cm2 emission), high enhancement factor (2400), uniformity, and long-term emission stability exceeding 10,000 h at 1 mA/cm2, where each of the values approaches or exceeds the highest reported values to date for field emission arrays. }, Author = {Don N. Futaba and Hiroe Kimura and Bin Zhao and Takeo Yamada and Hiroyuki Kurachi and Sashiro Uemura and Kenji Hata}, Date-Added = {2016-05-26 19:25:01 +0000}, Date-Modified = {2016-05-26 19:25:11 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2012.02.043}, Issn = {0008-6223}, Journal = {Carbon}, Number = {8}, Pages = {2796 - 2803}, Title = {Carbon nanotube loop arrays for low-operational power, high uniformity field emission with long-term stability}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622312001777}, Volume = {50}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QckNhcmJvbiBuYW5vdHViZSBsb29wIGFycmF5cyBmb3IgbG93LW9wZXJhdGlvbmFsIHBvd2VyLCBoaWdoIHVuaWZvcm1pdHkgZmllbGQgZW1pc3Npb24gd2l0aCBsb25nLXRlcm0gc3RhYmlsaXR5LnBkZtIXCxgZV05TLmRhdGFPEQLiAAAAAALiAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfQ2FyYm9uIG5hbm90dWJlIGxvb3AjQUY5MUFBLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK+RqtNsqZMAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNs/fMAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBDYXJib24gbmFub3R1YmUgbG9vcCNBRjkxQUEucGRmAA4A5gByAEMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlACAAbABvAG8AcAAgAGEAcgByAGEAeQBzACAAZgBvAHIAIABsAG8AdwAtAG8AcABlAHIAYQB0AGkAbwBuAGEAbAAgAHAAbwB3AGUAcgAsACAAaABpAGcAaAAgAHUAbgBpAGYAbwByAG0AaQB0AHkAIABmAGkAZQBsAGQAIABlAG0AaQBzAHMAaQBvAG4AIAB3AGkAdABoACAAbABvAG4AZwAtAHQAZQByAG0AIABzAHQAYQBiAGkAbABpAHQAeQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCeVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9DYXJib24gbmFub3R1YmUgbG9vcCBhcnJheXMgZm9yIGxvdy1vcGVyYXRpb25hbCBwb3dlciwgaGlnaCB1bmlmb3JtaXR5IGZpZWxkIGVtaXNzaW9uIHdpdGggbG9uZy10ZXJtIHN0YWJpbGl0eS5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgEDAQgBEAP2A/gD/QQIBBEEHwQjBCoEMwQ4BEUESARaBF0EYgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAARk}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622312001777}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2012.02.043}} @article{yamada:2012, Abstract = { We report a general approach to overcome the enormous obstacle of the integration of CNTs into devices by bonding single-walled carbon nanotubes (SWNTs) films to arbitrary substrates and transferring them into densified and lithographically processable ``CNT wafers''. Our approach allows hierarchical layer-by-layer assembly of SWNTs into organized three-dimensional structures, for example, bidirectional islands, crossbar arrays with and without contacts on Si, and flexible substrates. These organized SWNT structures can be integrated with low-power resistive random-access memory. }, Author = {Takeo Yamada and Natsumi Makiomoto and Atsuko Sekiguchi and Yuki Yamamoto and Kazufumi Kobashi and Yuhei Hayamizu and Yoshiki Yomogida and Hiroyuki Tanaka and Hisashi Shima and Hiroyuki Akinaga and Don N. Futaba and Kenji Hata}, Date-Added = {2016-05-26 19:22:29 +0000}, Date-Modified = {2016-05-26 19:22:37 +0000}, Doi = {10.1021/nl3016472}, Eprint = {http://dx.doi.org/10.1021/nl3016472}, Journal = {Nano Letters}, Note = {PMID: 22889469}, Number = {9}, Pages = {4540-4545}, Title = {Hierarchical Three-Dimensional Layer-by-Layer Assembly of Carbon Nanotube Wafers for Integrated Nanoelectronic Devices}, Url = {http://dx.doi.org/10.1021/nl3016472}, Volume = {12}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QekhpZXJhcmNoaWNhbCBUaHJlZS1EaW1lbnNpb25hbCBMYXllci1ieS1MYXllciBBc3NlbWJseSBvZiBDYXJib24gTmFub3R1YmUgV2FmZXJzIGZvciBJbnRlZ3JhdGVkIE5hbm9lbGVjdHJvbmljIERldmljZXMucGRm0hcLGBlXTlMuZGF0YU8RAvoAAAAAAvoAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9IaWVyYXJjaGljYWwgVGhyZWUtRCNBRjkwMUIucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAr5Ab02yo9gAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA02z9VgAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEhpZXJhcmNoaWNhbCBUaHJlZS1EI0FGOTAxQi5wZGYADgD2AHoASABpAGUAcgBhAHIAYwBoAGkAYwBhAGwAIABUAGgAcgBlAGUALQBEAGkAbQBlAG4AcwBpAG8AbgBhAGwAIABMAGEAeQBlAHIALQBiAHkALQBMAGEAeQBlAHIAIABBAHMAcwBlAG0AYgBsAHkAIABvAGYAIABDAGEAcgBiAG8AbgAgAE4AYQBuAG8AdAB1AGIAZQAgAFcAYQBmAGUAcgBzACAAZgBvAHIAIABJAG4AdABlAGcAcgBhAHQAZQBkACAATgBhAG4AbwBlAGwAZQBjAHQAcgBvAG4AaQBjACAARABlAHYAaQBjAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCmVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9IaWVyYXJjaGljYWwgVGhyZWUtRGltZW5zaW9uYWwgTGF5ZXItYnktTGF5ZXIgQXNzZW1ibHkgb2YgQ2FyYm9uIE5hbm90dWJlIFdhZmVycyBmb3IgSW50ZWdyYXRlZCBOYW5vZWxlY3Ryb25pYyBEZXZpY2VzLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAQsBEAEYBBYEGAQdBCgEMQQ/BEMESgRTBFgEZQRoBHoEfQSCAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABIQ=}, Bdsk-Url-1 = {http://dx.doi.org/10.1021/nl3016472}} @mastersthesis{robison:2015thesis, Author = {Warren Beecroft Robison}, Date-Added = {2016-05-26 19:04:31 +0000}, Date-Modified = {2016-05-26 19:05:39 +0000}, School = {Brigham Young University}, Title = {A Study of Carbon Infiltrated Carbon Nanotubes Fabricated on Convex Cylindrical Substrates for the Creation of a Coronary Stent}, Year = {2015}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qg0EgU3R1ZHkgb2YgQ2FyYm9uIEluZmlsdHJhdGVkIENhcmJvbiBOYW5vdHViZXMgRmFicmljYXRlZCBvbiBDb252ZXggQ3lsaW5kcmljYWwgU3Vic3RyYXRlcyBmb3IgdGhlIENyZWF0aW9uIG9mIGEgQ29yb25hcnkgU3RlbnQucGRm0hcLGBlXTlMuZGF0YU8RAxYAAAAAAxYAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9BIFN0dWR5IG9mIENhcmJvbiBJbiNBRjgwMUMucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAr4Ac02yixAAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA02z3JAAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEEgU3R1ZHkgb2YgQ2FyYm9uIEluI0FGODAxQy5wZGYADgEIAIMAQQAgAFMAdAB1AGQAeQAgAG8AZgAgAEMAYQByAGIAbwBuACAASQBuAGYAaQBsAHQAcgBhAHQAZQBkACAAQwBhAHIAYgBvAG4AIABOAGEAbgBvAHQAdQBiAGUAcwAgAEYAYQBiAHIAaQBjAGEAdABlAGQAIABvAG4AIABDAG8AbgB2AGUAeAAgAEMAeQBsAGkAbgBkAHIAaQBjAGEAbAAgAFMAdQBiAHMAdAByAGEAdABlAHMAIABmAG8AcgAgAHQAaABlACAAQwByAGUAYQB0AGkAbwBuACAAbwBmACAAYQAgAEMAbwByAG8AbgBhAHIAeQAgAFMAdABlAG4AdAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCvVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BIFN0dWR5IG9mIENhcmJvbiBJbmZpbHRyYXRlZCBDYXJib24gTmFub3R1YmVzIEZhYnJpY2F0ZWQgb24gQ29udmV4IEN5bGluZHJpY2FsIFN1YnN0cmF0ZXMgZm9yIHRoZSBDcmVhdGlvbiBvZiBhIENvcm9uYXJ5IFN0ZW50LnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgEUARkBIQQ7BD0EQgRNBFYEZARoBG8EeAR9BIoEjQSfBKIEpwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAASp}} @article{kim:2013, Abstract = {A MEMS lamination technology based on sequential multilayer electrodeposition is presented. The process comprises three main steps: (1) automated sequential electrodeposition of permalloy (Ni 80 Fe 20 ) structural and copper sacrificial layers to form multilayer structures of significant total thickness; (2) fabrication of polymeric anchor structures through the thickness of the multilayer structures and (3) selective removal of copper. The resulting structure is a set of air-insulated permalloy laminations, the separation of which is sustained by insulating polymeric anchor structures. Individual laminations have precisely controllable thicknesses ranging from 500 nm to 5 µm, and each lamination layer is electrically isolated from adjacent layers by narrow air gaps of similar scale. In addition to air, interlamination insulators based on polymers are investigated. Interlamination air gaps with very high aspect ratio (>1:100) can be filled with polyvinylalcohol and polydimethylsiloxane. The laminated structures are characterized using scanning electron microscopy and atomic force microscopy to directly examine properties such as the roughness and the thickness uniformity of the layers. In addition, the quality of the electrical insulation between the laminations is evaluated by quantifying the eddy current within the sample as a function of frequency. Fabricated laminations are comprised of uniform, smooth (surface roughness <100 nm) layers with effective electrical insulation for all layer thicknesses and insulator approaches studied. Such highly laminated structures have potential uses ranging from energy conversion to applications where composite materials with highly anisotropic mechanical or thermal properties are required.}, Author = {Minsoo Kim and Jooncheol Kim and Florian Herrault and Richard Schafer and Mark G Allen}, Date-Added = {2016-05-26 17:43:20 +0000}, Date-Modified = {2016-05-26 17:43:27 +0000}, Journal = {Journal of Micromechanics and Microengineering}, Number = {9}, Pages = {095011}, Title = {A MEMS lamination technology based on sequential multilayer electrodeposition}, Url = {http://stacks.iop.org/0960-1317/23/i=9/a=095011}, Volume = {23}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUUEgTUVNUyBsYW1pbmF0aW9uIHRlY2hub2xvZ3kgYmFzZWQgb24gc2VxdWVudGlhbCBtdWx0aWxheWVyIGVsZWN0cm9kZXBvc2l0aW9uLnBkZtIXCxgZV05TLmRhdGFPEQKAAAAAAAKAAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfQSBNRU1TIGxhbWluYXRpb24gdGUjQUY1QjM4LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9bONNskb0AAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNs5h0AAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBBIE1FTVMgbGFtaW5hdGlvbiB0ZSNBRjVCMzgucGRmAA4ApABRAEEAIABNAEUATQBTACAAbABhAG0AaQBuAGEAdABpAG8AbgAgAHQAZQBjAGgAbgBvAGwAbwBnAHkAIABiAGEAcwBlAGQAIABvAG4AIABzAGUAcQB1AGUAbgB0AGkAYQBsACAAbQB1AGwAdABpAGwAYQB5AGUAcgAgAGUAbABlAGMAdAByAG8AZABlAHAAbwBzAGkAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB9VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BIE1FTVMgbGFtaW5hdGlvbiB0ZWNobm9sb2d5IGJhc2VkIG9uIHNlcXVlbnRpYWwgbXVsdGlsYXllciBlbGVjdHJvZGVwb3NpdGlvbi5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A4gDnAO8DcwN1A3oDhQOOA5wDoAOnA7ADtQPCA8UD1wPaA98AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD4Q==}, Bdsk-Url-1 = {http://stacks.iop.org/0960-1317/23/i=9/a=095011}} @article{shin:2012, Abstract = {We present here the direct growth of carbon nanotubes (CNT) on austenitic stainless steel (SUS316L) sheets containing catalytic elements that enable repeated growth without extra deposition of buffer and catalytic layers. We compared the effects of substrate pretreatment methods consisting of a combination of air-annealing and Ar-plasma treatment. The air-annealing and plasma-treatments were performed using a thermal furnace and cylindrical plasma chamber to induce morphological changes in the substrate surface. The roughness of the substrates was found to be considerably altered by annealing temperature, plasma pretreatment temperature, and growth temperature. The highest \{CNT\} height of 23.5 μm was obtained using \{SUS316L\} samples that were plasma-treated and air-annealed at 725 $\,^{\circ}$C. Finally, the \{CNT\} growth efficiency was found to be enhanced considerably by the substrate pretreatments. }, Author = {Eui-Chul Shin and Goo-Hwan Jeong}, Date-Added = {2016-05-26 16:43:48 +0000}, Date-Modified = {2016-05-26 16:43:54 +0000}, Doi = {http://dx.doi.org/10.1016/j.tsf.2012.02.043}, Issn = {0040-6090}, Journal = {Thin Solid Films}, Keywords = {Growth efficiency}, Note = {The 3rd International Conference on Microelectronics and Plasma Technology (ICMAP) 2011}, Pages = {102 - 106}, Title = {Highly efficient carbon nanotube growth on plasma pretreated stainless steel substrates}, Url = {http://www.sciencedirect.com/science/article/pii/S0040609012001757}, Volume = {521}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QW0hpZ2hseSBlZmZpY2llbnQgY2FyYm9uIG5hbm90dWJlIGdyb3d0aCBvbiBwbGFzbWEgcHJldHJlYXRlZCBzdGFpbmxlc3Mgc3RlZWwgc3Vic3RyYXRlcy5wZGbSFwsYGVdOUy5kYXRhTxECngAAAAACngACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0hpZ2hseSBlZmZpY2llbnQgY2FyI0FGNDdGOC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACvR/jTbIP6AAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTbNhaAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToASGlnaGx5IGVmZmljaWVudCBjYXIjQUY0N0Y4LnBkZgAOALgAWwBIAGkAZwBoAGwAeQAgAGUAZgBmAGkAYwBpAGUAbgB0ACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABnAHIAbwB3AHQAaAAgAG8AbgAgAHAAbABhAHMAbQBhACAAcAByAGUAdAByAGUAYQB0AGUAZAAgAHMAdABhAGkAbgBsAGUAcwBzACAAcwB0AGUAZQBsACAAcwB1AGIAcwB0AHIAYQB0AGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCHVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9IaWdobHkgZWZmaWNpZW50IGNhcmJvbiBuYW5vdHViZSBncm93dGggb24gcGxhc21hIHByZXRyZWF0ZWQgc3RhaW5sZXNzIHN0ZWVsIHN1YnN0cmF0ZXMucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOwA8QD5A5sDnQOiA60DtgPEA8gDzwPYA90D6gPtA/8EAgQHAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABAk=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0040609012001757}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.tsf.2012.02.043}} @article{wiley:2014, Author = {Willey, Anthony D. and Holt, Josh M. and Larsen, Brian A. and Blackburn, Jeffrey L. and Liddiard, Steven and Abbott, Jonathan and Coffin, Mallorie and Vanfleet, Richard R. and Davis, Robert C.}, Date-Added = {2016-05-20 23:13:28 +0000}, Date-Modified = {2016-05-30 22:26:05 +0000}, Doi = {http://dx.doi.org/10.1116/1.4861370}, Eid = 011218, Journal = {Journal of Vacuum Science \& Technology B}, Number = {1}, Title = {Thin films of carbon nanotubes via ultrasonic spraying of suspensions in N-methyl-2-pyrrolidone and N-cyclohexyl-2-pyrrolidone}, Url = {http://scitation.aip.org/content/avs/journal/jvstb/32/1/10.1116/1.4861370}, Volume = {32}, Year = {2014}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QglRoaW4gZmlsbXMgb2YgY2FyYm9uIG5hbm90dWJlcyB2aWEgdWx0cmFzb25pYyBzcHJheWluZyBvZiBzdXNwZW5zaW9ucyBpbiBOLW1ldGh5bC0yLXB5cnJvbGlkb25lIGFuZCBOLWN5Y2xvaGV4eWwtMi1weXJyb2xpZG9uZS5wZGbSFwsYGVdOUy5kYXRhTxEDEgAAAAADEgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1RoaW4gZmlsbXMgb2YgY2FyYm9uI0FEREE0NS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt2kXTZPXiAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTZUpCAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVGhpbiBmaWxtcyBvZiBjYXJib24jQUREQTQ1LnBkZgAOAQYAggBUAGgAaQBuACAAZgBpAGwAbQBzACAAbwBmACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAgAHYAaQBhACAAdQBsAHQAcgBhAHMAbwBuAGkAYwAgAHMAcAByAGEAeQBpAG4AZwAgAG8AZgAgAHMAdQBzAHAAZQBuAHMAaQBvAG4AcwAgAGkAbgAgAE4ALQBtAGUAdABoAHkAbAAtADIALQBwAHkAcgByAG8AbABpAGQAbwBuAGUAIABhAG4AZAAgAE4ALQBjAHkAYwBsAG8AaABlAHgAeQBsAC0AMgAtAHAAeQByAHIAbwBsAGkAZABvAG4AZQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCuVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGluIGZpbG1zIG9mIGNhcmJvbiBuYW5vdHViZXMgdmlhIHVsdHJhc29uaWMgc3ByYXlpbmcgb2Ygc3VzcGVuc2lvbnMgaW4gTi1tZXRoeWwtMi1weXJyb2xpZG9uZSBhbmQgTi1jeWNsb2hleHlsLTItcHlycm9saWRvbmUucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BEwEYASAENgQ4BD0ESARRBF8EYwRqBHMEeASFBIgEmgSdBKIAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEpA==}, Bdsk-Url-1 = {http://scitation.aip.org/content/avs/journal/jvstb/32/1/10.1116/1.4861370}, Bdsk-Url-2 = {http://dx.doi.org/10.1116/1.4861370}} @mastersthesis{wiley:2012thesis, Abstract = {A method is described for ultrasonically spraying thin films of carbon nanotubes that have been suspended in organic solvents. Nanotubes were sonicated in N-Methyl-2-pyrrolidone or N-Cyclohexyl-2-pyrrolidone and then sprayed onto a heated substrate using an ultrasonic spray nozzle. The solvent quickly evaporated, leaving a thin film of randomly oriented nanotubes. Film thickness was controlled by the spray time and ranged between 200--500 nm, with RMS roughness of about 40 nm. Also described is a method for creating thin (300 nm) conductive freestanding nanotube/polymer composite films by infiltrating sprayed nanotube films with polyimide.}, Author = {Anthony D. Wiley}, Date-Added = {2016-05-20 23:05:42 +0000}, Date-Modified = {2016-05-20 23:06:58 +0000}, Month = {December}, School = {Brigham Young University}, Title = {Thin Films of Carbon Nanotubes and Nanotube/Polymer Composites}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QQlRoaW4gRmlsbXMgb2YgQ2FyYm9uIE5hbm90dWJlcyBhbmQgTmFub3R1YmU6UG9seW1lciBDb21wb3NpdGVzLnBkZtIXCxgZV05TLmRhdGFPEQJSAAAAAAJSAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfVGhpbiBGaWxtcyBvZiBDYXJib24jQURENDY4LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK3UaNNk9FwAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNlSLwAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBUaGluIEZpbG1zIG9mIENhcmJvbiNBREQ0NjgucGRmAA4AhgBCAFQAaABpAG4AIABGAGkAbABtAHMAIABvAGYAIABDAGEAcgBiAG8AbgAgAE4AYQBuAG8AdAB1AGIAZQBzACAAYQBuAGQAIABOAGEAbgBvAHQAdQBiAGUALwBQAG8AbAB5AG0AZQByACAAQwBvAG0AcABvAHMAaQB0AGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBuVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGluIEZpbG1zIG9mIENhcmJvbiBOYW5vdHViZXMgYW5kIE5hbm90dWJlOlBvbHltZXIgQ29tcG9zaXRlcy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDTANgA4AM2AzgDPQNIA1EDXwNjA2oDcwN4A4UDiAOaA50DogAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAOk}} @article{dau:2013, Abstract = {This paper reports a robust fabrication process to integrate carbon nanotubes (CNTs) film into a micro electromechanical systems actuator by the design and fabrication of a silicon micromirror supported by CNTs hinges. Vertically aligned single wall carbon nanotubes forest film was synthesized by water-assisted chemical vapor deposition. CNTs film was then condensed, manually maneuvered and patterned by EB lithography to form a flexible hinge of a mirror. The mirror is actuated by a electrostatic angular vertical comb actuator and the performance had been characterized. The mirror could be driven by a low voltage with a rotate angle of 1.5$\,^{\circ}$ and a response frequency of 500 Hz.}, Author = {Van Thanh Dau and Bui Thanh Tung and Thien Xuan Dinh and Dzung Viet Dao and Takeo Yamada and Kenji Hata and Susumu Sugiyama}, Date-Added = {2016-05-20 22:26:57 +0000}, Date-Modified = {2016-05-20 22:27:04 +0000}, Journal = {Journal of Micromechanics and Microengineering}, Number = {7}, Pages = {075024}, Title = {A micromirror with CNTs hinge fabricated by the integration of CNTs film into a MEMS actuator}, Url = {http://stacks.iop.org/0960-1317/23/i=7/a=075024}, Volume = {23}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QYUEgbWljcm9taXJyb3Igd2l0aCBDTlRzIGhpbmdlIGZhYnJpY2F0ZWQgYnkgdGhlIGludGVncmF0aW9uIG9mIENOVHMgZmlsbSBpbnRvIGEgTUVNUyBhY3R1YXRvci5wZGbSFwsYGVdOUy5kYXRhTxECsAAAAAACsAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0EgbWljcm9taXJyb3Igd2l0aCBDI0FEQzJCNC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtwrTTZOs6AAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTZT+aAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAQSBtaWNyb21pcnJvciB3aXRoIEMjQURDMkI0LnBkZgAOAMQAYQBBACAAbQBpAGMAcgBvAG0AaQByAHIAbwByACAAdwBpAHQAaAAgAEMATgBUAHMAIABoAGkAbgBnAGUAIABmAGEAYgByAGkAYwBhAHQAZQBkACAAYgB5ACAAdABoAGUAIABpAG4AdABlAGcAcgBhAHQAaQBvAG4AIABvAGYAIABDAE4AVABzACAAZgBpAGwAbQAgAGkAbgB0AG8AIABhACAATQBFAE0AUwAgAGEAYwB0AHUAYQB0AG8AcgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCNVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BIG1pY3JvbWlycm9yIHdpdGggQ05UcyBoaW5nZSBmYWJyaWNhdGVkIGJ5IHRoZSBpbnRlZ3JhdGlvbiBvZiBDTlRzIGZpbG0gaW50byBhIE1FTVMgYWN0dWF0b3IucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAPIA9wD/A7MDtQO6A8UDzgPcA+AD5wPwA/UEAgQFBBcEGgQfAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABCE=}, Bdsk-Url-1 = {http://stacks.iop.org/0960-1317/23/i=7/a=075024}} @article{chen:2014, Author = {Chen, Bingan and Zhang, Can and Esconjauregui, Santiago and Xie, Rongsi and Zhong, Guofang and Bhardwaj, Sunil and Cepek, Cinzia and Robertson, John}, Date-Added = {2016-05-20 21:42:27 +0000}, Date-Modified = {2016-05-20 21:42:36 +0000}, Doi = {http://dx.doi.org/10.1063/1.4870951}, Eid = 144303, Journal = {Journal of Applied Physics}, Number = {14}, Title = {Carbon nanotube forests growth using catalysts from atomic layer deposition}, Url = {http://scitation.aip.org/content/aip/journal/jap/115/14/10.1063/1.4870951}, Volume = {115}, Year = {2014}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QT0NhcmJvbiBuYW5vdHViZSBmb3Jlc3RzIGdyb3d0aCB1c2luZyBjYXRhbHlzdHMgZnJvbSBhdG9taWMgbGF5ZXIgZGVwb3NpdGlvbi5wZGbSFwsYGVdOUy5kYXRhTxECegAAAAACegACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0NhcmJvbiBuYW5vdHViZSBmb3JlI0FEQjQ4Ny5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttIfTZOC+AAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTZTUeAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAQ2FyYm9uIG5hbm90dWJlIGZvcmUjQURCNDg3LnBkZgAOAKAATwBDAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQAgAGYAbwByAGUAcwB0AHMAIABnAHIAbwB3AHQAaAAgAHUAcwBpAG4AZwAgAGMAYQB0AGEAbAB5AHMAdABzACAAZgByAG8AbQAgAGEAdABvAG0AaQBjACAAbABhAHkAZQByACAAZABlAHAAbwBzAGkAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB7VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9DYXJib24gbmFub3R1YmUgZm9yZXN0cyBncm93dGggdXNpbmcgY2F0YWx5c3RzIGZyb20gYXRvbWljIGxheWVyIGRlcG9zaXRpb24ucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOAA5QDtA2sDbQNyA30DhgOUA5gDnwOoA60DugO9A88D0gPXAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA9k=}, Bdsk-Url-1 = {http://scitation.aip.org/content/aip/journal/jap/115/14/10.1063/1.4870951}, Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.4870951}} @article{weissmuller:2010, Abstract = {We analyze the various strain measures by which nanoporous materials react to changes in their surface stress and surface stretch at the solid--pore interface. Results of continuum mechanics are given for model geometries, arrays of spheres and fibres as well as solids with spherical and cylindrical voids. The findings are supported by atomistic simulation. The results for the mean stress agree with predictions of the generalized capillary equation of Weissm{\"u}ller and Cahn, and they are incompatible with the notion of Laplace pressure. By contrast, no general relation between the mean stress and the macroscopic dimensional change could be identified. Even though certain microstructures with quite different geometry exhibit strikingly similar behaviour, others differ significantly. The macroscopic dimensional change can be largely enhanced compared with the local strain of the nanoscale building blocks. This fact can be exploited to amplify the stroke of nanoporous metal actuators.}, Author = {J. Weissm{\"u}ller and H.-L. Duan and D. Farkas}, Date-Added = {2016-05-18 01:28:35 +0000}, Date-Modified = {2016-05-18 01:29:57 +0000}, Journal = {Acta Materialia}, Number = {1}, Pages = {1 - 13}, Title = {Deformation of solids with nanoscale pores by the action of capillary forces}, Volume = {58}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUERlZm9ybWF0aW9uIG9mIHNvbGlkcyB3aXRoIG5hbm9zY2FsZSBwb3JlcyBieSB0aGUgYWN0aW9uIG9mIGNhcGlsbGFyeSBmb3JjZXMucGRm0hcLGBlXTlMuZGF0YU8RAnwAAAAAAnwAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9EZWZvcm1hdGlvbiBvZiBzb2xpZCNBQzkwQjAucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArJCw02EhIQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA02F1gQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AERlZm9ybWF0aW9uIG9mIHNvbGlkI0FDOTBCMC5wZGYADgCiAFAARABlAGYAbwByAG0AYQB0AGkAbwBuACAAbwBmACAAcwBvAGwAaQBkAHMAIAB3AGkAdABoACAAbgBhAG4AbwBzAGMAYQBsAGUAIABwAG8AcgBlAHMAIABiAHkAIAB0AGgAZQAgAGEAYwB0AGkAbwBuACAAbwBmACAAYwBhAHAAaQBsAGwAYQByAHkAIABmAG8AcgBjAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB8VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9EZWZvcm1hdGlvbiBvZiBzb2xpZHMgd2l0aCBuYW5vc2NhbGUgcG9yZXMgYnkgdGhlIGFjdGlvbiBvZiBjYXBpbGxhcnkgZm9yY2VzLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOEA5gDuA24DcAN1A4ADiQOXA5sDogOrA7ADvQPAA9ID1QPaAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA9w=}} @article{oh:2010, Abstract = {We fabricated BaTiO3 thin films with 2.2--0.1 μm thickness on hard stainless steel (SUS) substrates by using the \{ADM\} to confirm the causes of dielectric thickness limit showing in BaTiO3 thin films prepared on \{SUS\} substrates and suggest key factors which can overcome the limit. Then, from the measurements of thickness dependence of their dielectric properties, the thickness limit of 0.2 μm was confirmed and to confirm the reason why their dielectric properties could not be measured in the thickness below 0.2 μm, the thickness dependence of leakage current mechanisms in BaTiO3 films were investigated. As a result, by decreasing the thickness of films from 2.2 to 0.2 μm, the mechanism changed from Poole--Frenkel emission to modified-Schottky emission indicating increase of interface effects. Especially, in the case of 0.2 μm thickness, it was confirmed that the dominant mechanism was Fowler--Nordheim tunneling based on electric field concentration at a high electric field. Consequently, from this investigation of leakage current mechanism, it can be expected that the cause of thickness limits was electric field concentration at rough BaTiO3/SUS interfaces forming in \{AD\} process, and to get over the thickness limit and decrease level of leakage currents, the hard substrates are required to reduce the interface roughness and oxygen vacancies acted as donors should be decreased. }, Author = {Jong-Min Oh and Song-Min Nam}, Date-Added = {2016-05-16 22:25:28 +0000}, Date-Modified = {2016-05-16 22:25:39 +0000}, Doi = {http://dx.doi.org/10.1016/j.tsf.2010.03.159}, Issn = {0040-6090}, Journal = {Thin Solid Films}, Keywords = {Leakage current mechanism}, Note = {Proceedings of the 2nd International Conference on Microelectronics and Plasma Technology -- \{ICMAP\} 2009}, Number = {22}, Pages = {6531 - 6536}, Title = {Thickness limit of BaTiO3 thin film capacitors grown on \{SUS\} substrates using aerosol deposition method}, Url = {http://www.sciencedirect.com/science/article/pii/S0040609010004888}, Volume = {518}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QalRoaWNrbmVzcyBsaW1pdCBvZiBCYVRpTzMgdGhpbiBmaWxtIGNhcGFjaXRvcnMgZ3Jvd24gb24gU1VTIHN1YnN0cmF0ZXMgdXNpbmcgYWVyb3NvbCBkZXBvc2l0aW9uIG1ldGhvZC5wZGbSFwsYGVdOUy5kYXRhTxECygAAAAACygACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1RoaWNrbmVzcyBsaW1pdCBvZiBCI0FCQzYwRS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrxg7TX6SjAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTX/kDAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVGhpY2tuZXNzIGxpbWl0IG9mIEIjQUJDNjBFLnBkZgAOANYAagBUAGgAaQBjAGsAbgBlAHMAcwAgAGwAaQBtAGkAdAAgAG8AZgAgAEIAYQBUAGkATwAzACAAdABoAGkAbgAgAGYAaQBsAG0AIABjAGEAcABhAGMAaQB0AG8AcgBzACAAZwByAG8AdwBuACAAbwBuACAAUwBVAFMAIABzAHUAYgBzAHQAcgBhAHQAZQBzACAAdQBzAGkAbgBnACAAYQBlAHIAbwBzAG8AbAAgAGQAZQBwAG8AcwBpAHQAaQBvAG4AIABtAGUAdABoAG8AZAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCWVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGlja25lc3MgbGltaXQgb2YgQmFUaU8zIHRoaW4gZmlsbSBjYXBhY2l0b3JzIGdyb3duIG9uIFNVUyBzdWJzdHJhdGVzIHVzaW5nIGFlcm9zb2wgZGVwb3NpdGlvbiBtZXRob2QucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A+wEAAQgD1gPYA90D6APxA/8EAwQKBBMEGAQlBCgEOgQ9BEIAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAERA==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0040609010004888}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.tsf.2010.03.159}} @article{boydens:2013, Abstract = {Abstract The effect of the target surface morphology on the sputter deposition flux and the energy flux is investigated by comparing solid targets to pressed powder targets. A significant, material dependent difference of the effective sputter yield between both target types is noticed. This difference is explained by combining two effects: a local increase of the elemental sputter yield and the redeposition of sputtered atoms onto the target. Both effects strongly depend on the target surface morphology. The experimental trends are reproduced by Monte Carlo simulations. This allows a description of the angular distribution of the sputtered atoms which is an important parameter to define the particle flux and the energy distribution of the atoms arriving on the substrate. Using the previously developed particle trajectory code simtra, the latter is demonstrated for the studied materials (Al, Ag, Cu, and Ti). }, Author = {F. Boydens and W.P. Leroy and R. Persoons and D. Depla}, Date-Added = {2016-05-16 22:22:02 +0000}, Date-Modified = {2016-05-16 22:22:09 +0000}, Doi = {http://dx.doi.org/10.1016/j.tsf.2012.11.097}, Issn = {0040-6090}, Journal = {Thin Solid Films}, Keywords = {Angular distribution}, Pages = {32 - 41}, Title = {The influence of target surface morphology on the deposition flux during direct-current magnetron sputtering}, Url = {http://www.sciencedirect.com/science/article/pii/S0040609012015945}, Volume = {531}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QcFRoZSBpbmZsdWVuY2Ugb2YgdGFyZ2V0IHN1cmZhY2UgbW9ycGhvbG9neSBvbiB0aGUgZGVwb3NpdGlvbiBmbHV4IGR1cmluZyBkaXJlY3QtY3VycmVudCBtYWduZXRyb24gc3B1dHRlcmluZy5wZGbSFwsYGVdOUy5kYXRhTxEC3AAAAAAC3AACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1RoZSBpbmZsdWVuY2Ugb2YgdGFyI0FCQzQyMi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrxCLTX6PyAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTX/hSAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVGhlIGluZmx1ZW5jZSBvZiB0YXIjQUJDNDIyLnBkZgAOAOIAcABUAGgAZQAgAGkAbgBmAGwAdQBlAG4AYwBlACAAbwBmACAAdABhAHIAZwBlAHQAIABzAHUAcgBmAGEAYwBlACAAbQBvAHIAcABoAG8AbABvAGcAeQAgAG8AbgAgAHQAaABlACAAZABlAHAAbwBzAGkAdABpAG8AbgAgAGYAbAB1AHgAIABkAHUAcgBpAG4AZwAgAGQAaQByAGUAYwB0AC0AYwB1AHIAcgBlAG4AdAAgAG0AYQBnAG4AZQB0AHIAbwBuACAAcwBwAHUAdAB0AGUAcgBpAG4AZwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCcVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGUgaW5mbHVlbmNlIG9mIHRhcmdldCBzdXJmYWNlIG1vcnBob2xvZ3kgb24gdGhlIGRlcG9zaXRpb24gZmx1eCBkdXJpbmcgZGlyZWN0LWN1cnJlbnQgbWFnbmV0cm9uIHNwdXR0ZXJpbmcucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BAQEGAQ4D7gPwA/UEAAQJBBcEGwQiBCsEMAQ9BEAEUgRVBFoAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEXA==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0040609012015945}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.tsf.2012.11.097}} @article{sagari:2013, Abstract = {Abstract Amorphous Ca--P--O films were deposited on titanium substrates using atomic layer deposition, while maintaining a uniform Ca/P pulsing ratio of 6/1 with varying number of atomic layer deposition cycles starting from 10 up to 208. Prior to film deposition the titanium substrates were mechanically abraded using SiC abrasive paper of 600, 1200, 2000 grit size and polished with 3 μm diamond paste to obtain surface roughness Rrms values of 0.31 μm, 0.26 μm, 0.16 μm, and 0.10 μm, respectively. The composition and film thickness of as-deposited amorphous films were studied using Time-Of-Flight Elastic Recoil Detection Analysis. The results showed that uniform films could be deposited on rough metal surfaces with a clear dependence of substrate roughness on the Ca/P atomic ratio of thin films. The in vitro cell-culture studies using \{MC3T3\} mouse osteoblast showed a greater coverage of cells on the surface polished with diamond paste in comparison to rougher surfaces after 24 h culture. No statistically significant difference was observed between Ca--P--O coated and un-coated Ti surfaces for the measured roughness value. The deposited 50 nm thick films did not dissolve during the cell culture experiment. }, Author = {A.R. Ananda Sagari and Jari Malm and Mikko Laitinen and Paavo Rahkila and Ma Hongqiang and Matti Putkonen and Maarit Karppinen and Harry J. Whitlow and Timo Sajavaara}, Date-Added = {2016-05-16 22:20:05 +0000}, Date-Modified = {2016-05-16 22:20:14 +0000}, Doi = {http://dx.doi.org/10.1016/j.tsf.2012.11.137}, Issn = {0040-6090}, Journal = {Thin Solid Films}, Keywords = {Elemental profiling}, Pages = {26 - 31}, Title = {Influence of titanium-substrate roughness on Ca--P--O thin films grown by atomic layer deposition}, Url = {http://www.sciencedirect.com/science/article/pii/S0040609012016458}, Volume = {531}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YW8QYwBJAG4AZgBsAHUAZQBuAGMAZQAgAG8AZgAgAHQAaQB0AGEAbgBpAHUAbQAtAHMAdQBiAHMAdAByAGEAdABlACAAcgBvAHUAZwBoAG4AZQBzAHMAIABvAG4AIABDAGEgEwBQIBMATwAgAHQAaABpAG4AIABmAGkAbABtAHMAIABnAHIAbwB3AG4AIABiAHkAIABhAHQAbwBtAGkAYwAgAGwAYQB5AGUAcgAgAGQAZQBwAG8AcwBpAHQAaQBvAG4ALgBwAGQAZtIXCxgZV05TLmRhdGFPEQK6AAAAAAK6AAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfSW5mbHVlbmNlIG9mIHRpdGFuaXUjQUJDMkE0LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKvCpNNfo40AAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNf9+0AAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBJbmZsdWVuY2Ugb2YgdGl0YW5pdSNBQkMyQTQucGRmAA4AyABjAEkAbgBmAGwAdQBlAG4AYwBlACAAbwBmACAAdABpAHQAYQBuAGkAdQBtAC0AcwB1AGIAcwB0AHIAYQB0AGUAIAByAG8AdQBnAGgAbgBlAHMAcwAgAG8AbgAgAEMAYSATAFAgEwBPACAAdABoAGkAbgAgAGYAaQBsAG0AcwAgAGcAcgBvAHcAbgAgAGIAeQAgAGEAdABvAG0AaQBjACAAbABhAHkAZQByACAAZABlAHAAbwBzAGkAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCTVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9JbmZsdWVuY2Ugb2YgdGl0YW5pdW0tc3Vic3RyYXRlIHJvdWdobmVzcyBvbiBDYeKAk1DigJNPIHRoaW4gZmlsbXMgZ3Jvd24gYnkgYXRvbWljIGxheWVyIGRlcG9zaXRpb24ucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAVcBXAFkBCIEJAQpBDQEPQRLBE8EVgRfBGQEcQR0BIYEiQSOAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABJA=}, Bdsk-File-2 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QKC4uLy4uLy4uL0Rvd25sb2Fkcy9TMDA0MDYwOTAxMTAwNTYzMy5iaWLSFwsYGVdOUy5kYXRhTxEBigAAAAABigACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7PJFVMwMDQwNjA5MDExMDA1NjMzLmJpYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7sRnVXs7nAAAAAAAAAAAAAwACAAAJIAAAAAAAAAAAAAAAAAAAAAlEb3dubG9hZHMAABAACAAA0arPCAAAABEACAAA1V8jRwAAAAEADAAPs8kAD6HAAA+hvAACADZMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG93bmxvYWRzOgBTMDA0MDYwOTAxMTAwNTYzMy5iaWIADgAsABUAUwAwADAANAAwADYAMAA5ADAAMQAxADAAMAA1ADYAMwAzAC4AYgBpAGIADwAQAAcATAB1AG4AZABTAFMARAASACtVc2Vycy9qYXNvbi9Eb3dubG9hZHMvUzAwNDA2MDkwMTEwMDU2MzMuYmliAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOALkAvgDGAlQCVgJbAmYCbwJ9AoECiAKRApYCowKmArgCuwLAAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAAsI=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0040609012016458}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.tsf.2012.11.137}} @article{zabihi:2015, Author = {Fatemeh Zabihi and Morteza Eslamian}, Date-Added = {2016-05-16 22:16:29 +0000}, Date-Modified = {2016-05-16 22:17:27 +0000}, Journal = {Journal of Coatings Technology and Research}, Number = {3}, Pages = {489-503}, Title = {Characteristics of thin films fabricated by spray coating on rough and permeable paper substrates}, Volume = {12}, Year = {2015}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QZUNoYXJhY3RlcmlzdGljcyBvZiB0aGluIGZpbG1zIGZhYnJpY2F0ZWQgYnkgc3ByYXkgY29hdGluZyBvbiByb3VnaCBhbmQgcGVybWVhYmxlIHBhcGVyIHN1YnN0cmF0ZXMucGRm0hcLGBlXTlMuZGF0YU8RArwAAAAAArwAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9DaGFyYWN0ZXJpc3RpY3Mgb2YgdCNBQjQ3MUMucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq0cc01+iVQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA01/2tQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AENoYXJhY3RlcmlzdGljcyBvZiB0I0FCNDcxQy5wZGYADgDMAGUAQwBoAGEAcgBhAGMAdABlAHIAaQBzAHQAaQBjAHMAIABvAGYAIAB0AGgAaQBuACAAZgBpAGwAbQBzACAAZgBhAGIAcgBpAGMAYQB0AGUAZAAgAGIAeQAgAHMAcAByAGEAeQAgAGMAbwBhAHQAaQBuAGcAIABvAG4AIAByAG8AdQBnAGgAIABhAG4AZAAgAHAAZQByAG0AZQBhAGIAbABlACAAcABhAHAAZQByACAAcwB1AGIAcwB0AHIAYQB0AGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCRVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9DaGFyYWN0ZXJpc3RpY3Mgb2YgdGhpbiBmaWxtcyBmYWJyaWNhdGVkIGJ5IHNwcmF5IGNvYXRpbmcgb24gcm91Z2ggYW5kIHBlcm1lYWJsZSBwYXBlciBzdWJzdHJhdGVzLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgD2APsBAwPDA8UDygPVA94D7APwA/cEAAQFBBIEFQQnBCoELwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQx}} @article{morrow:1970, Author = {Norman R. Morrow}, Date-Added = {2016-05-16 22:10:03 +0000}, Date-Modified = {2016-05-16 22:10:11 +0000}, Doi = {10.1021/ie50726a006}, Eprint = {http://dx.doi.org/10.1021/ie50726a006}, Journal = {Industrial \& Engineering Chemistry}, Number = {6}, Pages = {32-56}, Title = {Physics and Thermodynamics of Capillary Action in Porous Media}, Url = {http://dx.doi.org/10.1021/ie50726a006}, Volume = {62}, Year = {1970}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QQlBoeXNpY3MgYW5kIFRoZXJtb2R5bmFtaWNzIG9mIENhcGlsbGFyeSBBY3Rpb24gaW4gUG9yb3VzIE1lZGlhLnBkZtIXCxgZV05TLmRhdGFPEQJSAAAAAAJSAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfUGh5c2ljcyBhbmQgVGhlcm1vZHkjQUI0MUE1LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKtBpdNfnrQAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNf8xQAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBQaHlzaWNzIGFuZCBUaGVybW9keSNBQjQxQTUucGRmAA4AhgBCAFAAaAB5AHMAaQBjAHMAIABhAG4AZAAgAFQAaABlAHIAbQBvAGQAeQBuAGEAbQBpAGMAcwAgAG8AZgAgAEMAYQBwAGkAbABsAGEAcgB5ACAAQQBjAHQAaQBvAG4AIABpAG4AIABQAG8AcgBvAHUAcwAgAE0AZQBkAGkAYQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBuVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9QaHlzaWNzIGFuZCBUaGVybW9keW5hbWljcyBvZiBDYXBpbGxhcnkgQWN0aW9uIGluIFBvcm91cyBNZWRpYS5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDTANgA4AM2AzgDPQNIA1EDXwNjA2oDcwN4A4UDiAOaA50DogAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAOk}, Bdsk-Url-1 = {http://dx.doi.org/10.1021/ie50726a006}} @article{andrade:1999, Author = {Andrade, J. S. and Costa, U. M. S. and Almeida, M. P. and Makse, H. A. and Stanley, H. E.}, Date-Added = {2016-05-16 21:52:19 +0000}, Date-Modified = {2016-05-16 21:54:04 +0000}, Journal = {Physical Review Letters}, Month = {June}, Number = {26}, Pages = {5249-5252}, Title = {Inertial Effects on Fluid Flow through Disordered Porous Media}, Volume = {82}, Year = {1999}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QQkluZXJ0aWFsIEVmZmVjdHMgb24gRmx1aWQgRmxvdyB0aHJvdWdoIERpc29yZGVyZWQgUG9yb3VzIE1lZGlhLnBkZtIXCxgZV05TLmRhdGFPEQJSAAAAAAJSAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfSW5lcnRpYWwgRWZmZWN0cyBvbiAjQUIzQkYwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKs78NNfnQUAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNf8WUAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBJbmVydGlhbCBFZmZlY3RzIG9uICNBQjNCRjAucGRmAA4AhgBCAEkAbgBlAHIAdABpAGEAbAAgAEUAZgBmAGUAYwB0AHMAIABvAG4AIABGAGwAdQBpAGQAIABGAGwAbwB3ACAAdABoAHIAbwB1AGcAaAAgAEQAaQBzAG8AcgBkAGUAcgBlAGQAIABQAG8AcgBvAHUAcwAgAE0AZQBkAGkAYQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBuVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9JbmVydGlhbCBFZmZlY3RzIG9uIEZsdWlkIEZsb3cgdGhyb3VnaCBEaXNvcmRlcmVkIFBvcm91cyBNZWRpYS5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDTANgA4AM2AzgDPQNIA1EDXwNjA2oDcwN4A4UDiAOaA50DogAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAOk}} @article{volder:20101233, Abstract = {It is well-known that carbon nanotube (CNT) growth from a dense arrangement of catalyst nanoparticles creates a vertically aligned \{CNT\} forest. \{CNT\} forests offer attractive anisotropic mechanical, thermal, and electrical properties, and their anisotropic structure is enabled by the self-organization of a large number of CNTs. This process is governed by individual \{CNT\} diameter, spacing, and the CNT-to-CNT interaction. However, little information is known about the self-organization of \{CNTs\} within a forest. Insight into the self-organization is, however, essential for tailoring the properties of the \{CNT\} forests for applications such as electrical interconnects, thermal interfaces, dry adhesives and energy storage. We demonstrate that arrays of \{CNT\} micropillars having micron-scale diameters organize in a similar manner as individual \{CNTs\} within a forest. For example, as previously demonstrated for individual \{CNTs\} within a forest, entanglement of small-diameter \{CNT\} micropillars during the initial stage of growth creates a film of entwined pillars. This layer enables coordinated subsequent growth of the pillars in the vertical direction, in a case where isolated pillars would not grow in a self-supporting fashion. Finally, we provide a detailed overview of the self-organization as a function of the diameter, length and spacing of the \{CNT\} pillars. This study, which is applicable to many one-dimensional nanostructured films, demonstrates guidelines for tailoring the self-organization which can enable control of the collective mechanical, electrical and interfacial properties of the films. }, Author = {Micha{\"e}l F.L. De Volder and Daniel O. Vidaud and Eric R. Meshot and Sameh Tawfick and A. John Hart}, Date-Added = {2016-05-13 20:33:41 +0000}, Date-Modified = {2016-05-13 20:33:51 +0000}, Doi = {http://dx.doi.org/10.1016/j.mee.2009.11.139}, Issn = {0167-9317}, Journal = {Microelectronic Engineering}, Keywords = {CVD}, Note = {The 35th International Conference on Micro- and Nano-Engineering (MNE)}, Number = {5--8}, Pages = {1233 - 1238}, Title = {Self-similar organization of arrays of individual carbon nanotubes and carbon nanotube micropillars}, Url = {http://www.sciencedirect.com/science/article/pii/S0167931709008041}, Volume = {87}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QZ1NlbGYtc2ltaWxhciBvcmdhbml6YXRpb24gb2YgYXJyYXlzIG9mIGluZGl2aWR1YWwgY2FyYm9uIG5hbm90dWJlcyBhbmQgY2FyYm9uIG5hbm90dWJlIG1pY3JvcGlsbGFycy5wZGbSFwsYGVdOUy5kYXRhTxECwgAAAAACwgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1NlbGYtc2ltaWxhciBvcmdhbml6I0E5NDMzRC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACpQz3TW5YDAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTW+pjAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAU2VsZi1zaW1pbGFyIG9yZ2FuaXojQTk0MzNELnBkZgAOANAAZwBTAGUAbABmAC0AcwBpAG0AaQBsAGEAcgAgAG8AcgBnAGEAbgBpAHoAYQB0AGkAbwBuACAAbwBmACAAYQByAHIAYQB5AHMAIABvAGYAIABpAG4AZABpAHYAaQBkAHUAYQBsACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAgAGEAbgBkACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABtAGkAYwByAG8AcABpAGwAbABhAHIAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCTVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TZWxmLXNpbWlsYXIgb3JnYW5pemF0aW9uIG9mIGFycmF5cyBvZiBpbmRpdmlkdWFsIGNhcmJvbiBuYW5vdHViZXMgYW5kIGNhcmJvbiBuYW5vdHViZSBtaWNyb3BpbGxhcnMucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAPgA/QEFA8sDzQPSA90D5gP0A/gD/wQIBA0EGgQdBC8EMgQ3AAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABDk=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0167931709008041}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.mee.2009.11.139}} @article{bedewy:2012, Abstract = {We reveal that the collective growth of vertically aligned carbon nanotube (CNT) forests by chemical vapor deposition (CVD) is governed by the size-dependent catalytic behavior of metal nanoparticles, which can be quantitatively related to the activation and deactivation kinetics of subpopulations of \{CNTs\} within the forest. We establish this understanding by uniquely combining real-time forest height kinetics with ex situ synchrotron X-ray scattering and mass-attenuation measurements. The growing \{CNT\} population is divided into subpopulations, each having a narrow diameter range, enabling the quantification of the diameter-dependent population dynamics. We find that the mass kinetics of different subpopulations are self-similar and are represented by the S-shaped Gompertz model of population growth, which reveals that smaller diameter \{CNTs\} activate more slowly but have longer catalytic lifetimes. While competition between growth activation and deactivation kinetics is diameter-dependent, \{CNTs\} are held in contact by van der Waals forces, thus preventing relative slip and resulting in a single collective growth rate of the forest. Therefore, we hypothesize that mechanical coupling gives rise to the inherent tortuosity of \{CNTs\} within forests and possibly causes structural defects which limit the properties of current \{CNT\} forests in comparison to pristine individual CNTs. }, Author = {Mostafa Bedewy and Eric R. Meshot and A. John Hart}, Date-Added = {2016-05-13 20:30:55 +0000}, Date-Modified = {2016-05-13 20:31:06 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2012.06.051}, Issn = {0008-6223}, Journal = {Carbon}, Number = {14}, Pages = {5106 - 5116}, Title = {Diameter-dependent kinetics of activation and deactivation in carbon nanotube population growth}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622312005702}, Volume = {50}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QY0RpYW1ldGVyLWRlcGVuZGVudCBraW5ldGljcyBvZiBhY3RpdmF0aW9uIGFuZCBkZWFjdGl2YXRpb24gaW4gY2FyYm9uIG5hbm90dWJlIHBvcHVsYXRpb24gZ3Jvd3RoLnBkZtIXCxgZV05TLmRhdGFPEQK2AAAAAAK2AAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfRGlhbWV0ZXItZGVwZW5kZW50IGsjQTk0MUJBLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKlButNblYQAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNb6eQAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBEaWFtZXRlci1kZXBlbmRlbnQgayNBOTQxQkEucGRmAA4AyABjAEQAaQBhAG0AZQB0AGUAcgAtAGQAZQBwAGUAbgBkAGUAbgB0ACAAawBpAG4AZQB0AGkAYwBzACAAbwBmACAAYQBjAHQAaQB2AGEAdABpAG8AbgAgAGEAbgBkACAAZABlAGEAYwB0AGkAdgBhAHQAaQBvAG4AIABpAG4AIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQAgAHAAbwBwAHUAbABhAHQAaQBvAG4AIABnAHIAbwB3AHQAaAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCPVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9EaWFtZXRlci1kZXBlbmRlbnQga2luZXRpY3Mgb2YgYWN0aXZhdGlvbiBhbmQgZGVhY3RpdmF0aW9uIGluIGNhcmJvbiBuYW5vdHViZSBwb3B1bGF0aW9uIGdyb3d0aC5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A9AD5AQEDuwO9A8IDzQPWA+QD6APvA/gD/QQKBA0EHwQiBCcAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEKQ==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622312005702}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2012.06.051}} @article{ginga:2014, Abstract = {Abstract Waviness is invariably present in vertically-aligned Carbon Nanotubes (CNTs) regardless of how controlled the fabrication process is. This study, using experiments and models, shows that such inherent waviness is the main mechanism by which the effective modulus of \{CNTs\} is reduced by several orders of magnitude. At this time, most studies have shown that the compliant mechanical response of the \{CNT\} forests under compressive loading is due to bending and buckling of \{CNTs\} as well as the variation of \{CNT\} density throughout the forest height. Subjecting \{CNT\} forests to tensile loads as well as to compressive loads, it is shown here that the high compliance of \{CNT\} forests is due to the inherent waviness of individual CNTs, and not necessarily due to bending and buckling of CNTs. The experimental findings are also supported through analytical models and numerical models that show that the \{CNT\} wavy geometry causes the \{CNTs\} to have 4--5 orders of magnitude greater compliance than a straight CNT. }, Author = {Nicholas J. Ginga and Wei Chen and Suresh K. Sitaraman}, Date-Added = {2016-05-13 20:27:11 +0000}, Date-Modified = {2016-05-13 20:27:20 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2013.08.042}, Issn = {0008-6223}, Journal = {Carbon}, Pages = {57 - 66}, Title = {Waviness reduces effective modulus of carbon nanotube forests by several orders of magnitude}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622313008154}, Volume = {66}, Year = {2014}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QYFdhdmluZXNzIHJlZHVjZXMgZWZmZWN0aXZlIG1vZHVsdXMgb2YgY2FyYm9uIG5hbm90dWJlIGZvcmVzdHMgYnkgc2V2ZXJhbCBvcmRlcnMgb2YgbWFnbml0dWRlLnBkZtIXCxgZV05TLmRhdGFPEQKsAAAAAAKsAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfV2F2aW5lc3MgcmVkdWNlcyBlZmYjQTk0MDQ0LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKlARNNblKgAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNb6QgAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBXYXZpbmVzcyByZWR1Y2VzIGVmZiNBOTQwNDQucGRmAA4AwgBgAFcAYQB2AGkAbgBlAHMAcwAgAHIAZQBkAHUAYwBlAHMAIABlAGYAZgBlAGMAdABpAHYAZQAgAG0AbwBkAHUAbAB1AHMAIABvAGYAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQAgAGYAbwByAGUAcwB0AHMAIABiAHkAIABzAGUAdgBlAHIAYQBsACAAbwByAGQAZQByAHMAIABvAGYAIABtAGEAZwBuAGkAdAB1AGQAZQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCMVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9XYXZpbmVzcyByZWR1Y2VzIGVmZmVjdGl2ZSBtb2R1bHVzIG9mIGNhcmJvbiBuYW5vdHViZSBmb3Jlc3RzIGJ5IHNldmVyYWwgb3JkZXJzIG9mIG1hZ25pdHVkZS5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDxAPYA/gOuA7ADtQPAA8kD1wPbA+ID6wPwA/0EAAQSBBUEGgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQc}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622313008154}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2013.08.042}} @article{qiu:2011, Abstract = {The mechanical properties of arrays of curved, intertwined, but nominally vertical carbon nanotubes (CNTs), referred to as turfs, have been measured using nanoindentation. The elastic properties appear to be non-linear; as noted in prior studies the observed tangent modulus decreases with increasing strain. Decreasing adhesion between the turf and probe lowers the perceived stiffness of the material. The elastic properties do not vary significantly between the top and the bottom of a particular carbon nanotube turf; both ends of the turf exhibit an effective modulus on the order of 50 \{MPa\} when several cubic microns of material are tested. Within a single turf the spatial variation in elastic properties is less than 10%, turfs from different growth runs can vary by up to 50%. These observations, in conjunction with in situ compression tests of turfs that buckle near the base rather than in the center of the structure (as would be found during Euler buckling), justifies the use of average mechanical properties for a given vertically aligned turf for design purposes without the need to account for spatial variation in structure. A turf's mechanical properties may depend on imposed strain, and may exhibit local buckling without a gradient in structure. }, Author = {A. Qiu and D.F. Bahr and A.A. Zbib and A. Bellou and S.Dj. Mesarovic and D. McClain and W. Hudson and J. Jiao and D. Kiener and M.J. Cordill}, Date-Added = {2016-05-13 20:22:49 +0000}, Date-Modified = {2016-05-13 20:23:08 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2010.12.011}, Issn = {0008-6223}, Journal = {Carbon}, Number = {4}, Pages = {1430 - 1438}, Title = {Local and non-local behavior and coordinated buckling of \{CNT\} turfs}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622310008900}, Volume = {49}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QRkxvY2FsIGFuZCBub24tbG9jYWwgYmVoYXZpb3IgYW5kIGNvb3JkaW5hdGVkIGJ1Y2tsaW5nIG9mIENOVCB0dXJmcy5wZGbSFwsYGVdOUy5kYXRhTxECXgAAAAACXgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0xvY2FsIGFuZCBub24tbG9jYWwgI0E5M0Q0QS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACpPUrTW5OjAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTW+gDAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToATG9jYWwgYW5kIG5vbi1sb2NhbCAjQTkzRDRBLnBkZgAOAI4ARgBMAG8AYwBhAGwAIABhAG4AZAAgAG4AbwBuAC0AbABvAGMAYQBsACAAYgBlAGgAYQB2AGkAbwByACAAYQBuAGQAIABjAG8AbwByAGQAaQBuAGEAdABlAGQAIABiAHUAYwBrAGwAaQBuAGcAIABvAGYAIABDAE4AVAAgAHQAdQByAGYAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgByVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Mb2NhbCBhbmQgbm9uLWxvY2FsIGJlaGF2aW9yIGFuZCBjb29yZGluYXRlZCBidWNrbGluZyBvZiBDTlQgdHVyZnMucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A1wDcAOQDRgNIA00DWANhA28DcwN6A4MDiAOVA5gDqgOtA7IAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADtA==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622310008900}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2010.12.011}} @article{volder:2011, Abstract = {Vertically aligned carbon nanotube (CNT) 'forest' microstructures fabricated by chemical vapor deposition (CVD) using patterned catalyst films typically have a low CNT density per unit area. As a result, CNT forests have poor bulk properties and are too fragile for integration with microfabrication processing. We introduce a new self-directed capillary densification method where a liquid is controllably condensed onto and evaporated from the CNT forests. Compared to prior approaches, where the substrate with CNTs is immersed in a liquid, our condensation approach gives significantly more uniform structures and enables precise control of the CNT packing density. We present a set of design rules and parametric studies of CNT micropillar densification by self-directed capillary action, and show that self-directed capillary densification enhances Young's modulus and electrical conductivity of CNT micropillars by more than three orders of magnitude. Owing to the outstanding properties of CNTs, this scalable process will be useful for the integration of CNTs as a functional material in microfabricated devices for mechanical, electrical, thermal and biomedical applications.}, Author = {Micha{\"e}l F L De Volder and Sei Jin Park and Sameh H Tawfick and Daniel O Vidaud and A John Hart}, Date-Added = {2016-05-13 20:20:56 +0000}, Date-Modified = {2016-05-13 20:21:05 +0000}, Journal = {Journal of Micromechanics and Microengineering}, Number = {4}, Pages = {045033}, Title = {Fabrication and electrical integration of robust carbon nanotube micropillars by self-directed elastocapillary densification}, Url = {http://stacks.iop.org/0960-1317/21/i=4/a=045033}, Volume = {21}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QgEZhYnJpY2F0aW9uIGFuZCBlbGVjdHJpY2FsIGludGVncmF0aW9uIG9mIHJvYnVzdCBjYXJib24gbmFub3R1YmUgbWljcm9waWxsYXJzIGJ5IHNlbGYtZGlyZWN0ZWQgZWxhc3RvY2FwaWxsYXJ5IGRlbnNpZmljYXRpb24ucGRm0hcLGBlXTlMuZGF0YU8RAwwAAAAAAwwAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9GYWJyaWNhdGlvbiBhbmQgZWxlYyNBOTNDQUMucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqTys01uTeQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA01vn2QAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEZhYnJpY2F0aW9uIGFuZCBlbGVjI0E5M0NBQy5wZGYADgECAIAARgBhAGIAcgBpAGMAYQB0AGkAbwBuACAAYQBuAGQAIABlAGwAZQBjAHQAcgBpAGMAYQBsACAAaQBuAHQAZQBnAHIAYQB0AGkAbwBuACAAbwBmACAAcgBvAGIAdQBzAHQAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQAgAG0AaQBjAHIAbwBwAGkAbABsAGEAcgBzACAAYgB5ACAAcwBlAGwAZgAtAGQAaQByAGUAYwB0AGUAZAAgAGUAbABhAHMAdABvAGMAYQBwAGkAbABsAGEAcgB5ACAAZABlAG4AcwBpAGYAaQBjAGEAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCsVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9GYWJyaWNhdGlvbiBhbmQgZWxlY3RyaWNhbCBpbnRlZ3JhdGlvbiBvZiByb2J1c3QgY2FyYm9uIG5hbm90dWJlIG1pY3JvcGlsbGFycyBieSBzZWxmLWRpcmVjdGVkIGVsYXN0b2NhcGlsbGFyeSBkZW5zaWZpY2F0aW9uLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAREBFgEeBC4EMAQ1BEAESQRXBFsEYgRrBHAEfQSABJIElQSaAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABJw=}, Bdsk-Url-1 = {http://stacks.iop.org/0960-1317/21/i=4/a=045033}} @article{qiu:2013, Abstract = {Solvent capillary and axial compression can be used to increase the density of as-grown vertically aligned carbon nanotube arrays, herein referred to as turfs. During solvent evaporation, carbon nanotubes cluster together along their vertical growth axis, and axial mechanical compression densifies through compressing tubes into tangled positions and decreasing the empty space between tubes in directions primarily perpendicular to the vertical growth axis. The elastic modulus of the turfs, measured by nanoindentation, is between four to fifteen times higher after densification than that of pristine turfs and scales directly with densification ratio, while the adhesive properties remain unchanged. The electrical conductivity of the densified structure also scales with density. This suggests that multiple methods of post-growth modification of \{CNT\} arrays can achieve densified turfs with tailored mechanical properties without corresponding degradation of the electrical contact behavior. }, Author = {Anqi Qiu and David F. Bahr}, Date-Added = {2016-05-13 20:17:20 +0000}, Date-Modified = {2016-05-13 20:17:37 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2012.12.073}, Issn = {0008-6223}, Journal = {Carbon}, Pages = {335 - 342}, Title = {The role of density in the mechanical response of \{CNT\} turfs}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622312010408}, Volume = {55}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QP1RoZSByb2xlIG9mIGRlbnNpdHkgaW4gdGhlIG1lY2hhbmljYWwgcmVzcG9uc2Ugb2YgQ05UIHR1cmZzLnBkZtIXCxgZV05TLmRhdGFPEQJKAAAAAAJKAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfVGhlIHJvbGUgb2YgZGVuc2l0eSAjQTkzNzczLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKk3c9NbklsAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNb5rsAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBUaGUgcm9sZSBvZiBkZW5zaXR5ICNBOTM3NzMucGRmAA4AgAA/AFQAaABlACAAcgBvAGwAZQAgAG8AZgAgAGQAZQBuAHMAaQB0AHkAIABpAG4AIAB0AGgAZQAgAG0AZQBjAGgAYQBuAGkAYwBhAGwAIAByAGUAcwBwAG8AbgBzAGUAIABvAGYAIABDAE4AVAAgAHQAdQByAGYAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBrVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGUgcm9sZSBvZiBkZW5zaXR5IGluIHRoZSBtZWNoYW5pY2FsIHJlc3BvbnNlIG9mIENOVCB0dXJmcy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A0ADVAN0DKwMtAzIDPQNGA1QDWANfA2gDbQN6A30DjwOSA5cAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADmQ==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622312010408}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2012.12.073}} @article{qi:2003, Abstract = {Vertically aligned carbon nanotubes (VACNT) have been a recent subject of intense investigation due to the numerous potential applications of \{VACNTs\} ranging from field emission and vacuum microelectronic devices to the creation of super-hydrophobic surfaces and as a source of well defined CNTs. In this paper, a new method to determine the mechanical properties of \{VACNT\} and constituent nanotubes using nanoindentation tests is proposed. The study of nanoindentation on a \{VACNT\} forest reveals a process whereby nanotubes are consecutively bent during the penetration of the indentor. Therefore, the resistance of a \{VACNT\} forest to penetration is due to successive bending of nanotubes as the indentor encounters nanotubes. Using a micro-mechanical model of the indentation process, the effective bending stiffness (EI)eff of constituent nanotubes in the \{VACNT\} array is then deduced from nanoindentation force-penetration depth curves. A simple method accounting for the multiwalled structure of multiwall nanotubes is used to interpret the obtained (EI)eff in terms of an effective bending modulus Etb, an effective axial modulus Eta, and a wall modulus Etw of a nanotube. Nanoindentation tests on three \{VACNT\} forest samples reveal the effective bending modulus of multiwall carbon nanotubes to be Etb=0.91∼1.24 TPa, and effective axial modulus to be Eta=0.90--1.23 TPa. These values are in good agreement with tests conducted on isolated MWCNTs. Taking the mechanical wall thickness to be 0.075 nm, the nanotube wall modulus is found to be Etw=4.14--5.61 TPa, which is in good agreement with predictions from atomic simulations. The use of nanoindentation together with the proposed micromechanical model of the successive bending of nanotubes as the indentor penetrates into the forest is hereby shown to result in a novel approach for determining not only the dependence of the indentation resistance on the key structural features of the forest (CNT diameter, length and areal density), but also provides a measure of the stiffness of the constituent carbon nanotubes. This new technique requires no special treatment of the samples, making it promising to apply this method to a large number of tests to determine the statistical properties of CNTs, and implying the potential use of this method as a quality control measurement in mass production. }, Author = {H.J. Qi and K.B.K. Teo and K.K.S. Lau and M.C. Boyce and W.I. Milne and J. Robertson and K.K. Gleason}, Date-Added = {2016-05-13 20:14:24 +0000}, Date-Modified = {2016-05-13 20:14:33 +0000}, Doi = {http://dx.doi.org/10.1016/j.jmps.2003.09.015}, Issn = {0022-5096}, Journal = {Journal of the Mechanics and Physics of Solids}, Keywords = {Nanofibers}, Note = {Proceedings of a Symposium on Dynamic Failure and Thin Film Mechanics, honoring Professor L.B. Freund}, Number = {11--12}, Pages = {2213 - 2237}, Title = {Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation}, Url = {http://www.sciencedirect.com/science/article/pii/S0022509603001571}, Volume = {51}, Year = {2003}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qg0RldGVybWluYXRpb24gb2YgbWVjaGFuaWNhbCBwcm9wZXJ0aWVzIG9mIGNhcmJvbiBuYW5vdHViZXMgYW5kIHZlcnRpY2FsbHkgYWxpZ25lZCBjYXJib24gbmFub3R1YmUgZm9yZXN0cyB1c2luZyBuYW5vaW5kZW50YXRpb24ucGRm0hcLGBlXTlMuZGF0YU8RAxYAAAAAAxYAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9EZXRlcm1pbmF0aW9uIG9mIG1lYyNBOTM1NEEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqTVK01uRrAAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA01vmDAAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AERldGVybWluYXRpb24gb2YgbWVjI0E5MzU0QS5wZGYADgEIAIMARABlAHQAZQByAG0AaQBuAGEAdABpAG8AbgAgAG8AZgAgAG0AZQBjAGgAYQBuAGkAYwBhAGwAIABwAHIAbwBwAGUAcgB0AGkAZQBzACAAbwBmACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAgAGEAbgBkACAAdgBlAHIAdABpAGMAYQBsAGwAeQAgAGEAbABpAGcAbgBlAGQAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQAgAGYAbwByAGUAcwB0AHMAIAB1AHMAaQBuAGcAIABuAGEAbgBvAGkAbgBkAGUAbgB0AGEAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCvVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9EZXRlcm1pbmF0aW9uIG9mIG1lY2hhbmljYWwgcHJvcGVydGllcyBvZiBjYXJib24gbmFub3R1YmVzIGFuZCB2ZXJ0aWNhbGx5IGFsaWduZWQgY2FyYm9uIG5hbm90dWJlIGZvcmVzdHMgdXNpbmcgbmFub2luZGVudGF0aW9uLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgEUARkBIQQ7BD0EQgRNBFYEZARoBG8EeAR9BIoEjQSfBKIEpwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAASp}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0022509603001571}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.jmps.2003.09.015}} @article{torabi:2014, Abstract = {Abstract Complex structures consisting of intertwined, nominally vertical carbon nanotubes (CNTs) are called turfs. Under uniform compression experiments, \{CNT\} turfs exhibit irreversible collective buckling of a layer preceded by reorientation of \{CNT\} segments. Experimentally observed independence of the buckling stress and the buckling wavelength on the turf width suggests the existence of an intrinsic material length. To investigate the relationship the macroscopic material properties and the statistical parameters describing the nano-scale geometry of the turf (tortuosity, density and connectivity) we develop a nano-scale computational model, based on the representation of \{CNT\} segments as elastica finite elements with van der Waals interactions. The virtual turfs are generated by means of a constrained random walk algorithm and subsequent relaxation. The resulting computational model is robust and is capable of modeling the collective behavior of CNTs. We first establish the dependence of statistical parameters on the computational parameters used for turf generation, then establish relationships between post-buckling stress, initial elastic modulus and buckling wavelength on statistical turf parameters. Finally, we analyze the reorientation of buckling planes of individual \{CNTs\} during the collective buckling process. }, Author = {Hamid Torabi and Harish Radhakrishnan and Sinisa Dj. Mesarovic}, Date-Added = {2016-05-13 20:11:40 +0000}, Date-Modified = {2016-05-13 20:11:50 +0000}, Doi = {http://dx.doi.org/10.1016/j.jmps.2014.07.009}, Issn = {0022-5096}, Journal = {Journal of the Mechanics and Physics of Solids}, Keywords = {Intrinsic length}, Pages = {144 - 160}, Title = {Micromechanics of collective buckling in \{CNT\} turfs}, Url = {http://www.sciencedirect.com/science/article/pii/S0022509614001471}, Volume = {72}, Year = {2014}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QNk1pY3JvbWVjaGFuaWNzIG9mIGNvbGxlY3RpdmUgYnVja2xpbmcgaW4gQ05UIHR1cmZzLnBkZtIXCxgZV05TLmRhdGFPEQIuAAAAAAIuAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfTWljcm9tZWNoYW5pY3Mgb2YgY28jQTkzMzc1LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKkzddNbkOYAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNb5UYAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBNaWNyb21lY2hhbmljcyBvZiBjbyNBOTMzNzUucGRmAA4AbgA2AE0AaQBjAHIAbwBtAGUAYwBoAGEAbgBpAGMAcwAgAG8AZgAgAGMAbwBsAGwAZQBjAHQAaQB2AGUAIABiAHUAYwBrAGwAaQBuAGcAIABpAG4AIABDAE4AVAAgAHQAdQByAGYAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBiVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NaWNyb21lY2hhbmljcyBvZiBjb2xsZWN0aXZlIGJ1Y2tsaW5nIGluIENOVCB0dXJmcy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDHAMwA1AMGAwgDDQMYAyEDLwMzAzoDQwNIA1UDWANqA20DcgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAN0}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0022509614001471}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.jmps.2014.07.009}} @article{radhakrishnan:2013, Abstract = {Abstract Carbon nanotubes (CNT), grown on a substrate, form a turf -- a complex structure of intertwined, mostly nominally vertical tubes, cross-linked by adhesive contact and few bracing tubes. The turfs are compliant and good thermal and electrical conductors. In this paper, we consider the micromechanical analysis of the turf deformation reported earlier, and develop a phenomenological constitutive model of the turf. We benchmark the developed model using a finite element implementation and compare the model predictions to the results two different nanoindentation tests. The model includes: nonlinear elastic deformation, small Kelvin--Voigt type relaxation, caused by the thermally activated sliding of contacts, and adhesive contact between the turf and the indenter. The pre-existing (locked-in) strain energy of bent nanotubes produces a high initial tangent modulus, followed by an order of magnitude decrease in the tangent modulus with increasing deformation. The strong adhesion between the turf and indenter tip is due to the van der Waals interactions. The finite element simulations capture the results from the nanoindentation experiments, including the loading, unloading, viscoelastic relaxation during hold, and adhesive pull-off. }, Author = {H. Radhakrishnan and S.Dj. Mesarovic and A. Qiu and D.F. Bahr}, Date-Added = {2016-05-13 20:09:10 +0000}, Date-Modified = {2016-05-13 20:09:24 +0000}, Doi = {http://dx.doi.org/10.1016/j.ijsolstr.2013.03.025}, Issn = {0020-7683}, Journal = {International Journal of Solids and Structures}, Keywords = {Viscoelasticity}, Number = {14--15}, Pages = {2224 - 2230}, Title = {Phenomenological constitutive model for a \{CNT\} turf}, Url = {http://www.sciencedirect.com/science/article/pii/S0020768313001340}, Volume = {50}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QNlBoZW5vbWVub2xvZ2ljYWwgY29uc3RpdHV0aXZlIG1vZGVsIGZvciBhIENOVCB0dXJmLnBkZtIXCxgZV05TLmRhdGFPEQIuAAAAAAIuAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfUGhlbm9tZW5vbG9naWNhbCBjb24jQTkzMjE1LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKkyFdNbkGsAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNb5MsAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBQaGVub21lbm9sb2dpY2FsIGNvbiNBOTMyMTUucGRmAA4AbgA2AFAAaABlAG4AbwBtAGUAbgBvAGwAbwBnAGkAYwBhAGwAIABjAG8AbgBzAHQAaQB0AHUAdABpAHYAZQAgAG0AbwBkAGUAbAAgAGYAbwByACAAYQAgAEMATgBUACAAdAB1AHIAZgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBiVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9QaGVub21lbm9sb2dpY2FsIGNvbnN0aXR1dGl2ZSBtb2RlbCBmb3IgYSBDTlQgdHVyZi5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDHAMwA1AMGAwgDDQMYAyEDLwMzAzoDQwNIA1UDWANqA20DcgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAN0}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0020768313001340}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.ijsolstr.2013.03.025}} @article{abadi:2014, Abstract = {Abstract The mechanical behavior of carbon nanotube (CNT) forests soaked in three solvents -- toluene, acetonitrile, and isopropanol -- is examined. Effective stiffness of the structure is evaluated in the dry and wet condition by micro-indentation using a 100 μm flat punch. With soaking of \{CNT\} forests in solvents, the stiffness decreases and deformation mechanism changes from buckling concentrated close to the bottom of the \{CNT\} forest to a distribution of local buckles along the height and global buckling of the entire length of CNTs. We use molecular dynamics simulations to relate the experimental observations to the reduced mechanical support from neighbor \{CNTs\} due to a decreased magnitude of van der Waals (vdW) interactions in the presence of solvents. Toluene, which produces the lowest average measured stiffness between the three solvents, produces the lowest vdW forces between individual CNTs. Furthermore, wet--dry cycling of \{CNT\} forests shows the reversibility and repeatability of change of stiffness by immersing in solvents. The results show that soaking \{CNT\} forests in solvents could be useful for applications such as interface materials where lower stiffness of \{CNT\} forests are needed and applications such as energy absorbing materials in which re-setting of stiffness is required. }, Author = {Parisa Pour Shahid Saeed Abadi and Matthew R. Maschmann and S.M. Mortuza and Soumik Banerjee and Jeffery W. Baur and Samuel Graham and Baratunde A. Cola}, Date-Added = {2016-05-13 20:04:22 +0000}, Date-Modified = {2016-05-13 20:04:43 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2013.12.004}, Issn = {0008-6223}, Journal = {Carbon}, Pages = {178 - 187}, Title = {Reversible tailoring of mechanical properties of carbon nanotube forests by immersing in solvents}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622313011469}, Volume = {69}, Year = {2014}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QZVJldmVyc2libGUgdGFpbG9yaW5nIG9mIG1lY2hhbmljYWwgcHJvcGVydGllcyBvZiBjYXJib24gbmFub3R1YmUgZm9yZXN0cyBieSBpbW1lcnNpbmcgaW4gc29sdmVudHMucGRm0hcLGBlXTlMuZGF0YU8RArwAAAAAArwAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9SZXZlcnNpYmxlIHRhaWxvcmluZyNBOTJGNEYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqS9P01uPpwAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA01vkBwAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFJldmVyc2libGUgdGFpbG9yaW5nI0E5MkY0Ri5wZGYADgDMAGUAUgBlAHYAZQByAHMAaQBiAGwAZQAgAHQAYQBpAGwAbwByAGkAbgBnACAAbwBmACAAbQBlAGMAaABhAG4AaQBjAGEAbAAgAHAAcgBvAHAAZQByAHQAaQBlAHMAIABvAGYAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQAgAGYAbwByAGUAcwB0AHMAIABiAHkAIABpAG0AbQBlAHIAcwBpAG4AZwAgAGkAbgAgAHMAbwBsAHYAZQBuAHQAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCRVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9SZXZlcnNpYmxlIHRhaWxvcmluZyBvZiBtZWNoYW5pY2FsIHByb3BlcnRpZXMgb2YgY2FyYm9uIG5hbm90dWJlIGZvcmVzdHMgYnkgaW1tZXJzaW5nIGluIHNvbHZlbnRzLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgD2APsBAwPDA8UDygPVA94D7APwA/cEAAQFBBIEFQQnBCoELwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQx}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622313011469}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2013.12.004}} @article{bae:2016, Abstract = {Abstract Versatile films composed of a photo-crosslinkable thiol-ene (ThE)/silica sol--gel hybrid nanocomposite were prepared using a two-step process. Tetrafunctional thiol and triene monomers were employed as precursors to generate a matrix polymer. Tetraethyl orthosilicate (TEOS) was incorporated as the silica source for the sol--gel process. A two-step process, sol--gel reaction followed by photocuring, resulted in uniform and transparent hybrid thin films. The formation of homogeneous, mechanically stable, and optically transparent films was confirmed and the films were characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses. The morphological properties of the films were assessed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The thermal expansion of the obtained membrane films was examined by thermomechanical analysis (TMA). In addition, optical transmission and gas permeation were assessed for high-performance applications. }, Author = {Joonwon Bae and Jiyeon Lee and Chul Soon Park and Oh Seok Kwon and Chang-Soo Lee}, Date-Added = {2016-05-13 20:01:46 +0000}, Date-Modified = {2016-05-13 20:02:11 +0000}, Doi = {http://dx.doi.org/10.1016/j.jiec.2016.04.007}, Issn = {1226-086X}, Journal = {Journal of Industrial and Engineering Chemistry}, Keywords = {Photo-crosslink}, Pages = {-}, Title = {Fabrication of photo-crosslinkable polymer/silica sol--gel hybrid thin films as versatile barrier films}, Url = {http://www.sciencedirect.com/science/article/pii/S1226086X16300739}, Year = {2016}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YW8QagBGAGEAYgByAGkAYwBhAHQAaQBvAG4AIABvAGYAIABwAGgAbwB0AG8ALQBjAHIAbwBzAHMAbABpAG4AawBhAGIAbABlACAAcABvAGwAeQBtAGUAcgA6AHMAaQBsAGkAYwBhACAAcwBvAGwgEwBnAGUAbAAgAGgAeQBiAHIAaQBkACAAdABoAGkAbgAgAGYAaQBsAG0AcwAgAGEAcwAgAHYAZQByAHMAYQB0AGkAbABlACAAYgBhAHIAcgBpAGUAcgAgAGYAaQBsAG0AcwAuAHAAZABm0hcLGBlXTlMuZGF0YU8RAswAAAAAAswAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9GYWJyaWNhdGlvbiBvZiBwaG90byNBOTJDM0UucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqSw+01uOsQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA01vjEQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEZhYnJpY2F0aW9uIG9mIHBob3RvI0E5MkMzRS5wZGYADgDWAGoARgBhAGIAcgBpAGMAYQB0AGkAbwBuACAAbwBmACAAcABoAG8AdABvAC0AYwByAG8AcwBzAGwAaQBuAGsAYQBiAGwAZQAgAHAAbwBsAHkAbQBlAHIALwBzAGkAbABpAGMAYQAgAHMAbwBsIBMAZwBlAGwAIABoAHkAYgByAGkAZAAgAHQAaABpAG4AIABmAGkAbABtAHMAIABhAHMAIAB2AGUAcgBzAGEAdABpAGwAZQAgAGIAYQByAHIAaQBlAHIAIABmAGkAbABtAHMALgBwAGQAZgAPABAABwBMAHUAbgBkAFMAUwBEABIAmFVzZXJzL2phc29uL0RvY3VtZW50cy9SZXNlYXJjaC9CaWJsaW9ncmFwaHkvRmFicmljYXRpb24gb2YgcGhvdG8tY3Jvc3NsaW5rYWJsZSBwb2x5bWVyOnNpbGljYSBzb2zigJNnZWwgaHlicmlkIHRoaW4gZmlsbXMgYXMgdmVyc2F0aWxlIGJhcnJpZXIgZmlsbXMucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BZQFqAXIEQgREBEkEVARdBGsEbwR2BH8EhASRBJQEpgSpBK4AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEsA==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S1226086X16300739}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.jiec.2016.04.007}} @Article{lee:1995, author = {Daehee Lee and Peter C. Stevens and Shou Quan Zeng and Arlon J. Hunt}, title = {Thermal characterization of carbon-opacified silica aerogels}, journal = {Journal of Non-Crystalline Solids}, year = {1995}, volume = {186}, pages = {285 - 290}, issn = {0022-3093}, note = {Proceedings of the Fourth International Symposium on {AEROGELS}}, abstract = {A new method to introduce carbon into aerogels to block the infrared component of radiant heat transfer within the aerogel was developed to improve the thermal properties of silica aerogel. Chemical vapor infiltration and heat treatment were used to deposit and grow nanophase carbon deposits inside the aerogel. Infrared measurements were performed on the doped material to determine the absorption. A vacuum thermal tester was used to measure the thermal conductivity as a function of air pressure and specimen temperature on flat plate aerogel samples. }, bdsk-file-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QQFRoZXJtYWwgY2hhcmFjdGVyaXphdGlvbiBvZiBjYXJib24tb3BhY2lmaWVkIHNpbGljYSBhZXJvZ2Vscy5wZGbSFwsYGVdOUy5kYXRhTxECTAAAAAACTAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1RoZXJtYWwgY2hhcmFjdGVyaXphI0E5MjYyNC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACpJiTTW4xhAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTW+DBAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVGhlcm1hbCBjaGFyYWN0ZXJpemEjQTkyNjI0LnBkZgAOAIIAQABUAGgAZQByAG0AYQBsACAAYwBoAGEAcgBhAGMAdABlAHIAaQB6AGEAdABpAG8AbgAgAG8AZgAgAGMAYQByAGIAbwBuAC0AbwBwAGEAYwBpAGYAaQBlAGQAIABzAGkAbABpAGMAYQAgAGEAZQByAG8AZwBlAGwAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBsVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGVybWFsIGNoYXJhY3Rlcml6YXRpb24gb2YgY2FyYm9uLW9wYWNpZmllZCBzaWxpY2EgYWVyb2dlbHMucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A0QDWAN4DLgMwAzUDQANJA1cDWwNiA2sDcAN9A4ADkgOVA5oAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADnA==}, bdsk-url-1 = {http://www.sciencedirect.com/science/article/pii/0022309395000550}, bdsk-url-2 = {http://dx.doi.org/10.1016/0022-3093(95)00055-0}, date-added = {2016-05-13 19:52:36 +0000}, date-modified = {2016-05-13 19:52:56 +0000}, doi = {http://dx.doi.org/10.1016/0022-3093(95)00055-0}, url = {http://www.sciencedirect.com/science/article/pii/0022309395000550}, } @Article{zeng:1995, author = {S.Q. Zeng and A. Hunt and R. Greif}, title = {Theoretical modeling of carbon content to minimize heat transfer in silica aerogel}, journal = {Journal of Non-Crystalline Solids}, year = {1995}, volume = {186}, pages = {271 - 277}, issn = {0022-3093}, note = {Proceedings of the Fourth International Symposium on {AEROGELS}}, abstract = {Silica aerogel has a small absorption coefficient over the range 3--8 μm where significant thermal energy is transferred by radiation. Adding carbon to silica aerogel reduces thermal radiation but increases solid conduction. Whether the total energy transfer increases or decreases depends on the carbon content. This paper presents a theoretical method for determining the optimal carbon-loading level in silica aerogel to minimize the energy transfer. This method includes calculation of heat transport by coupled conduction and radiation through aerogel which is optically thin in some spectral ranges and thick in others, and the calculation of solid conductivity and spectral absorption coefficient, both of which vary with the carbon content. At ambient temperature, about 8% carbon in silica aerogel can lower the total energy transfer by about 13. At temperatures as high as 600 K, non-opacified aerogel has a total energy transfer that is 10 times bigger than that of opacified aerogel with optimal carbon content. The optimal carbon content that minimizes total energy transfer increases linearly with temperature. }, bdsk-file-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QVlRoZW9yZXRpY2FsIG1vZGVsaW5nIG9mIGNhcmJvbiBjb250ZW50IHRvIG1pbmltaXplIGhlYXQgdHJhbnNmZXIgaW4gc2lsaWNhIGFlcm9nZWwucGRm0hcLGBlXTlMuZGF0YU8RAo4AAAAAAo4AAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9UaGVvcmV0aWNhbCBtb2RlbGluZyNBOTIzN0EucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqSN601uL0gAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA01vgMgAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFRoZW9yZXRpY2FsIG1vZGVsaW5nI0E5MjM3QS5wZGYADgCuAFYAVABoAGUAbwByAGUAdABpAGMAYQBsACAAbQBvAGQAZQBsAGkAbgBnACAAbwBmACAAYwBhAHIAYgBvAG4AIABjAG8AbgB0AGUAbgB0ACAAdABvACAAbQBpAG4AaQBtAGkAegBlACAAaABlAGEAdAAgAHQAcgBhAG4AcwBmAGUAcgAgAGkAbgAgAHMAaQBsAGkAYwBhACAAYQBlAHIAbwBnAGUAbAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCCVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGVvcmV0aWNhbCBtb2RlbGluZyBvZiBjYXJib24gY29udGVudCB0byBtaW5pbWl6ZSBoZWF0IHRyYW5zZmVyIGluIHNpbGljYSBhZXJvZ2VsLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOcA7AD0A4YDiAONA5gDoQOvA7MDugPDA8gD1QPYA+oD7QPyAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA/Q=}, bdsk-file-2 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QHi4uLy4uLy4uL0Rvd25sb2Fkcy9zY2llbmNlLmJpYtIXCxgZV05TLmRhdGFPEQFiAAAAAAFiAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPs8kLc2NpZW5jZS5iaWIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxiTNVkD+YAAAAAAAAAAAADAAIAAAkgAAAAAAAAAAAAAAAAAAAACURvd25sb2FkcwAAEAAIAADRqs8IAAAAEQAIAADVZGRGAAAAAQAMAA+zyQAPocAAD6G8AAIALEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb3dubG9hZHM6AHNjaWVuY2UuYmliAA4AGAALAHMAYwBpAGUAbgBjAGUALgBiAGkAYgAPABAABwBMAHUAbgBkAFMAUwBEABIAIVVzZXJzL2phc29uL0Rvd25sb2Fkcy9zY2llbmNlLmJpYgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgCvALQAvAIiAiQCKQI0Aj0CSwJPAlYCXwJkAnECdAKGAokCjgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAKQ}, bdsk-url-1 = {http://www.sciencedirect.com/science/article/pii/0022309395000763}, bdsk-url-2 = {http://dx.doi.org/10.1016/0022-3093(95)00076-3}, date-added = {2016-05-13 19:48:21 +0000}, date-modified = {2016-05-13 19:48:32 +0000}, doi = {http://dx.doi.org/10.1016/0022-3093(95)00076-3}, url = {http://www.sciencedirect.com/science/article/pii/0022309395000763}, } @article{Bauer20112960, Abstract = {The limiting constraint in a growing number of nano systems is the inability to thermally tune devices. Silica aerogel is widely accepted as the best solid thermal insulator in existence and offers a promising solution for microelectronic systems needing superior thermal isolation. In this study, thin-film silica aerogel films varying in thickness from 250 to 1280 nm were deposited on SiO2 substrates under a variety of deposition conditions. These samples were then thermally characterized using the 3ω technique. Deposition processes for depositing the 3ω testing mask to the sample were optimized and it was demonstrated that thin-film aerogel can maintain its structure in common fabrication processes for microelectromechanical systems. Results indicate that thin-film silica aerogel can maintain the unique, ultra-low thermal conductivity commonly observed in bulk aerogel, with a directly measured thermal conductivity as low as 0.024 W/m-K at temperature of 295 K and pressure between 0.1 and 1 Pa. }, Author = {M.L. Bauer and C.M. Bauer and M.C. Fish and R.E. Matthews and G.T. Garner and A.W. Litchenberger and P.M. Norris}, Date-Added = {2016-05-13 19:40:51 +0000}, Date-Modified = {2016-05-13 19:40:51 +0000}, Doi = {http://dx.doi.org/10.1016/j.jnoncrysol.2011.03.042}, Issn = {0022-3093}, Journal = {Journal of Non-Crystalline Solids}, Keywords = {3ω technique}, Number = {15}, Pages = {2960 - 2965}, Title = {Thin-film aerogel thermal conductivity measurements via 3ω}, Url = {http://www.sciencedirect.com/science/article/pii/S0022309311002742}, Volume = {357}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YW8QPgBUAGgAaQBuAC0AZgBpAGwAbQAgAGEAZQByAG8AZwBlAGwAIAB0AGgAZQByAG0AYQBsACAAYwBvAG4AZAB1AGMAdABpAHYAaQB0AHkAIABtAGUAYQBzAHUAcgBlAG0AZQBuAHQAcwAgAHYAaQBhACAAMwPJAC4AcABkAGbSFwsYGVdOUy5kYXRhTxECSAAAAAACSAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1RoaW4tZmlsbSBhZXJvZ2VsIHRoI0E5MUJFOC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACpG+jTW4mEAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTW93kAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVGhpbi1maWxtIGFlcm9nZWwgdGgjQTkxQkU4LnBkZgAOAH4APgBUAGgAaQBuAC0AZgBpAGwAbQAgAGEAZQByAG8AZwBlAGwAIAB0AGgAZQByAG0AYQBsACAAYwBvAG4AZAB1AGMAdABpAHYAaQB0AHkAIABtAGUAYQBzAHUAcgBlAG0AZQBuAHQAcwAgAHYAaQBhACAAMwPJAC4AcABkAGYADwAQAAcATAB1AG4AZABTAFMARAASAGtVc2Vycy9qYXNvbi9Eb2N1bWVudHMvUmVzZWFyY2gvQmlibGlvZ3JhcGh5L1RoaW4tZmlsbSBhZXJvZ2VsIHRoZXJtYWwgY29uZHVjdGl2aXR5IG1lYXN1cmVtZW50cyB2aWEgM8+JLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgENARIBGgNmA2gDbQN4A4EDjwOTA5oDowOoA7UDuAPKA80D0gAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAPU}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0022309311002742}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.jnoncrysol.2011.03.042}} @article{zhao:2015, Abstract = {Abstract In this work, we presented that the Seebeck coefficient and electrical conductivity can be increased simultaneously in aerogels based on graphene and multi-walled carbon nanotube (graphene-MWCNT) nanocomposites, and at the same time the thermal conductivity is depressed due to 3D porous skeleton structure. As a result, graphene-MWCNT aerogels possess ultra-low thermal conductivities (∼0.056 W m−1 K−1) and apparent density (∼24 kg m−3), thereafter the figure of merit (ZT) of ∼0.001 is achieved. Although the \{ZT\} value is too low for practical application as a thermoelectric (TE) material, the unique structure in this project provides a potential way to overcome the challenge in bulk semiconductors that increasing electrical conductivity generally leads to decreased Seebeck coefficient and enhanced thermal conductivity. }, Author = {Lijuan Zhao and Xijing Sun and Zhouyue Lei and Jinghong Zhao and Jinrong Wu and Quan Li and Aiping Zhang}, Date-Added = {2016-05-13 19:35:44 +0000}, Date-Modified = {2016-05-13 19:35:54 +0000}, Doi = {http://dx.doi.org/10.1016/j.compositesb.2015.08.063}, Issn = {1359-8368}, Journal = {Composites Part B: Engineering}, Keywords = {Energy conversion}, Pages = {317 - 322}, Title = {Thermoelectric behavior of aerogels based on graphene and multi-walled carbon nanotube nanocomposites}, Url = {http://www.sciencedirect.com/science/article/pii/S135983681500503X}, Volume = {83}, Year = {2015}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S135983681500503X}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.compositesb.2015.08.063}} @article{chavezValdez:2011, Abstract = {Thermal conductivity of electrophoretically deposited fly ash (FA) and fly-ash cenosphere (FAC) coatings was measured in the range 100--500 K by the 3ω method. The room temperature thermal conductivity in \{FAC\} coatings is found to be as low as 0.08 W m K−1 and slightly higher for \{FA\} coatings. The reduction in the thermal conductivity is related mainly to the air-filled core of the cenospheres and the coating's porosity, which produces a strong heat barrier. The sintering process of the \{FAC\} and \{FA\} coatings at 1000, 1100 and 1200 $\,^{\circ}$C slightly increases the thermal conductivity as a result of changes in microstructure. The temperature dependence of the effective thermal conductivity of the coatings was modeled within the framework of the self-consistent field concept and a modified Maxwell equation. These results suggest a route for obtaining suitable thermal barrier coatings for high-temperature applications.}, Author = {A. Ch{\'a}vez-Valdez and A. Arizmendi-Morquecho and G. Vargas and J.M. Almanza and J. Alvarez-Quintana}, Date-Added = {2016-05-13 19:28:10 +0000}, Date-Modified = {2016-05-13 19:31:41 +0000}, Journal = {Acta Materialia}, Number = {6}, Pages = {2556 - 2562}, Title = {Ultra-low thermal conductivity thermal barrier coatings from recycled fly-ash cenospheres}, Volume = {59}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QXVVsdHJhLWxvdyB0aGVybWFsIGNvbmR1Y3Rpdml0eSB0aGVybWFsIGJhcnJpZXIgY29hdGluZ3MgZnJvbSByZWN5Y2xlZCBmbHktYXNoIGNlbm9zcGhlcmVzLnBkZtIXCxgZV05TLmRhdGFPEQKkAAAAAAKkAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfVWx0cmEtbG93IHRoZXJtYWwgY28jQTkxM0ZCLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKkT+9NbhpAAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNb2vAAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBVbHRyYS1sb3cgdGhlcm1hbCBjbyNBOTEzRkIucGRmAA4AvABdAFUAbAB0AHIAYQAtAGwAbwB3ACAAdABoAGUAcgBtAGEAbAAgAGMAbwBuAGQAdQBjAHQAaQB2AGkAdAB5ACAAdABoAGUAcgBtAGEAbAAgAGIAYQByAHIAaQBlAHIAIABjAG8AYQB0AGkAbgBnAHMAIABmAHIAbwBtACAAcgBlAGMAeQBjAGwAZQBkACAAZgBsAHkALQBhAHMAaAAgAGMAZQBuAG8AcwBwAGgAZQByAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCJVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9VbHRyYS1sb3cgdGhlcm1hbCBjb25kdWN0aXZpdHkgdGhlcm1hbCBiYXJyaWVyIGNvYXRpbmdzIGZyb20gcmVjeWNsZWQgZmx5LWFzaCBjZW5vc3BoZXJlcy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A7gDzAPsDowOlA6oDtQO+A8wD0APXA+AD5QPyA/UEBwQKBA8AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEEQ==}} @article{zhao:2016, Abstract = {Abstract To improve the mechanical performance and to develop multifunctionality, strengthening agents or functional nanoparticles are introduced into carbon nanotube (CNT) fibers. Here, a new post-spin treatment is realized for a high level of infiltration based on the vibration-induced loosening of \{CNT\} bundles. The vibration-assisted infiltration of terephthalic acid and bismaleimide improved the tensile strength from 1.79 GPa to 2.11--2.26 GPa. After increasing the loading amount of Pt and Au nanoparticles with the vibration, the fiber became highly electrically conducting (conductivity improved from 584 S cm−1 to 1245--2393 S cm−1) and very sensitive for the enhanced Raman spectroscopy of rhodamine dyes. }, Author = {Jingna Zhao and Qingsong Li and Bing Gao and Xinhao Wang and Jingyun Zou and Shan Cong and Xiaohua Zhang and Zhijuan Pan and Qingwen Li}, Date-Added = {2016-05-13 19:23:14 +0000}, Date-Modified = {2016-05-13 19:23:25 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2016.01.085}, Issn = {0008-6223}, Journal = {Carbon}, Pages = {114 - 119}, Title = {Vibration-assisted infiltration of nano-compounds to strengthen and functionalize carbon nanotube fibers}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622316300732}, Volume = {101}, Year = {2016}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QbFZpYnJhdGlvbi1hc3Npc3RlZCBpbmZpbHRyYXRpb24gb2YgbmFuby1jb21wb3VuZHMgdG8gc3RyZW5ndGhlbiBhbmQgZnVuY3Rpb25hbGl6ZSBjYXJib24gbmFub3R1YmUgZmliZXJzLnBkZtIXCxgZV05TLmRhdGFPEQLQAAAAAALQAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfVmlicmF0aW9uLWFzc2lzdGVkIGkjQTkxMEU5LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKkQ6dNbhaMAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNb2gMAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBWaWJyYXRpb24tYXNzaXN0ZWQgaSNBOTEwRTkucGRmAA4A2gBsAFYAaQBiAHIAYQB0AGkAbwBuAC0AYQBzAHMAaQBzAHQAZQBkACAAaQBuAGYAaQBsAHQAcgBhAHQAaQBvAG4AIABvAGYAIABuAGEAbgBvAC0AYwBvAG0AcABvAHUAbgBkAHMAIAB0AG8AIABzAHQAcgBlAG4AZwB0AGgAZQBuACAAYQBuAGQAIABmAHUAbgBjAHQAaQBvAG4AYQBsAGkAegBlACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABmAGkAYgBlAHIAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCYVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9WaWJyYXRpb24tYXNzaXN0ZWQgaW5maWx0cmF0aW9uIG9mIG5hbm8tY29tcG91bmRzIHRvIHN0cmVuZ3RoZW4gYW5kIGZ1bmN0aW9uYWxpemUgY2FyYm9uIG5hbm90dWJlIGZpYmVycy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgD9AQIBCgPeA+AD5QPwA/kEBwQLBBIEGwQgBC0EMARCBEUESgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAARM}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622316300732}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2016.01.085}} @article{feng:2016, Abstract = {Abstract Graphene nanomesh (GNM), a new nanostructure of graphene, has attracted extensive interest recently due to the promising chemical, electronic and photonic applications. In this paper, another important property -- thermal conductivity is systematically investigated by using molecular dynamics simulations. The thermal conductivity (κ) is found to be extremely low, up to more than 3 orders lower than the pristine single layer graphene. Roughly, κ decreases exponentially with increasing porosity and linearly with decreasing neck width, and is not temperature sensitive in the range of 300 K--700 K. κ of \{GNMs\} is found to be even up to 200-fold lower than the graphene nanoribbons (GNR), a potential thermoelectric material, of the same neck width and boundary-to-area ratio. The extremely low κ in the \{GNM\} makes it a potential candidate for thermoelectrics. The phonon participation spectra show that the low κ in \{GNM\} is due to the localization and phonon back scattering around the nanopores. We also find that the phonon coherence in two dimensional superlattice \{GNM\} indeed exists, but is not as important as in the one dimensional superlattices. The isotope effect is negligible. The thermal conductivity reduction by edge passivation increases with increasing neck width and porosity. }, Author = {Tianli Feng and Xiulin Ruan}, Date-Added = {2016-05-13 19:20:58 +0000}, Date-Modified = {2016-05-13 19:21:09 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2016.01.082}, Issn = {0008-6223}, Journal = {Carbon}, Pages = {107 - 113}, Title = {Ultra-low thermal conductivity in graphene nanomesh}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622316300707}, Volume = {101}, Year = {2016}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QN1VsdHJhLWxvdyB0aGVybWFsIGNvbmR1Y3Rpdml0eSBpbiBncmFwaGVuZSBuYW5vbWVzaC5wZGbSFwsYGVdOUy5kYXRhTxECMgAAAAACMgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1VsdHJhLWxvdyB0aGVybWFsIGNvI0E5MEUyQi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACpDivTW4T4AAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTW9lYAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVWx0cmEtbG93IHRoZXJtYWwgY28jQTkwRTJCLnBkZgAOAHAANwBVAGwAdAByAGEALQBsAG8AdwAgAHQAaABlAHIAbQBhAGwAIABjAG8AbgBkAHUAYwB0AGkAdgBpAHQAeQAgAGkAbgAgAGcAcgBhAHAAaABlAG4AZQAgAG4AYQBuAG8AbQBlAHMAaAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBjVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9VbHRyYS1sb3cgdGhlcm1hbCBjb25kdWN0aXZpdHkgaW4gZ3JhcGhlbmUgbmFub21lc2gucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAMgAzQDVAwsDDQMSAx0DJgM0AzgDPwNIA00DWgNdA28DcgN3AAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA3k=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622316300707}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2016.01.082}} @article{he:2016, Abstract = {Abstract Novel aerogels/fibrous ceramic composite, inspired by the bird's nest structure in nature, is synthesized using mullite fibers as matrix and ZrO2--SiO2 aerogels as filler through vacuum impregnation. Thus, the macropore of mullite fiber perform are filled by aerogels to form similar bird's nest structure with high porosity (85%) with a large amount of mesoporous. The as-prepared aerogels/fibrous ceramic composite exhibits high compressive strength of up to 1.05 \{MPa\} which is approximately two times as much as that of mullite fiber perform and ten times higher than that of pure aerogels, and the compressive failure mechanism is analyzed. Compared to conventional fibrous materials, the aerogels/fibrous ceramic composite shows a much lower thermal conductivity of 0.0524 W m−1 K−1 at room temperature and 0.082--0.182 W m−1 K−1 during 500 $\,^{\circ}$C and 1200 $\,^{\circ}$C indicating its excellent thermal insulation property in a wide temperature range. Therefore, this ultra-low thermal conductivity aerogels/fibrous ceramic composite with high strength is an excellent heat-insulation material applied in the fields of aerospace. }, Author = {Jian He and Xiaolei Li and Dong Su and Huiming Ji and XiaoJing Wang}, Date-Added = {2016-05-13 18:58:40 +0000}, Date-Modified = {2016-05-13 18:58:50 +0000}, Doi = {http://dx.doi.org/10.1016/j.jeurceramsoc.2015.11.021}, Issn = {0955-2219}, Journal = {Journal of the European Ceramic Society}, Keywords = {Mechanical property}, Number = {6}, Pages = {1487 - 1493}, Title = {Ultra-low thermal conductivity and high strength of aerogels/fibrous ceramic composites}, Url = {http://www.sciencedirect.com/science/article/pii/S0955221915302302}, Volume = {36}, Year = {2016}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QW1VsdHJhLWxvdyB0aGVybWFsIGNvbmR1Y3Rpdml0eSBhbmQgaGlnaCBzdHJlbmd0aCBvZiBhZXJvZ2VsczpmaWJyb3VzIGNlcmFtaWMgY29tcG9zaXRlcy5wZGbSFwsYGVdOUy5kYXRhTxECngAAAAACngACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1VsdHJhLWxvdyB0aGVybWFsIGNvI0E5MDlBQy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACpCazTW4AfAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTW9R/AAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVWx0cmEtbG93IHRoZXJtYWwgY28jQTkwOUFDLnBkZgAOALgAWwBVAGwAdAByAGEALQBsAG8AdwAgAHQAaABlAHIAbQBhAGwAIABjAG8AbgBkAHUAYwB0AGkAdgBpAHQAeQAgAGEAbgBkACAAaABpAGcAaAAgAHMAdAByAGUAbgBnAHQAaAAgAG8AZgAgAGEAZQByAG8AZwBlAGwAcwAvAGYAaQBiAHIAbwB1AHMAIABjAGUAcgBhAG0AaQBjACAAYwBvAG0AcABvAHMAaQB0AGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCHVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9VbHRyYS1sb3cgdGhlcm1hbCBjb25kdWN0aXZpdHkgYW5kIGhpZ2ggc3RyZW5ndGggb2YgYWVyb2dlbHM6Zmlicm91cyBjZXJhbWljIGNvbXBvc2l0ZXMucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOwA8QD5A5sDnQOiA60DtgPEA8gDzwPYA90D6gPtA/8EAgQHAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABAk=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0955221915302302}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.jeurceramsoc.2015.11.021}} @article{han:2013, Abstract = {Abstract Porous anorthite ceramics with an ultra-low thermal conductivity of 0.018 W/m K have been fabricated by hydrous foam-gelcasting process and pressureless sintering method using γ-alumina, calcium carbonate and silica powders as raw materials. Microstructure and phase composition were analyzed by \{SEM\} and \{XRD\} respectively. Properties such as porosity, pore size distribution and thermal conductivity were measured. High porosity (69--91%) and low thermal conductivity (0.018--0.13 W/m K) were obtained after sintering samples with different catalyst additions at 1300--1450 $\,^{\circ}$C. Porosity, pore size, pore structure and grain size had obvious effect on heat conduction, resulting in the low thermal conductivity. The experimental thermal conductivity data of porous anorthite ceramics were found to be fit well with the computed values derived from a universal model. }, Author = {Yao Han and Cuiwei Li and Chao Bian and Shibo Li and Chang-An Wang}, Date-Added = {2016-05-12 21:15:12 +0000}, Date-Modified = {2016-05-12 21:15:28 +0000}, Doi = {http://dx.doi.org/10.1016/j.jeurceramsoc.2013.04.006}, Issn = {0955-2219}, Journal = {Journal of the European Ceramic Society}, Keywords = {Foam-gelcasting}, Number = {13--14}, Pages = {2573 - 2578}, Title = {Porous anorthite ceramics with ultra-low thermal conductivity}, Url = {http://www.sciencedirect.com/science/article/pii/S0955221913002033}, Volume = {33}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QQVBvcm91cyBhbm9ydGhpdGUgY2VyYW1pY3Mgd2l0aCB1bHRyYS1sb3cgdGhlcm1hbCBjb25kdWN0aXZpdHkucGRm0hcLGBlXTlMuZGF0YU8RAlAAAAAAAlAAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9Qb3JvdXMgYW5vcnRoaXRlIGNlciNBODkzNUEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJNa01pO1gAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA01qjNgAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFBvcm91cyBhbm9ydGhpdGUgY2VyI0E4OTM1QS5wZGYADgCEAEEAUABvAHIAbwB1AHMAIABhAG4AbwByAHQAaABpAHQAZQAgAGMAZQByAGEAbQBpAGMAcwAgAHcAaQB0AGgAIAB1AGwAdAByAGEALQBsAG8AdwAgAHQAaABlAHIAbQBhAGwAIABjAG8AbgBkAHUAYwB0AGkAdgBpAHQAeQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBtVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Qb3JvdXMgYW5vcnRoaXRlIGNlcmFtaWNzIHdpdGggdWx0cmEtbG93IHRoZXJtYWwgY29uZHVjdGl2aXR5LnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDSANcA3wMzAzUDOgNFA04DXANgA2cDcAN1A4IDhQOXA5oDnwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAOh}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0955221913002033}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.jeurceramsoc.2013.04.006}} @article{lifshitz:1961, Abstract = {An analysis is made of the process whereby diffusion effects can cause the precipitation of grains of a second phase in a supersaturated solid solution. The kinetics of this type of grain growth are examined in detail. Some grains grow, only to be later dissolved; others increase in size and incorporate further grains that they encounter in so doing. This latter phenomenon of coalescence is discussed in a new ``kinetic'' approximation. Formulae are given for the asymptotic grain size distribution, for the number of grains per unit volume and for the supersaturation as a function of time. The effects of anisotropy, strain, crystalline order and the finite size of the specimen are allowed for. It is pointed out that for a material that can be said to be ``supersaturated with vacancies'', the discussion can be applied to the vacancies as solute ``atoms'' which cluster together to form internal cavities. The practical case of a real, finite crystal is here important, because the vacancies can in general also escape to the surface. A special analysis is made of this example, and the results are applied to the theory of sintering.}, Author = {I.M. Lifshitz and V.V. Slyozov}, Date-Added = {2016-05-12 20:29:50 +0000}, Date-Modified = {2016-05-12 20:30:06 +0000}, Doi = {http://dx.doi.org/10.1016/0022-3697(61)90054-3}, Issn = {0022-3697}, Journal = {Journal of Physics and Chemistry of Solids}, Number = {1}, Pages = {35 - 50}, Title = {The kinetics of precipitation from supersaturated solid solutions}, Url = {http://www.sciencedirect.com/science/article/pii/0022369761900543}, Volume = {19}, Year = {1961}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QRVRoZSBraW5ldGljcyBvZiBwcmVjaXBpdGF0aW9uIGZyb20gc3VwZXJzYXR1cmF0ZWQgc29saWQgc29sdXRpb25zLnBkZtIXCxgZV05TLmRhdGFPEQJcAAAAAAJcAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfVGhlIGtpbmV0aWNzIG9mIHByZWMjQTg3QjBFLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKh7DtNaQ64AAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNamA4AAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBUaGUga2luZXRpY3Mgb2YgcHJlYyNBODdCMEUucGRmAA4AjABFAFQAaABlACAAawBpAG4AZQB0AGkAYwBzACAAbwBmACAAcAByAGUAYwBpAHAAaQB0AGEAdABpAG8AbgAgAGYAcgBvAG0AIABzAHUAcABlAHIAcwBhAHQAdQByAGEAdABlAGQAIABzAG8AbABpAGQAIABzAG8AbAB1AHQAaQBvAG4AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBxVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGUga2luZXRpY3Mgb2YgcHJlY2lwaXRhdGlvbiBmcm9tIHN1cGVyc2F0dXJhdGVkIHNvbGlkIHNvbHV0aW9ucy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A1gDbAOMDQwNFA0oDVQNeA2wDcAN3A4ADhQOSA5UDpwOqA68AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADsQ==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/0022369761900543}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/0022-3697(61)90054-3}} @article{sakurai:2013, Abstract = {A continuous and wide range control of the diameter (1.9−3.2 nm) and density (0.03−0.11 g cm−3) of single-walled carbon nanotube (SWNT) forests is demonstrated by decoupling the catalyst formation and SWNT growth processes. Specifically, by managing the catalyst formation temperature and H2 exposure, the redistribution of the Fe catalyst thin film into nanoparticles is controlled while a fixed growth condition preserved the growth yield. The diameter and density are inversely correlated, where low/high density forests would consist of large/small diameter SWNTs, which is proposed as a general rule for the structural control of SWNT forests. The catalyst formation process is modeled by considering the competing processes, Ostwald ripening, and subsurface diffusion, where the dominant mechanism is found to be Ostwald ripening. Specifically, H2 exposure increases catalyst surface energy and decreases diameter, while increased temperature leads to increased diffusion on the surface and an increase in diameter.}, Author = {Sakurai, Shunsuke and Inaguma, Masayasu and Futaba, Don N. and Yumura, Motoo and Hata, Kenji}, Date-Added = {2016-05-12 19:10:17 +0000}, Date-Modified = {2016-05-12 19:10:30 +0000}, Doi = {10.1002/smll.201300223}, Issn = {1613-6829}, Journal = {Small}, Keywords = {carbon nanotubes, single-walled carbon nanotubes, catalyst arrays, Ostwald ripening, subsurface diffusion}, Number = {21}, Pages = {3584--3592}, Publisher = {WILEY-VCH Verlag}, Title = {Diameter and Density Control of Single-Walled Carbon Nanotube Forests by Modulating Ostwald Ripening through Decoupling the Catalyst Formation and Growth Processes}, Url = {http://dx.doi.org/10.1002/smll.201300223}, Volume = {9}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QqkRpYW1ldGVyIGFuZCBEZW5zaXR5IENvbnRyb2wgb2YgU2luZ2xlLVdhbGxlZCBDYXJib24gIE5hbm90dWJlIEZvcmVzdHMgYnkgTW9kdWxhdGluZyBPc3R3YWxkIFJpcGVuaW5nICB0aHJvdWdoIERlY291cGxpbmcgdGhlIENhdGFseXN0IEZvcm1hdGlvbiBhbmQgR3Jvd3RoICBQcm9jZXNzZXMucGRm0hcLGBlXTlMuZGF0YU8RA4oAAAAAA4oAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9EaWFtZXRlciBhbmQgRGVuc2l0eSNBODc1NUEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqHVa01ow9wAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA01qFVwAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AERpYW1ldGVyIGFuZCBEZW5zaXR5I0E4NzU1QS5wZGYADgFWAKoARABpAGEAbQBlAHQAZQByACAAYQBuAGQAIABEAGUAbgBzAGkAdAB5ACAAQwBvAG4AdAByAG8AbAAgAG8AZgAgAFMAaQBuAGcAbABlAC0AVwBhAGwAbABlAGQAIABDAGEAcgBiAG8AbgAgACAATgBhAG4AbwB0AHUAYgBlACAARgBvAHIAZQBzAHQAcwAgAGIAeQAgAE0AbwBkAHUAbABhAHQAaQBuAGcAIABPAHMAdAB3AGEAbABkACAAUgBpAHAAZQBuAGkAbgBnACAAIAB0AGgAcgBvAHUAZwBoACAARABlAGMAbwB1AHAAbABpAG4AZwAgAHQAaABlACAAQwBhAHQAYQBsAHkAcwB0ACAARgBvAHIAbQBhAHQAaQBvAG4AIABhAG4AZAAgAEcAcgBvAHcAdABoACAAIABQAHIAbwBjAGUAcwBzAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgDWVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9EaWFtZXRlciBhbmQgRGVuc2l0eSBDb250cm9sIG9mIFNpbmdsZS1XYWxsZWQgQ2FyYm9uICBOYW5vdHViZSBGb3Jlc3RzIGJ5IE1vZHVsYXRpbmcgT3N0d2FsZCBSaXBlbmluZyAgdGhyb3VnaCBEZWNvdXBsaW5nIHRoZSBDYXRhbHlzdCBGb3JtYXRpb24gYW5kIEdyb3d0aCAgUHJvY2Vzc2VzLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOATsBQAFIBNYE2ATdBOgE8QT/BQMFCgUTBRgFJQUoBToFPQVCAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABUQ=}, Bdsk-Url-1 = {http://dx.doi.org/10.1002/smll.201300223}} @article{yu:2000, Abstract = {The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a {\textquotedblleft}nanostressing stage{\textquotedblright} located within a scanning electron microscope. The tensile-loading experiment was prepared and observed entirely within the microscope and was recorded on video. The MWCNTs broke in the outermost layer ({\textquotedblleft}sword-in-sheath{\textquotedblright} failure), and the tensile strength of this layer ranged from 11 to 63 gigapascals for the set of 19 MWCNTs that were loaded. Analysis of the stress-strain curves for individual MWCNTs indicated that the Young{\textquoteright}s modulus E of the outermost layer varied from 270 to 950 gigapascals. Transmission electron microscopic examination of the broken nanotube fragments revealed a variety of structures, such as a nanotube ribbon, a wave pattern, and partial radial collapse.}, Author = {Yu, Min-Feng and Lourie, Oleg and Dyer, Mark J. and Moloni, Katerina and Kelly, Thomas F. and Ruoff, Rodney S.}, Date-Added = {2016-05-11 18:50:39 +0000}, Date-Modified = {2016-05-11 18:50:50 +0000}, Doi = {10.1126/science.287.5453.637}, Eprint = {http://science.sciencemag.org/content/287/5453/637.full.pdf}, Issn = {0036-8075}, Journal = {Science}, Number = {5453}, Pages = {637--640}, Publisher = {American Association for the Advancement of Science}, Title = {Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load}, Url = {http://science.sciencemag.org/content/287/5453/637}, Volume = {287}, Year = {2000}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QVlN0cmVuZ3RoIGFuZCBCcmVha2luZyBNZWNoYW5pc20gb2YgTXVsdGl3YWxsZWQgQ2FyYm9uIE5hbm90dWJlcyBVbmRlciBUZW5zaWxlIExvYWQucGRm0hcLGBlXTlMuZGF0YU8RAo4AAAAAAo4AAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9TdHJlbmd0aCBhbmQgQnJlYWtpbiNCMTU0MDAucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsVQA03IOKAAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA03JiiAAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFN0cmVuZ3RoIGFuZCBCcmVha2luI0IxNTQwMC5wZGYADgCuAFYAUwB0AHIAZQBuAGcAdABoACAAYQBuAGQAIABCAHIAZQBhAGsAaQBuAGcAIABNAGUAYwBoAGEAbgBpAHMAbQAgAG8AZgAgAE0AdQBsAHQAaQB3AGEAbABsAGUAZAAgAEMAYQByAGIAbwBuACAATgBhAG4AbwB0AHUAYgBlAHMAIABVAG4AZABlAHIAIABUAGUAbgBzAGkAbABlACAATABvAGEAZAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCCVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TdHJlbmd0aCBhbmQgQnJlYWtpbmcgTWVjaGFuaXNtIG9mIE11bHRpd2FsbGVkIENhcmJvbiBOYW5vdHViZXMgVW5kZXIgVGVuc2lsZSBMb2FkLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOcA7AD0A4YDiAONA5gDoQOvA7MDugPDA8gD1QPYA+oD7QPyAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA/Q=}, Bdsk-Url-1 = {http://science.sciencemag.org/content/287/5453/637}, Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.287.5453.637}} @article{lobo:2008, Abstract = {Cell adhesion and cell viability of aligned multi-walled carbon nanotube (MWCNT) films were verified using Fibroblast \{L929\} mouse cells. The \{MWCNTs\} were produced by a microwave plasma chemical vapor deposition (2.45 GHz) on silicon (Si), with a nickel catalyst, and titanium (Ti), with an iron catalyst. \{MTT\} assay and cellular adhesion were used for biocompatibility tests (ISO 10993-5). The results show very high cell viability and many layers of cells adhered on the surface formed by the nanotube tips at films grown on silicon surfaces. The \{MWCNT\} grown on Ti surfaces presented lower cell viability and a reduced number of cells on the surface formed by the nanotube tips. The different behavior is most probably related to excess iron contamination present in the case of titanium substrate, while nickel catalyst is probably enclosed by the nanotubes. }, Author = {A.O. Lobo and E.F. Antunes and M.B.S. Palma and C. Pacheco-Soares and V.J. Trava-Airoldi and E.J. Corat}, Date-Added = {2016-05-11 05:26:42 +0000}, Date-Modified = {2016-05-11 05:27:47 +0000}, Doi = {http://dx.doi.org/10.1016/j.msec.2007.04.016}, Issn = {0928-4931}, Journal = {Materials Science and Engineering: C}, Keywords = {Silicon}, Note = {Proceedings of the Symposium on Nanostructured Biological Materials, V Meeting of the Brazilian Materials Research Society (SBPMat)}, Number = {4}, Pages = {532 - 538}, Title = {Biocompatibility of multi-walled carbon nanotubes grown on titanium and silicon surfaces}, Url = {http://www.sciencedirect.com/science/article/pii/S0928493107000707}, Volume = {28}, Year = {2008}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QXEJpb2NvbXBhdGliaWxpdHkgb2YgbXVsdGktd2FsbGVkIGNhcmJvbiBuYW5vdHViZXMgZ3Jvd24gb24gdGl0YW5pdW0gYW5kIHNpbGljb24gc3VyZmFjZXMucGRm0hcLGBlXTlMuZGF0YU8RAqAAAAAAAqAAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9CaW9jb21wYXRpYmlsaXR5IG9mICNBODExOTIucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqBGS01gezgAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA01hzLgAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEJpb2NvbXBhdGliaWxpdHkgb2YgI0E4MTE5Mi5wZGYADgC6AFwAQgBpAG8AYwBvAG0AcABhAHQAaQBiAGkAbABpAHQAeQAgAG8AZgAgAG0AdQBsAHQAaQAtAHcAYQBsAGwAZQBkACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAgAGcAcgBvAHcAbgAgAG8AbgAgAHQAaQB0AGEAbgBpAHUAbQAgAGEAbgBkACAAcwBpAGwAaQBjAG8AbgAgAHMAdQByAGYAYQBjAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCIVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9CaW9jb21wYXRpYmlsaXR5IG9mIG11bHRpLXdhbGxlZCBjYXJib24gbmFub3R1YmVzIGdyb3duIG9uIHRpdGFuaXVtIGFuZCBzaWxpY29uIHN1cmZhY2VzLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAO0A8gD6A54DoAOlA7ADuQPHA8sD0gPbA+AD7QPwBAIEBQQKAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABAw=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0928493107000707}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.msec.2007.04.016}} @article{rodil:2003, Abstract = {In this paper we report the results of a comparative study of the biological response of amorphous carbon coated stainless steel. Films of amorphous carbon (a-C), amorphous carbon nitride (a-CN) and hydrogenated amorphous carbon (a-C:H) were deposited on stainless steel substrates (AISI 316L) using a dc magnetron sputtering system. In-vitro studies were carried out on the coated samples using human osteoblasts cell culture lines and fibroblasts. Preliminary biocompatibility was assessed by cell adhesion and proliferation, as determined by a spectroscopic technique. Comparison of the optical absorbance results between control uncoated disks and the test cultures provided a semi-quantitative analysis of the cytotoxic effect of the different carbon compounds. Osteoblasts cells were grown on uncoated steel, a-C, a-CN and Ti coated steel samples. The degree of fibroblast adhesion measured at 24 h is very similar for all the test samples, however, osteoblasts adhesion was higher for a-C films. Similarly, cellular proliferation at 7 days showed an outstanding increase of osteoblasts cells for a-C and Ti in contrast with uncoated steel. The physical film properties, such as, roughness measured by atomic force microscopy, surface composition determined by both Rutherford Backscattering and Auger Spectroscopy and the electro-optic properties of the films were also determined. The relation between film properties and cellular response is discussed. }, Author = {S.E. Rodil and R. Olivares and H. Arzate and S. Muhl}, Date-Added = {2016-05-11 05:23:59 +0000}, Date-Modified = {2016-05-11 05:24:10 +0000}, Doi = {http://dx.doi.org/10.1016/S0925-9635(02)00217-0}, Issn = {0925-9635}, Journal = {Diamond and Related Materials}, Keywords = {Sputtering}, Note = {13th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide}, Number = {3--7}, Pages = {931 - 937}, Title = {Properties of carbon films and their biocompatibility using in-vitro tests}, Url = {http://www.sciencedirect.com/science/article/pii/S0925963502002170}, Volume = {12}, Year = {2003}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QTlByb3BlcnRpZXMgb2YgY2FyYm9uIGZpbG1zIGFuZCB0aGVpciBiaW9jb21wYXRpYmlsaXR5IHVzaW5nIGluLXZpdHJvIHRlc3RzLnBkZtIXCxgZV05TLmRhdGFPEQJ2AAAAAAJ2AAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfUHJvcGVydGllcyBvZiBjYXJib24jQTgwRkNCLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKgPy9NYHecAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNYckcAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBQcm9wZXJ0aWVzIG9mIGNhcmJvbiNBODBGQ0IucGRmAA4AngBOAFAAcgBvAHAAZQByAHQAaQBlAHMAIABvAGYAIABjAGEAcgBiAG8AbgAgAGYAaQBsAG0AcwAgAGEAbgBkACAAdABoAGUAaQByACAAYgBpAG8AYwBvAG0AcABhAHQAaQBiAGkAbABpAHQAeQAgAHUAcwBpAG4AZwAgAGkAbgAtAHYAaQB0AHIAbwAgAHQAZQBzAHQAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB6VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Qcm9wZXJ0aWVzIG9mIGNhcmJvbiBmaWxtcyBhbmQgdGhlaXIgYmlvY29tcGF0aWJpbGl0eSB1c2luZyBpbi12aXRybyB0ZXN0cy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDfAOQA7ANmA2gDbQN4A4EDjwOTA5oDowOoA7UDuAPKA80D0gAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAPU}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0925963502002170}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0925-9635(02)00217-0}} @article{krishan:1975, Abstract = {A rapid method for the flow microfluorometric determination of the DNA content per cell is described. Incubation of cells in a hypotonic solution of propidium iodide results in disruption of the cell membrane and rapid staining of nuclear chromatin. DNA distribution histograms generated from cells stained by this method are identical to those generated after fixation and RNase digestion. In contrast to some earlier described methods, the present technique is rapid (5 min of processing), requires a minimal amount of material, and avoids formation of cell clumps.}, Author = {Krishan, A}, Date-Added = {2016-05-11 04:02:06 +0000}, Date-Modified = {2016-05-11 04:03:10 +0000}, Journal = {The Journal of Cell Biology}, Number = {1}, Pages = {188-193}, Title = {Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining}, Volume = {66}, Year = {1975}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QXVJhcGlkIGZsb3cgY3l0b2ZsdW9yb21ldHJpYyBhbmFseXNpcyBvZiBtYW1tYWxpYW4gY2VsbCBjeWNsZSBieSBwcm9waWRpdW0gaW9kaWRlIHN0YWluaW5nLnBkZtIXCxgZV05TLmRhdGFPEQKkAAAAAAKkAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfUmFwaWQgZmxvdyBjeXRvZmx1b3IjQTgwNDRCLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKgES9NYCsoAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNYXyoAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBSYXBpZCBmbG93IGN5dG9mbHVvciNBODA0NEIucGRmAA4AvABdAFIAYQBwAGkAZAAgAGYAbABvAHcAIABjAHkAdABvAGYAbAB1AG8AcgBvAG0AZQB0AHIAaQBjACAAYQBuAGEAbAB5AHMAaQBzACAAbwBmACAAbQBhAG0AbQBhAGwAaQBhAG4AIABjAGUAbABsACAAYwB5AGMAbABlACAAYgB5ACAAcAByAG8AcABpAGQAaQB1AG0AIABpAG8AZABpAGQAZQAgAHMAdABhAGkAbgBpAG4AZwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCJVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9SYXBpZCBmbG93IGN5dG9mbHVvcm9tZXRyaWMgYW5hbHlzaXMgb2YgbWFtbWFsaWFuIGNlbGwgY3ljbGUgYnkgcHJvcGlkaXVtIGlvZGlkZSBzdGFpbmluZy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A7gDzAPsDowOlA6oDtQO+A8wD0APXA+AD5QPyA/UEBwQKBA8AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEEQ==}} @article{deitch:1982, Abstract = {A propidium iodide (PI) staining procedure is described in which 50 micrograms/ml PI in 10(-2) M Tris, pH 7.0, with 5 mM MgCl2 is used to stain murine erythroleukemia cells (MELC) grown in suspension culture as well as single cell suspensions derived from rat kidney adenocarcinoma and human prostatic carcinoma. Specificity of staining of nuclear DNA is achieved by enzymatic removal of RNA using RNAse in the staining solution. Virtually identical histograms, with the same G1 peak height and closely similar coefficients of variation (CVs), are obtained using a wide range of RNAse concentrations on replicate samples of MELC if the incubation times are sufficiently prolonged when employing the lower enzyme concentrations. For 1 mg/ml RNAse on logarithmically growing MELC, 30 min incubation at 37 degrees C is needed to obtain a maximum G1 peak height and optimal CV and there is no significant change in the histogram if the incubation is prolonged to 4 hr. For every 4-fold decrease in RNAse concentration, the incubation time at 37 degrees C must be doubled to obtain the same maximal G1 peak height and optimal CV. Unfixed cell preparations, whether derived from suspension or monolayer cultures or from solid tumors, are stable for 2 or more weeks if stored at 4 degrees C between flow cytometric analyses and histograms are usually only minimally altered if the stained cell samples are stored for 1-2 months at 4 degrees C. Sample decay is associated with bacterial contamination. If sterile preparative techniques are used initially, subsequent contamination of the stained preparations may be minimized by adding sodium azide to the stained samples at 0.1% without influencing fluorescence intensity. Glycerine may be added to 10% and the samples slowly frozen for storage without altering DNA histogram shapes. The simplicity of sample preparation and the stability of the resulting stained cell samples makes this procedure suitable for repetitive comparative sampling of tissue and cell populations over prolonged time spans.}, Author = {Deitch, A D and Law, H and deVere White, R}, Date-Added = {2016-05-11 03:57:46 +0000}, Date-Modified = {2016-05-11 04:04:54 +0000}, Journal = {Journal of Histochemistry \& Cytochemistry}, Keywords = {flow cytometry, Propidium iodide}, Number = {9}, Pages = {967-72}, Title = {A stable propidium iodide staining procedure for flow cytometry.}, Volume = {30}, Year = {1982}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QQ0Egc3RhYmxlIHByb3BpZGl1bSBpb2RpZGUgc3RhaW5pbmcgcHJvY2VkdXJlIGZvciBmbG93IGN5dG9tZXRyeS5wZGbSFwsYGVdOUy5kYXRhTxECVgAAAAACVgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0Egc3RhYmxlIHByb3BpZGl1bSBpI0E4MDE3NS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoAXXTWAllAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTWF3FAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAQSBzdGFibGUgcHJvcGlkaXVtIGkjQTgwMTc1LnBkZgAOAIgAQwBBACAAcwB0AGEAYgBsAGUAIABwAHIAbwBwAGkAZABpAHUAbQAgAGkAbwBkAGkAZABlACAAcwB0AGEAaQBuAGkAbgBnACAAcAByAG8AYwBlAGQAdQByAGUAIABmAG8AcgAgAGYAbABvAHcAIABjAHkAdABvAG0AZQB0AHIAeQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBvVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BIHN0YWJsZSBwcm9waWRpdW0gaW9kaWRlIHN0YWluaW5nIHByb2NlZHVyZSBmb3IgZmxvdyBjeXRvbWV0cnkucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOANQA2QDhAzsDPQNCA00DVgNkA2gDbwN4A30DigONA58DogOnAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA6k=}} @article{rieger:2010, Abstract = {The advent of flow cytometry-based applications has significantly impacted the study of cellular apoptosis. Propidium iodide (PI) is a commonly used viability stain in these studies. Unfortunately, we find that conventional Annexin V/PI protocols lead to a significant number of false positive events (up to 40%), which are associated with \{PI\} staining of \{RNA\} within the cytoplasmic compartment. Both primary cells and cell lines are affected, with large cells (nuclear: cytoplasmic ratios < 0.5) showing the highest occurrence. This distribution spans a wide range of animal models including mice, swine, avian, and teleost fish and potentially affects up to 1016 out of 1019 of peer-reviewed papers published in this area since 1995. We show that the primary ramifications from these findings relate to cells experiencing changes in \{RNA\} content. Virally infected cells, for example, are qualified as undergoing apoptosis in response to infection based on conventional staining protocols; in fact, these cells are alive and actively producing viral \{RNA\} that can serve to produce additional infectious viral particles. Based on our observations we propose a modified protocol, show that it overcomes previous drawbacks for this technique, and that it will allow for more accurate assessment of cell death across various platforms. }, Author = {Aja M. Rieger and Brian E. Hall and Le Thuong Luong and Luis M. Schang and Daniel R. Barreda}, Date-Added = {2016-05-11 03:53:18 +0000}, Date-Modified = {2016-05-11 03:53:47 +0000}, Doi = {http://dx.doi.org/10.1016/j.jim.2010.03.019}, Issn = {0022-1759}, Journal = {Journal of Immunological Methods}, Keywords = {Viral infection}, Number = {1--2}, Pages = {81 - 92}, Title = {Conventional apoptosis assays using propidium iodide generate a significant number of false positives that prevent accurate assessment of cell death}, Url = {http://www.sciencedirect.com/science/article/pii/S0022175910000980}, Volume = {358}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QmENvbnZlbnRpb25hbCBhcG9wdG9zaXMgYXNzYXlzIHVzaW5nIHByb3BpZGl1bSBpb2RpZGUgZ2VuZXJhdGUgYSBzaWduaWZpY2FudCBudW1iZXIgb2YgZmFsc2UgcG9zaXRpdmVzIHRoYXQgcHJldmVudCBhY2N1cmF0ZSBhc3Nlc3NtZW50IG9mIGNlbGwgZGVhdGgucGRm0hcLGBlXTlMuZGF0YU8RA1QAAAAAA1QAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9Db252ZW50aW9uYWwgYXBvcHRvcyNBN0ZFQ0IucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAp/7L01gImQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA01hc+QAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AENvbnZlbnRpb25hbCBhcG9wdG9zI0E3RkVDQi5wZGYADgEyAJgAQwBvAG4AdgBlAG4AdABpAG8AbgBhAGwAIABhAHAAbwBwAHQAbwBzAGkAcwAgAGEAcwBzAGEAeQBzACAAdQBzAGkAbgBnACAAcAByAG8AcABpAGQAaQB1AG0AIABpAG8AZABpAGQAZQAgAGcAZQBuAGUAcgBhAHQAZQAgAGEAIABzAGkAZwBuAGkAZgBpAGMAYQBuAHQAIABuAHUAbQBiAGUAcgAgAG8AZgAgAGYAYQBsAHMAZQAgAHAAbwBzAGkAdABpAHYAZQBzACAAdABoAGEAdAAgAHAAcgBlAHYAZQBuAHQAIABhAGMAYwB1AHIAYQB0AGUAIABhAHMAcwBlAHMAcwBtAGUAbgB0ACAAbwBmACAAYwBlAGwAbAAgAGQAZQBhAHQAaAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgDEVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Db252ZW50aW9uYWwgYXBvcHRvc2lzIGFzc2F5cyB1c2luZyBwcm9waWRpdW0gaW9kaWRlIGdlbmVyYXRlIGEgc2lnbmlmaWNhbnQgbnVtYmVyIG9mIGZhbHNlIHBvc2l0aXZlcyB0aGF0IHByZXZlbnQgYWNjdXJhdGUgYXNzZXNzbWVudCBvZiBjZWxsIGRlYXRoLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOASkBLgE2BI4EkASVBKAEqQS3BLsEwgTLBNAE3QTgBPIE9QT6AAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABPw=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0022175910000980}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.jim.2010.03.019}} @Article{yu:2005, author = {Zhixin Yu and De Chen and B{\aa}rd T{\o}tdal and Anders Holmen}, title = {Effect of catalyst preparation on the carbon nanotube growth rate}, journal = {Catalysis Today}, year = {2005}, volume = {100}, number = {3--4}, pages = {261 - 267}, issn = {0920-5861}, note = {Catalysis for a Sustainable Future, 11th Nordic Symposium on Catalysis}, abstract = {A series of silica supported Fe catalysts were prepared by different methods in order to obtain varying Fe particle sizes. The catalysts were characterized by XRD, TPR, BET, and TEM. The \{CNT\} growth from \{CO\} disproportionation was studied in order to establish a relationship between the \{CNT\} growth rate and the particle size. We found that there is an optimum catalyst particle size at around 13--15 nm which will lead to the maximum growth rate. The influence of the metal loading on the growth rate was also investigated. A \{CNT\} growth model has been formulated to explain the experimental results. }, bdsk-file-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QRUVmZmVjdCBvZiBjYXRhbHlzdCBwcmVwYXJhdGlvbiBvbiB0aGUgY2FyYm9uIG5hbm90dWJlIGdyb3d0aCByYXRlLnBkZtIXCxgZV05TLmRhdGFPEQJcAAAAAAJcAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfRWZmZWN0IG9mIGNhdGFseXN0IHAjQTc3QkRBLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKd72tNXhhYAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNX2nYAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBFZmZlY3Qgb2YgY2F0YWx5c3QgcCNBNzdCREEucGRmAA4AjABFAEUAZgBmAGUAYwB0ACAAbwBmACAAYwBhAHQAYQBsAHkAcwB0ACAAcAByAGUAcABhAHIAYQB0AGkAbwBuACAAbwBuACAAdABoAGUAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQAgAGcAcgBvAHcAdABoACAAcgBhAHQAZQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBxVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9FZmZlY3Qgb2YgY2F0YWx5c3QgcHJlcGFyYXRpb24gb24gdGhlIGNhcmJvbiBuYW5vdHViZSBncm93dGggcmF0ZS5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A1gDbAOMDQwNFA0oDVQNeA2wDcAN3A4ADhQOSA5UDpwOqA68AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADsQ==}, bdsk-url-1 = {http://www.sciencedirect.com/science/article/pii/S0920586104007151}, bdsk-url-2 = {http://dx.doi.org/10.1016/j.cattod.2004.09.060}, date-added = {2016-05-10 18:36:11 +0000}, date-modified = {2016-05-10 18:36:25 +0000}, doi = {http://dx.doi.org/10.1016/j.cattod.2004.09.060}, keywords = {Growth model}, url = {http://www.sciencedirect.com/science/article/pii/S0920586104007151}, } @article{arcos:2004, Abstract = { Carbon nanotubes grown by chemical vapor deposition have revealed differences in growth rate and characteristics depending on the underlying buffer layer. As determined by in situ photoelectron spectroscopy, iron catalyst deposited onto Si substrates covered with Al2O3, TiN, or TiO2 underwent different chemical changes during annealing and exposure to C2H2 as function of buffer layer. Formation of thin tubes (2−4 walls) and fast growth rate were associated with conversion of Fe onto FeO particles on Al2O3 layers. On the other hand, thick multiwalled tubes (more than 20 walls) grew from pure Fe particles formed onto TiN and TiO2 layers. The influence of different buffer layers is attributed to a combination of chemical and morphological changes induced in the catalyst due to catalyst-substrate interaction. }, Author = {Teresa de los Arcos,*,† and Michael Gunnar Garnier,†,‡ and Jin Won Seo,{\S} and Peter Oelhafen,† and Verena Thommen,† and and Daniel Mathys‖}, Date-Added = {2016-05-09 17:08:57 +0000}, Date-Modified = {2016-05-09 17:09:09 +0000}, Doi = {10.1021/jp049495v}, Eprint = {http://dx.doi.org/10.1021/jp049495v}, Journal = {The Journal of Physical Chemistry B}, Number = {23}, Pages = {7728-7734}, Title = {The Influence of Catalyst Chemical State and Morphology on Carbon Nanotube Growth}, Url = {http://dx.doi.org/10.1021/jp049495v}, Volume = {108}, Year = {2004}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QVVRoZSBpbmZsdWVuY2Ugb2YgY2F0YWx5c3QgY2hlbWljYWwgc3RhdGUgYW5kIG1vcnBob2xvZ3kgb24gY2FyYm9uIG5hbm90dWJlIGdyb3d0aC5wZGbSFwsYGVdOUy5kYXRhTxECjAAAAAACjAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1RoZSBpbmZsdWVuY2Ugb2YgY2F0I0E2QUU0My5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmrkPTViAmAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTVnSGAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVGhlIGluZmx1ZW5jZSBvZiBjYXQjQTZBRTQzLnBkZgAOAKwAVQBUAGgAZQAgAGkAbgBmAGwAdQBlAG4AYwBlACAAbwBmACAAYwBhAHQAYQBsAHkAcwB0ACAAYwBoAGUAbQBpAGMAYQBsACAAcwB0AGEAdABlACAAYQBuAGQAIABtAG8AcgBwAGgAbwBsAG8AZwB5ACAAbwBuACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABnAHIAbwB3AHQAaAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCBVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGUgaW5mbHVlbmNlIG9mIGNhdGFseXN0IGNoZW1pY2FsIHN0YXRlIGFuZCBtb3JwaG9sb2d5IG9uIGNhcmJvbiBuYW5vdHViZSBncm93dGgucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOYA6wDzA4MDhQOKA5UDngOsA7ADtwPAA8UD0gPVA+cD6gPvAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA/E=}, Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp049495v}} @article{lee:2008, Abstract = {Variation in the height of carbon nanotubes (CNTs) grown has been co-related to the type of multi-barrier-layer used. Initially, various types of barrier-layers such as Al, Al2O3, Al/SiO2, Al2O3/SiO2 were prepared onto a n-type Si (100) substrate. The thickness of SiO2 was ∼ 550 nm, where as, Al2O3 and Al were ∼ 15 nm thick. These samples were covered with ∼ 1 nm thick Fe catalyst layer. The coated samples were subjected to the thermal chemical vapor deposition (T-CVD) process. \{SEM\} analysis showed that, for Al2O3/SiO2 barrier layers, the average height of the \{CNTs\} was ∼ 10 μm, where as, for other types of samples it was less than ∼ 1 μm. To investigate this, multi-barrier layers were characterized by dynamic secondary ion mass spectrometry (D-SIMS). The observed variation in height of \{CNTs\} is attributed to the variation in diffusivity of Fe atoms into multi-barriers-layers. The results showed that, diffusion of Fe catalyst atoms could severally affect height of CNTs. }, Author = {H.C. Lee and P.S. Alegaonkar and D.Y. Kim and J.H. Lee and T.Y. Lee and S.Y. Jeon and J.B. Yoo}, Date-Added = {2016-05-06 22:08:07 +0000}, Date-Modified = {2016-05-06 22:08:16 +0000}, Doi = {http://dx.doi.org/10.1016/j.tsf.2007.08.106}, Issn = {0040-6090}, Journal = {Thin Solid Films}, Keywords = {Chemical vapor deposition (CVD)}, Note = {Proceedings of the International Symposium on Dry Process (DPS 2006) Nagoya, Japan, November 29-30, 2006}, Number = {11}, Pages = {3646 - 3650}, Title = {Multi-barrier layer-mediated growth of carbon nanotubes}, Url = {http://www.sciencedirect.com/science/article/pii/S0040609007014575}, Volume = {516}, Year = {2008}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QO011bHRpLWJhcnJpZXIgbGF5ZXItbWVkaWF0ZWQgZ3Jvd3RoIG9mIGNhcmJvbiBuYW5vdHViZXMucGRm0hcLGBlXTlMuZGF0YU8RAj4AAAAAAj4AAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9NdWx0aS1iYXJyaWVyIGxheWVyLSNBNUMwRUMucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApcDs01JxzQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA01LGLQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AE11bHRpLWJhcnJpZXIgbGF5ZXItI0E1QzBFQy5wZGYADgB4ADsATQB1AGwAdABpAC0AYgBhAHIAcgBpAGUAcgAgAGwAYQB5AGUAcgAtAG0AZQBkAGkAYQB0AGUAZAAgAGcAcgBvAHcAdABoACAAbwBmACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBnVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NdWx0aS1iYXJyaWVyIGxheWVyLW1lZGlhdGVkIGdyb3d0aCBvZiBjYXJib24gbmFub3R1YmVzLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDMANEA2QMbAx0DIgMtAzYDRANIA08DWANdA2oDbQN/A4IDhwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAOJ}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0040609007014575}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.tsf.2007.08.106}} @article{youn:2013, Abstract = {We present temperature gradient chemical vapor deposition (TG CVD) for producing vertically aligned (VA-) carbon nanotubes (CNTs). Independent heaters on the gas inlet and catalyst substrate sides of a cold-wall, vertical \{CVD\} reactor can modulate the gas temperature gradient to lead to controlled thermal histories of acetylene precursor. Our growth results reveal that such a precursor thermal history can play a significant role in the growth and structural features of the resultant VA-CNTs. We find several gas thermal zones particularly important to the VA-CNT growth by evaluating the precursor dwell time in different zones. Thermal treatment of the acetylene precursor at 600--700 $\,^{\circ}$C is found crucial for the synthesis of VA-CNTs. When this thermal zone is conjoined in particular with a zone >700 $\,^{\circ}$C, efficient growths of single-walled and double-walled VA-CNTs can be achieved. These gas thermal zones can contribute to VA-CNT growths by mixing various secondary hydrocarbons with acetylene, corroborated by the results of our reacting flow simulation. Our findings emphasize the influence of gas-phase reactions on the VA-CNT growth and suggest that our \{TG\} \{CVD\} approach can be practically utilized to modulate complex gas-phase phenomena for the controlled growth of VA-CNTs. }, Author = {Seul Ki Youn and Christos E. Frouzakis and Baskar Pagadala Gopi and John Robertson and Kenneth B.K. Teo and Hyung Gyu Park}, Date-Added = {2016-05-06 22:05:27 +0000}, Date-Modified = {2016-05-06 22:06:33 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2012.11.046}, Issn = {0008-6223}, Journal = {Carbon}, Pages = {343 - 352}, Title = {Temperature gradient chemical vapor deposition of vertically aligned carbon nanotubes}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622312009372}, Volume = {54}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QWVRlbXBlcmF0dXJlIGdyYWRpZW50IGNoZW1pY2FsIHZhcG9yIGRlcG9zaXRpb24gb2YgdmVydGljYWxseSBhbGlnbmVkIGNhcmJvbiBuYW5vdHViZXMucGRm0hcLGBlXTlMuZGF0YU8RApgAAAAAApgAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9UZW1wZXJhdHVyZSBncmFkaWVudCNBNUJGNDkucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApb9J01JxXgAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA01LFvgAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFRlbXBlcmF0dXJlIGdyYWRpZW50I0E1QkY0OS5wZGYADgC0AFkAVABlAG0AcABlAHIAYQB0AHUAcgBlACAAZwByAGEAZABpAGUAbgB0ACAAYwBoAGUAbQBpAGMAYQBsACAAdgBhAHAAbwByACAAZABlAHAAbwBzAGkAdABpAG8AbgAgAG8AZgAgAHYAZQByAHQAaQBjAGEAbABsAHkAIABhAGwAaQBnAG4AZQBkACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCFVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UZW1wZXJhdHVyZSBncmFkaWVudCBjaGVtaWNhbCB2YXBvciBkZXBvc2l0aW9uIG9mIHZlcnRpY2FsbHkgYWxpZ25lZCBjYXJib24gbmFub3R1YmVzLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDqAO8A9wOTA5UDmgOlA64DvAPAA8cD0APVA+ID5QP3A/oD/wAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQB}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622312009372}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2012.11.046}} @Article{esconjauregui:2009, author = {Santiago Esconjauregui and Caroline M. Whelan and Karen Maex}, title = {The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies}, journal = {Carbon}, year = {2009}, volume = {47}, number = {3}, pages = {659 - 669}, abstract = {Carbon nanotubes (CNTs) and other carbon nanomorphologies are grown using ``typical'' (Ni, Co, and Fe) and ``atypical'' (Al, In, Pt, Ti, Mg, Pd, K, Cs, Na, W, Mn, Mo, Ir, and Ni3C) catalysts by chemical vapor deposition. X-ray diffraction analysis reveals the formation (and decomposition) of metal carbides at different stages of these growth reactions. Based on these results and various pieces of evidence gathered from the literature, we present a model that explains why different metals catalyze the nucleation and growth of \{CNTs\} or other carbon nanomorphologies, and in particular, why Ni, Co, and Fe display the highest catalytic activity. The catalytic activity of a metal strongly depends on its electronic structure. This property of the catalyst not only controls the decomposition of the carbon source, but also the formation and stability of metal carbides and, more importantly, the release of carbon atoms. Another property of significance is the enthalpy of formation of the carbon source because it enhances the activation of the catalyst. }, bdsk-file-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qc1RoZSByZWFzb25zIHdoeSBtZXRhbHMgY2F0YWx5emUgdGhlIG51Y2xlYXRpb24gYW5kIGdyb3d0aCBvZiBjYXJib24gbmFub3R1YmVzIGFuZCBvdGhlciBjYXJib24gbmFub21vcnBob2xvZ2llcy5wZGbSFwsYGVdOUy5kYXRhTxEC5gAAAAAC5gACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1RoZSByZWFzb25zIHdoeSBtZXRhI0E1QkMyNy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAClvCfTUnAyAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTUsSSAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVGhlIHJlYXNvbnMgd2h5IG1ldGEjQTVCQzI3LnBkZgAOAOgAcwBUAGgAZQAgAHIAZQBhAHMAbwBuAHMAIAB3AGgAeQAgAG0AZQB0AGEAbABzACAAYwBhAHQAYQBsAHkAegBlACAAdABoAGUAIABuAHUAYwBsAGUAYQB0AGkAbwBuACAAYQBuAGQAIABnAHIAbwB3AHQAaAAgAG8AZgAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlAHMAIABhAG4AZAAgAG8AdABoAGUAcgAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwBtAG8AcgBwAGgAbwBsAG8AZwBpAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCfVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGUgcmVhc29ucyB3aHkgbWV0YWxzIGNhdGFseXplIHRoZSBudWNsZWF0aW9uIGFuZCBncm93dGggb2YgY2FyYm9uIG5hbm90dWJlcyBhbmQgb3RoZXIgY2FyYm9uIG5hbm9tb3JwaG9sb2dpZXMucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAQQBCQERA/sD/QQCBA0EFgQkBCgELwQ4BD0ESgRNBF8EYgRnAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABGk=}, bdsk-url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622308005897}, bdsk-url-2 = {http://dx.doi.org/10.1016/j.carbon.2008.10.047}, date-added = {2016-05-06 22:00:05 +0000}, date-modified = {2016-05-06 22:00:16 +0000}, doi = {http://dx.doi.org/10.1016/j.carbon.2008.10.047}, file = {:The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies.pdf:PDF}, issn = {0008-6223}, url = {http://www.sciencedirect.com/science/article/pii/S0008622308005897}, } @article{garcia:2009, Abstract = {We have investigated the growth of carbon nanotube (CNT) films on copper substrates by the catalytic chemical vapour deposition route. Ferrocene was used as the catalyst precursor and toluene was the carbon feedstock. The copper substrates were coated with nitride and oxide amorphous ceramic barrier coatings in order to prevent diffusion of the iron catalyst during growth. It was found that virtually no \{CNT\} grew on pure copper, but long and densely packed mats of \{CNTs\} could be grown on TiN-coated copper. Copper substrates coated with SiNx and In2O3:Sn (ITO) also showed better results than pure copper, although the \{CNT\} density was much lower than that obtained from TiN/Cu. Auger electron spectroscopy (AES) showed that Fe diffusion occurred into SiNx/Cu and ITO/Cu substrates, which partially inhibited its catalyst activity. In contrast, \{AES\} did not detect the presence of diffused Fe into the TiN coating. The estimation of the diffusion coefficient by \{AES\} depth profiles for Fe in SiNx, was 3 · 10−3 nm2 s−1. This value establishes an upper limit for Fe diffusion on substrates for proper nanotube nucleation and growth. Secondary ion mass spectrometry provided complementary information on the composition profiles with depth.}, Annote = {There are some good references concerning catalyst substrate interaction that are with looking into. There can be chemical(forming new compounds) as well as physical interactions(mobility and diffusion)}, Author = {J. Garc{\'\i}a-C{\'e}spedes and S. Thomasson and K.B.K. Teo and I.A. Kinloch and W.I. Milne and E. Pascual and E. Bertran}, Date-Added = {2016-05-06 21:56:57 +0000}, Date-Modified = {2016-05-09 17:04:14 +0000}, Journal = {Carbon}, Number = {3}, Pages = {613 - 621}, Title = {Efficient diffusion barrier layers for the catalytic growth of carbon nanotubes on copper substrates}, Volume = {47}, Year = {2009}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QaEVmZmljaWVudCBkaWZmdXNpb24gYmFycmllciBsYXllcnMgZm9yIHRoZSBjYXRhbHl0aWMgZ3Jvd3RoIG9mIGNhcmJvbiBuYW5vdHViZXMgb24gY29wcGVyIHN1YnN0cmF0ZXMucGRm0hcLGBlXTlMuZGF0YU8RAsQAAAAAAsQAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9FZmZpY2llbnQgZGlmZnVzaW9uICNBNUI4OUYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApbif01Ju/AAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA01LDXAAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEVmZmljaWVudCBkaWZmdXNpb24gI0E1Qjg5Ri5wZGYADgDSAGgARQBmAGYAaQBjAGkAZQBuAHQAIABkAGkAZgBmAHUAcwBpAG8AbgAgAGIAYQByAHIAaQBlAHIAIABsAGEAeQBlAHIAcwAgAGYAbwByACAAdABoAGUAIABjAGEAdABhAGwAeQB0AGkAYwAgAGcAcgBvAHcAdABoACAAbwBmACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAgAG8AbgAgAGMAbwBwAHAAZQByACAAcwB1AGIAcwB0AHIAYQB0AGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCUVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9FZmZpY2llbnQgZGlmZnVzaW9uIGJhcnJpZXIgbGF5ZXJzIGZvciB0aGUgY2F0YWx5dGljIGdyb3d0aCBvZiBjYXJib24gbmFub3R1YmVzIG9uIGNvcHBlciBzdWJzdHJhdGVzLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAPkA/gEGA84D0APVA+AD6QP3A/sEAgQLBBAEHQQgBDIENQQ6AAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABDw=}} @article{lombardo:2011, Abstract = {As the mechanisms of carbon nanotube (CNT) growth becomes known, it becomes important to understand how to implement this knowledge into reactor scale models to optimize \{CNT\} growth. In past work, we have reported fundamental mechanisms and competing deposition regimes that dictate single wall carbon nanotube growth. In this study, we will further explore the growth of carbon nanotubes with multiple walls. A tube flow chemical vapor deposition reactor is simulated using the commercial software package COMSOL, and considered the growth of single- and multi-walled carbon nanotubes. It was found that the limiting reaction processes for multi-walled carbon nanotubes change at different temperatures than the single walled carbon nanotubes and it was shown that the reactions directly governing \{CNT\} growth are a limiting process over certain parameters. This work shows that the optimum conditions for \{CNT\} growth are dependent on temperature, chemical concentration, and the number of nanotube walls. Optimal reactor conditions have been identified as defined by (1) a critical inlet methane concentration that results in hydrogen abstraction limited versus hydrocarbon adsorption limited reaction kinetic regime, and (2) activation energy of reaction for a given reactor temperature and inlet methane concentration. Successful optimization of a \{CNT\} growth processes requires taking all of those variables into account. }, Author = {Jeffrey J. Lombardo and Wilson K.S. Chiu}, Date-Added = {2016-05-06 20:56:12 +0000}, Date-Modified = {2016-05-06 20:56:28 +0000}, Doi = {http://dx.doi.org/10.1016/j.apsusc.2011.01.054}, Issn = {0169-4332}, Journal = {Applied Surface Science}, Keywords = {Simulation}, Number = {14}, Pages = {5931 - 5937}, Title = {Reactor scale modeling of multi-walled carbon nanotube growth}, Url = {http://www.sciencedirect.com/science/article/pii/S0169433211000778}, Volume = {257}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QQVJlYWN0b3Igc2NhbGUgbW9kZWxpbmcgb2YgbXVsdGktd2FsbGVkIGNhcmJvbiBuYW5vdHViZSBncm93dGgucGRm0hcLGBlXTlMuZGF0YU8RAlAAAAAAAlAAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9SZWFjdG9yIHNjYWxlIG1vZGVsaSM4Q0M5MzEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjMkx0wUKDAAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA0wVsfAAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFJlYWN0b3Igc2NhbGUgbW9kZWxpIzhDQzkzMS5wZGYADgCEAEEAUgBlAGEAYwB0AG8AcgAgAHMAYwBhAGwAZQAgAG0AbwBkAGUAbABpAG4AZwAgAG8AZgAgAG0AdQBsAHQAaQAtAHcAYQBsAGwAZQBkACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABnAHIAbwB3AHQAaAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBtVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9SZWFjdG9yIHNjYWxlIG1vZGVsaW5nIG9mIG11bHRpLXdhbGxlZCBjYXJib24gbmFub3R1YmUgZ3Jvd3RoLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDSANcA3wMzAzUDOgNFA04DXANgA2cDcAN1A4IDhQOXA5oDnwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAOh}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0169433211000778}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.apsusc.2011.01.054}} @article{pasha:2010, Abstract = {In this study a hot filament chemical vapour deposition (HFCVD) technique was used to prepare Fe--Cr films on Si substrate as catalysts for thermal \{CVD\} (TCVD) growing of carbon nanotubes (CNTs) from liquid petroleum gas (LPG) at 800 $\,^{\circ}$C. To characterize the catalysts or CNTs, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy were used. The \{XPS\} spectra obtained at different stages of Ar+ sputtering revealed that in the depth of catalyst layers, the relative Fe--Cr concentrations are higher than the top-surface. \{SEM\} images of samples after \{TCVD\} indicate a significant \{CNT\} growing at the backside of catalyst layer compared with its top which is accompanied with morphological changes on catalyst layer such as formation of cone-shape structures, rippling, cracking and rolling of the layer. These observations were attributed to the more catalytic activity of the sub-surface beside the poor activity of the top-surface as well as the presence of individual active islands over the surface of the catalyst thin film. }, Author = {M. Akbarzadeh Pasha and M. Ranjbar and M.A. Vesaghi and A. Shafiekhani}, Date-Added = {2016-05-06 20:51:05 +0000}, Date-Modified = {2016-05-06 20:51:18 +0000}, Doi = {http://dx.doi.org/10.1016/j.apsusc.2010.08.087}, Issn = {0169-4332}, Journal = {Applied Surface Science}, Keywords = {Morphology evolution}, Number = {5}, Pages = {1511 - 1515}, Title = {The evolution of catalyst layer morphology and sub-surface growth of \{CNTs\} over the hot filament grown Fe--Cr thin films}, Url = {http://www.sciencedirect.com/science/article/pii/S0169433210011657}, Volume = {257}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YW8QegBUAGgAZQAgAGUAdgBvAGwAdQB0AGkAbwBuACAAbwBmACAAYwBhAHQAYQBsAHkAcwB0ACAAbABhAHkAZQByACAAbQBvAHIAcABoAG8AbABvAGcAeQAgAGEAbgBkACAAcwB1AGIALQBzAHUAcgBmAGEAYwBlACAAZwByAG8AdwB0AGgAIABvAGYAIABDAE4AVABzACAAbwB2AGUAcgAgAHQAaABlACAAaABvAHQAIABmAGkAbABhAG0AZQBuAHQAIABnAHIAbwB3AG4AIABGAGUgEwBDAHIAIAB0AGgAaQBuACAAZgBpAGwAbQBzAC4AcABkAGbSFwsYGVdOUy5kYXRhTxEC/AAAAAAC/AACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1RoZSBldm9sdXRpb24gb2YgY2F0I0E1QTc0My5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAClp0PTUl+6AAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTUrQaAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVGhlIGV2b2x1dGlvbiBvZiBjYXQjQTVBNzQzLnBkZgAOAPYAegBUAGgAZQAgAGUAdgBvAGwAdQB0AGkAbwBuACAAbwBmACAAYwBhAHQAYQBsAHkAcwB0ACAAbABhAHkAZQByACAAbQBvAHIAcABoAG8AbABvAGcAeQAgAGEAbgBkACAAcwB1AGIALQBzAHUAcgBmAGEAYwBlACAAZwByAG8AdwB0AGgAIABvAGYAIABDAE4AVABzACAAbwB2AGUAcgAgAHQAaABlACAAaABvAHQAIABmAGkAbABhAG0AZQBuAHQAIABnAHIAbwB3AG4AIABGAGUgEwBDAHIAIAB0AGgAaQBuACAAZgBpAGwAbQBzAC4AcABkAGYADwAQAAcATAB1AG4AZABTAFMARAASAKhVc2Vycy9qYXNvbi9Eb2N1bWVudHMvUmVzZWFyY2gvQmlibGlvZ3JhcGh5L1RoZSBldm9sdXRpb24gb2YgY2F0YWx5c3QgbGF5ZXIgbW9ycGhvbG9neSBhbmQgc3ViLXN1cmZhY2UgZ3Jvd3RoIG9mIENOVHMgb3ZlciB0aGUgaG90IGZpbGFtZW50IGdyb3duIEZl4oCTQ3IgdGhpbiBmaWxtcy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgGFAYoBkgSSBJQEmQSkBK0EuwS/BMYEzwTUBOEE5AT2BPkE/gAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAUA}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0169433210011657}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.apsusc.2010.08.087}} @article{tanner:2015, Abstract = {This paper presents a method for fabricating millimeter-scale robotic components for minimally invasive surgery. Photolithographic patterning is used to create a framework of carbon nanotubes (CNTs) that can be infiltrated with a variety of materials, depending on the desired material properties. For the examples shown in this paper, amorphous carbon is used as the infiltration material. The planar frameworks are then stacked to create the 3D device. The detail and precision are affected by large changes in cross section in the direction of stacking. Methods for improving the definition of the 3D object due to changing cross section are discussed. The process is demonstrated in a two-degree-of-freedom (2DOF) wrist mechanism and a 2DOF surgical gripping mechanism, which have the potential of decreasing the size of future minimally invasive surgical instruments.}, Author = {Tanner, Jordan D and Grames, Clayton and Jensen, Brian D and Magleby, Spencer P and Howell, Larry L}, Date-Added = {2016-05-06 20:38:58 +0000}, Date-Modified = {2016-05-06 20:41:14 +0000}, Journal = {Journal of Mechanisms and Robotics}, Month = {May}, Number = {2}, Pages = {021001}, Title = {Millimeter-Scale Robotic Mechanisms Using Carbon Nanotube Composite Structures}, Volume = {7}, Year = {2015}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUk1pbGxpbWV0ZXItU2NhbGUgUm9ib3RpYyBNZWNoYW5pc21zIFVzaW5nIENhcmJvbiBOYW5vdHViZSBDb21wb3NpdGUgU3RydWN0dXJlcy5wZGbSFwsYGVdOUy5kYXRhTxECggAAAAACggACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH01pbGxpbWV0ZXItU2NhbGUgUm9iI0E1QTAyNC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACloCTTUly7AAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTUrEbAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToATWlsbGltZXRlci1TY2FsZSBSb2IjQTVBMDI0LnBkZgAOAKYAUgBNAGkAbABsAGkAbQBlAHQAZQByAC0AUwBjAGEAbABlACAAUgBvAGIAbwB0AGkAYwAgAE0AZQBjAGgAYQBuAGkAcwBtAHMAIABVAHMAaQBuAGcAIABDAGEAcgBiAG8AbgAgAE4AYQBuAG8AdAB1AGIAZQAgAEMAbwBtAHAAbwBzAGkAdABlACAAUwB0AHIAdQBjAHQAdQByAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB+VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NaWxsaW1ldGVyLVNjYWxlIFJvYm90aWMgTWVjaGFuaXNtcyBVc2luZyBDYXJib24gTmFub3R1YmUgQ29tcG9zaXRlIFN0cnVjdHVyZXMucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A4wDoAPADdgN4A30DiAORA58DowOqA7MDuAPFA8gD2gPdA+IAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD5A==}} @article{zhu:2010, Abstract = {Density-functional theory (DFT) calculations for idealized nucleation processes of (5, 5) and (10, 0) single-walled carbon nanotubes (SWCNTs) on a 55 atom nickel cluster (Ni55) showed that it requires a larger chemical potential to grow a carbon island (which is the simplest structure that can lead to formation of the SWCNTs) on the cluster than to extend the island into a \{SWCNT\} or to have the carbon atoms dispersed on the cluster surface. Hence, in the thermodynamic limit the island will only form once the (surface of the) cluster is saturated with carbon, and the island will spontaneously form a \{SWCNT\} at the chemical potentials required to create the island. The \{DFT\} (zero Kelvin) and tight binding Monte Carlo (1000 K) also show that there is a minimum cluster size required to support \{SWCNT\} growth, and that this cluster size can be used to control the diameter, but probably not the chirality, of the \{SWCNT\} at temperatures relevant to carbon nanotube growth. It also imposes a minimum size of clusters that are used for \{SWCNT\} regrowth. }, Author = {Wuming Zhu and Anders B{\"o}rjesson and Kim Bolton}, Date-Added = {2016-05-06 20:20:07 +0000}, Date-Modified = {2016-05-06 20:20:16 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2009.09.064}, Issn = {0008-6223}, Journal = {Carbon}, Number = {2}, Pages = {470 - 478}, Title = {\{DFT\} and tight binding Monte Carlo calculations related to single-walled carbon nanotube nucleation and growth}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622309006472}, Volume = {48}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QcURGVCBhbmQgdGlnaHQgYmluZGluZyBNb250ZSBDYXJsbyBjYWxjdWxhdGlvbnMgcmVsYXRlZCB0byBzaW5nbGUtd2FsbGVkIGNhcmJvbiBuYW5vdHViZSBudWNsZWF0aW9uIGFuZCBncm93dGgucGRm0hcLGBlXTlMuZGF0YU8RAuAAAAAAAuAAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9ERlQgYW5kIHRpZ2h0IGJpbmRpbiNBNTlCMzgucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApZs401JYYgAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA01KswgAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AERGVCBhbmQgdGlnaHQgYmluZGluI0E1OUIzOC5wZGYADgDkAHEARABGAFQAIABhAG4AZAAgAHQAaQBnAGgAdAAgAGIAaQBuAGQAaQBuAGcAIABNAG8AbgB0AGUAIABDAGEAcgBsAG8AIABjAGEAbABjAHUAbABhAHQAaQBvAG4AcwAgAHIAZQBsAGEAdABlAGQAIAB0AG8AIABzAGkAbgBnAGwAZQAtAHcAYQBsAGwAZQBkACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABuAHUAYwBsAGUAYQB0AGkAbwBuACAAYQBuAGQAIABnAHIAbwB3AHQAaAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCdVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9ERlQgYW5kIHRpZ2h0IGJpbmRpbmcgTW9udGUgQ2FybG8gY2FsY3VsYXRpb25zIHJlbGF0ZWQgdG8gc2luZ2xlLXdhbGxlZCBjYXJib24gbmFub3R1YmUgbnVjbGVhdGlvbiBhbmQgZ3Jvd3RoLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgECAQcBDwPzA/UD+gQFBA4EHAQgBCcEMAQ1BEIERQRXBFoEXwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAARh}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622309006472}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2009.09.064}} @article{huynh:2011, Abstract = {Carbon nanotubes (CNTs) grown on substrate-bound catalysts by \{CVD\} are influenced by the catalyst, which changes over the course of the process. The evolution of the \{CNT\} growth is revealed by breaking the process into recycling increments and using the phenomenon of `direct spinnability' as a target characteristic. Using acetylene alone, it was found that the first four cycles gave 100% regrowth in height and mass yield of CNTs, with both properties falling to around 20% on the 5th cycle. A decrease in nanotube diameter was observed whilst the areal density increased. With the addition of hydrogen a 100% regrowth for the second cycle was observed, followed by a decrease to around 55%, 18% and 11% in both height and yield for subsequent cycles. The diameter increased, whilst the areal density decreased in subsequent cycles. In the absence of hydrogen the \{CNTs\} have around seven walls, decreasing to about three by the seventh cycle. With hydrogen, \{CNTs\} have five or six walls for all cycles. Raman spectroscopy indicates an increase in disorder in later cycles. Spinnability is high for initial cycles but drops sharply on the fourth cycle, or third cycle with hydrogen, as the nanotube forest tortuosity markedly increases. }, Author = {Chi P. Huynh and Stephen C. Hawkins and Marta Redrado and Scott Barnes and Deborah Lau and William Humphries and George P. Simon}, Date-Added = {2016-05-06 20:16:39 +0000}, Date-Modified = {2016-05-06 20:17:10 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2011.01.024}, Issn = {0008-6223}, Journal = {Carbon}, Number = {6}, Pages = {1989 - 1997}, Title = {Evolution of directly-spinnable carbon nanotube growth by recycling analysis}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622311000431}, Volume = {49}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUEV2b2x1dGlvbiBvZiBkaXJlY3RseS1zcGlubmFibGUgY2FyYm9uIG5hbm90dWJlIGdyb3d0aCBieSByZWN5Y2xpbmcgYW5hbHlzaXMucGRm0hcLGBlXTlMuZGF0YU8RAnwAAAAAAnwAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9Fdm9sdXRpb24gb2YgZGlyZWN0bCNBNTk5NkIucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApZlr01JXngAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA01Kr/gAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEV2b2x1dGlvbiBvZiBkaXJlY3RsI0E1OTk2Qi5wZGYADgCiAFAARQB2AG8AbAB1AHQAaQBvAG4AIABvAGYAIABkAGkAcgBlAGMAdABsAHkALQBzAHAAaQBuAG4AYQBiAGwAZQAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlACAAZwByAG8AdwB0AGgAIABiAHkAIAByAGUAYwB5AGMAbABpAG4AZwAgAGEAbgBhAGwAeQBzAGkAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB8VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Fdm9sdXRpb24gb2YgZGlyZWN0bHktc3Bpbm5hYmxlIGNhcmJvbiBuYW5vdHViZSBncm93dGggYnkgcmVjeWNsaW5nIGFuYWx5c2lzLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOEA5gDuA24DcAN1A4ADiQOXA5sDogOrA7ADvQPAA9ID1QPaAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA9w=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622311000431}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2011.01.024}} @article{buchko:1999, Abstract = {The process of electrostatic fiber formation, or electrospinning, was used to create biocompatible thin films for use in implantable devices. The morphology of the thin films was found to depend on process parameters including solution concentration, applied electric field strength, deposition distance, and deposition time. The microstructure of the coatings was examined by Transmission Electron Microscopy (TEM) and Wide-Angle X-ray Scattering (WAXS), with electrospun filaments being weakly oriented along the fiber axis. A shish kebab model for the filament morphology was proposed. The electrospinning process was shown to be a means of creating porous thin films with structural gradients and controlled morphology that could enhance biocompatibility. }, Author = {Christopher J. Buchko and Loui C. Chen and Yu Shen and David C. Martin}, Date-Added = {2016-05-04 02:59:25 +0000}, Date-Modified = {2016-05-04 02:59:40 +0000}, Doi = {http://dx.doi.org/10.1016/S0032-3861(98)00866-0}, Issn = {0032-3861}, Journal = {Polymer}, Keywords = {Microstructure}, Number = {26}, Pages = {7397 - 7407}, Title = {Processing and microstructural characterization of porous biocompatible protein polymer thin films}, Url = {http://www.sciencedirect.com/science/article/pii/S0032386198008660}, Volume = {40}, Year = {1999}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QZlByb2Nlc3NpbmcgYW5kIG1pY3Jvc3RydWN0dXJhbCBjaGFyYWN0ZXJpemF0aW9uIG9mIHBvcm91cyBiaW9jb21wYXRpYmxlIHByb3RlaW4gcG9seW1lciB0aGluIGZpbG1zLnBkZtIXCxgZV05TLmRhdGFPEQK+AAAAAAK+AAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfUHJvY2Vzc2luZyBhbmQgbWljcm8jQTRENTgwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKTVgNNOwYMAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNPFeMAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBQcm9jZXNzaW5nIGFuZCBtaWNybyNBNEQ1ODAucGRmAA4AzgBmAFAAcgBvAGMAZQBzAHMAaQBuAGcAIABhAG4AZAAgAG0AaQBjAHIAbwBzAHQAcgB1AGMAdAB1AHIAYQBsACAAYwBoAGEAcgBhAGMAdABlAHIAaQB6AGEAdABpAG8AbgAgAG8AZgAgAHAAbwByAG8AdQBzACAAYgBpAG8AYwBvAG0AcABhAHQAaQBiAGwAZQAgAHAAcgBvAHQAZQBpAG4AIABwAG8AbAB5AG0AZQByACAAdABoAGkAbgAgAGYAaQBsAG0AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCSVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Qcm9jZXNzaW5nIGFuZCBtaWNyb3N0cnVjdHVyYWwgY2hhcmFjdGVyaXphdGlvbiBvZiBwb3JvdXMgYmlvY29tcGF0aWJsZSBwcm90ZWluIHBvbHltZXIgdGhpbiBmaWxtcy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgD3APwBBAPGA8gDzQPYA+ED7wPzA/oEAwQIBBUEGAQqBC0EMgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQ0}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0032386198008660}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0032-3861(98)00866-0}} @article{zang:2015, Abstract = {Abstract Carbon based nanomaterials, including one-dimensional carbon nanotubes (CNTs) and two-dimensional graphene, have attracted great research interests in recent years for various potential applications using the unique mechanical, electrical, optical and chemical properties. Specifically, the large surface area-to-volume ratio of these carbon-based material make them prime candidates for sensing applications in \{MEMS\} (Microelectromechanical Systems) and \{NEMS\} (Nanoelectromechanical Systems) devices. Here, we review the key electrical and mechanical properties of graphene with the focuses on their applications in sensors and actuators. State-of-art synthesis processes for graphene and \{CNTs\} are discussed since continuous advancements in their fabrication process are vital for the commercialization of graphene- or CNT-based products. Examples of graphene and \{CNT\} in MEMS/NEMS applications such as electronic components, mass/gas sensors, supercapacitors, and others are introduced and the advantages and challenges for graphene and \{CNTs\} based devices are discussed. Before these materials can be successfully utilized in MEMS/NEMS systems, effective integration processes with high yield have to be established. Approaches and discussions and are briefed in the future prospects of the paper. }, Author = {Xining Zang and Qin Zhou and Jiyoung Chang and Yumeng Liu and Liwei Lin}, Date-Added = {2016-05-04 02:57:03 +0000}, Date-Modified = {2016-05-04 02:57:16 +0000}, Doi = {http://dx.doi.org/10.1016/j.mee.2014.10.023}, Issn = {0167-9317}, Journal = {Microelectronic Engineering}, Keywords = {Transfer process}, Note = {Micro and Nanofabrication Breakthroughs for Electronics, \{MEMS\} and Life Sciences}, Pages = {192 - 206}, Title = {Graphene and carbon nanotube (CNT) in MEMS/NEMS applications}, Url = {http://www.sciencedirect.com/science/article/pii/S0167931714004559}, Volume = {132}, Year = {2015}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QQEdyYXBoZW5lIGFuZCBjYXJib24gbmFub3R1YmUgKENOVCkgaW4gTUVNUzpORU1TIGFwcGxpY2F0aW9ucy5wZGbSFwsYGVdOUy5kYXRhTxECTAAAAAACTAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0dyYXBoZW5lIGFuZCBjYXJib24gI0E0RDNERC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACk093TTsECAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTTxViAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAR3JhcGhlbmUgYW5kIGNhcmJvbiAjQTREM0RELnBkZgAOAIIAQABHAHIAYQBwAGgAZQBuAGUAIABhAG4AZAAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlACAAKABDAE4AVAApACAAaQBuACAATQBFAE0AUwAvAE4ARQBNAFMAIABhAHAAcABsAGkAYwBhAHQAaQBvAG4AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBsVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9HcmFwaGVuZSBhbmQgY2FyYm9uIG5hbm90dWJlIChDTlQpIGluIE1FTVM6TkVNUyBhcHBsaWNhdGlvbnMucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A0QDWAN4DLgMwAzUDQANJA1cDWwNiA2sDcAN9A4ADkgOVA5oAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADnA==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0167931714004559}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.mee.2014.10.023}} @mastersthesis{jones:2013, Author = {Kristopher N. Jones}, Date-Added = {2016-05-03 21:08:03 +0000}, Date-Modified = {2016-05-03 21:08:53 +0000}, School = {Brigham Young University}, Title = {An Exploration of Carbon-Filled Carbon Nanotubes as a Potential Material in Coronary Stents}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QRUFuIEV4cGxvcmF0aW9uIG9mIENhcmJvbi1GaWxsZWQgQ2FyYm9uIE5hbm90dWJlcyBhcyBhIFBvdGVudGlhbCBNLnBkZtIXCxgZV05TLmRhdGFPEQJcAAAAAAJcAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfQW4gRXhwbG9yYXRpb24gb2YgQ2EjQTNDQTIyLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKPKItNObw0AAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNOw20AAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBBbiBFeHBsb3JhdGlvbiBvZiBDYSNBM0NBMjIucGRmAA4AjABFAEEAbgAgAEUAeABwAGwAbwByAGEAdABpAG8AbgAgAG8AZgAgAEMAYQByAGIAbwBuAC0ARgBpAGwAbABlAGQAIABDAGEAcgBiAG8AbgAgAE4AYQBuAG8AdAB1AGIAZQBzACAAYQBzACAAYQAgAFAAbwB0AGUAbgB0AGkAYQBsACAATQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBxVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BbiBFeHBsb3JhdGlvbiBvZiBDYXJib24tRmlsbGVkIENhcmJvbiBOYW5vdHViZXMgYXMgYSBQb3RlbnRpYWwgTS5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A1gDbAOMDQwNFA0oDVQNeA2wDcAN3A4ADhQOSA5UDpwOqA68AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADsQ==}} @article{park:2009, Abstract = { We report a novel platform for intracellular delivery of genetic material and nanoparticles, based on vertically aligned carbon nanosyringe arrays (CNSAs) of controllable height. Using this technology, we have shown that plasmid and quantum dots can be efficiently delivered to the cytoplasm of cancer cells and human mesenchymal stem cells. The CNSA platform holds great promise for a myriad of applications including cell-based therapy, imaging, and tracking in vivo, and in biological studies aimed at understanding cellular function. }, Author = {Sangjin Park and Youn-Su Kim and Won Bae Kim and Sangyong Jon}, Date-Added = {2016-04-28 18:42:29 +0000}, Date-Modified = {2016-04-28 18:42:39 +0000}, Doi = {10.1021/nl802962t}, Eprint = {http://dx.doi.org/10.1021/nl802962t}, Journal = {Nano Letters}, Note = {PMID: 19254005}, Number = {4}, Pages = {1325-1329}, Title = {Carbon Nanosyringe Array as a Platform for Intracellular Delivery}, Url = {http://dx.doi.org/10.1021/nl802962t}, Volume = {9}, Year = {2009}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QRUNhcmJvbiBOYW5vc3lyaW5nZSBBcnJheSBhcyBhIFBsYXRmb3JtIGZvciBJbnRyYWNlbGx1bGFyIERlbGl2ZXJ5LnBkZtIXCxgZV05TLmRhdGFPEQJcAAAAAAJcAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfQ2FyYm9uIE5hbm9zeXJpbmdlIEEjOUZCRDBGLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ+9D9NHtZAAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNICfAAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBDYXJib24gTmFub3N5cmluZ2UgQSM5RkJEMEYucGRmAA4AjABFAEMAYQByAGIAbwBuACAATgBhAG4AbwBzAHkAcgBpAG4AZwBlACAAQQByAHIAYQB5ACAAYQBzACAAYQAgAFAAbABhAHQAZgBvAHIAbQAgAGYAbwByACAASQBuAHQAcgBhAGMAZQBsAGwAdQBsAGEAcgAgAEQAZQBsAGkAdgBlAHIAeQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBxVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9DYXJib24gTmFub3N5cmluZ2UgQXJyYXkgYXMgYSBQbGF0Zm9ybSBmb3IgSW50cmFjZWxsdWxhciBEZWxpdmVyeS5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A1gDbAOMDQwNFA0oDVQNeA2wDcAN3A4ADhQOSA5UDpwOqA68AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADsQ==}, Bdsk-Url-1 = {http://dx.doi.org/10.1021/nl802962t}} @article{nikitin:2009, Abstract = { We have calculated the adsorption energies for different hydrogen dimers adsorbed at the surface of zigzag single-walled carbon nanotubes (SWCNs) (n,0) (for n = 6−28) to identify the range of nanotube structural parameters that provide optimal adsorption energetics. We determined that, for H2 gas in equilibrium with adsorbed hydrogen dimers, under normal conditions, carbon nanotubes with diameters in the range of 0.77 $\pm$ 0.19 nm have a minimum energy overhead for hydrogen release and uptake in the hydrogen storage process. Most interestingly, we also found that the adsorption energies of hydrogen are correlated to the modulations of the nanotube density of states, because of the quantum confinement of electrons along the circumference of the SWCN. This effect is discussed from the perspective of chemical bond formation and is related to the valence to conduction band excitation energy. }, Author = {Anton Nikitin and Zhiyong Zhang and Anders Nilsson}, Date-Added = {2016-04-28 18:40:17 +0000}, Date-Modified = {2016-04-28 18:40:55 +0000}, Doi = {10.1021/nl802727h}, Eprint = {http://dx.doi.org/10.1021/nl802727h}, Journal = {Nano Letters}, Number = {4}, Pages = {1301-1306}, Title = {Energetics of C−H Bonds Formed at Single-Walled Carbon Nanotubes}, Url = {http://dx.doi.org/10.1021/nl802727h}, Volume = {9}, Year = {2009}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QREVuZXJnZXRpY3Mgb2YgQy1IIEJvbmRzIEZvcm1lZCBhdCBTaW5nbGUtV2FsbGVkIENhcmJvbiBOYW5vdHViZXMucGRm0hcLGBlXTlMuZGF0YU8RAlgAAAAAAlgAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9FbmVyZ2V0aWNzIG9mIEMtSCBCbyM5RkJCMjUucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAn7sl00e09gAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA00gJVgAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEVuZXJnZXRpY3Mgb2YgQy1IIEJvIzlGQkIyNS5wZGYADgCKAEQARQBuAGUAcgBnAGUAdABpAGMAcwAgAG8AZgAgAEMALQBIACAAQgBvAG4AZABzACAARgBvAHIAbQBlAGQAIABhAHQAIABTAGkAbgBnAGwAZQAtAFcAYQBsAGwAZQBkACAAQwBhAHIAYgBvAG4AIABOAGEAbgBvAHQAdQBiAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBwVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9FbmVyZ2V0aWNzIG9mIEMtSCBCb25kcyBGb3JtZWQgYXQgU2luZ2xlLVdhbGxlZCBDYXJib24gTmFub3R1YmVzLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOANUA2gDiAz4DQANFA1ADWQNnA2sDcgN7A4ADjQOQA6IDpQOqAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA6w=}, Bdsk-Url-1 = {http://dx.doi.org/10.1021/nl802727h}} @article{chen:2007, Abstract = {Technologies for introducing molecules into living cells are vital for probing the physical properties and biochemical interactions that govern the cell's behavior. Here, we report the development of a nanoscale cell injection system (termed the nanoinjector) that uses carbon nanotubes to deliver cargo into cells. A single multiwalled carbon nanotube attached to an atomic force microscope (AFM) tip was functionalized with cargo via a disulfide-based linker. Penetration of cell membranes with this ``nanoneedle'' was controlled by the AFM. The following reductive cleavage of the disulfide bonds within the cell's interior resulted in the release of cargo inside the cells, after which the nanoneedle was retracted by AFM control. The capability of the nanoinjector was demonstrated by injection of protein-coated quantum dots into live human cells. Single-particle tracking was used to characterize the diffusion dynamics of injected quantum dots in the cytosol. This technique causes no discernible membrane or cell damage, and can deliver a discrete number of molecules to the cell's interior without the requirement of a carrier solvent.}, Author = {Chen, Xing and Kis, Andras and Zettl, A. and Bertozzi, Carolyn R.}, Date-Added = {2016-04-28 18:32:42 +0000}, Date-Modified = {2016-04-28 18:36:56 +0000}, Editor = {Ronald D. Vale}, Journal = {Proceedings of the National Academy of Sciences}, Number = {20}, Pages = {8218-8222}, Title = {A cell nanoinjector based on carbon nanotubes}, Volume = {104}, Year = {2007}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QMUEgY2VsbCBuYW5vaW5qZWN0b3IgYmFzZWQgb24gY2FyYm9uIG5hbm90dWJlcy5wZGbSFwsYGVdOUy5kYXRhTxECIAAAAAACIAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0EgY2VsbCBuYW5vaW5qZWN0b3IgIzlGQjcyRS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACfty7TR7LdAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTSAc9AAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAQSBjZWxsIG5hbm9pbmplY3RvciAjOUZCNzJFLnBkZgAOAGQAMQBBACAAYwBlAGwAbAAgAG4AYQBuAG8AaQBuAGoAZQBjAHQAbwByACAAYgBhAHMAZQBkACAAbwBuACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBdVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BIGNlbGwgbmFub2luamVjdG9yIGJhc2VkIG9uIGNhcmJvbiBuYW5vdHViZXMucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAMIAxwDPAvMC9QL6AwUDDgMcAyADJwMwAzUDQgNFA1cDWgNfAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA2E=}} @mastersthesis{lindstrom:2014, Abstract = {Delivering foreign molecules into living cells is a broad and ongoing area of research. Gene therapy, or delivering nucleic acids into cells via non-viral or viral pathways, is an especially promising area for pharmaceutics. All gene therapy methods have their respective advantages and disadvantages, including limited delivery efficiency and low viability. Nanoinjection, or delivering molecules into cells using a solid lance, has proven to be highly efficient while maintaining high viability levels. In this thesis, an array of solid silicon lances was tested by nanoinjecting tens of thousands of HeLa cancer cells simultaneously. Several molecule types were injected in different tests to understand cell uptake efficiency and cell viability. Voltage was used to determine the impact of an electric field on molecule delivery. Propidium iodide, a dye that fluoresces when bound to nucleic acids and does not fluoresce when unbound, was delivered into cells using the lance array. Results show that the lance array delivers propidium iodide into up to 78% of a nanoinjected HeLa cell culture, while maintaining 78%-91% viability. Using similar protocol as in propidium iodide experiments, plasmid DNA containing the code for a fluorescent protein was nanoinjected into HeLa cells, resulting in an average expression rate of up to 0.21%. Since gene expression only occurs in cells which have integrated DNA into the genome in the nucleus, a different DNA detection method was developed to determine total DNA count in cells following nanoinjection. DNA strands tagged with a radioactive isotope were nanoinjected into HeLa cells. Liquid scintillation was employed to quantify and discriminate between DNA delivered to cells and DNA that remained in solution around cells following nanoinjection. The largest average amount of DNA delivered to cells was 20.0 x 10^3 DNA molecules per cell. Further development of the radioactive nanoinjection process is needed to more fully understand the parameters that affect DNA delivery efficiency. In all experiments with propidium iodide and DNA molecules, low accumulation voltage, coupled with a short pulsed release voltage, resulted in the greatest molecule delivery efficiencies when compared to tests without voltage or with a constant voltage only. Lastly, an automated nanoinjection system was developed to eliminate variability in user applied nanoinjection force. The automated system was found to reduce variability in average propidium iodide uptake values by 56%. In conclusion, experimental testing of the multi-cell nanoinjection process has shown promising molecule delivery results into human cells, suggesting that further optimization of the process would have positive implications in the field of academic and clinical gene therapy.}, Author = {Zachary K. Lindstrom}, Date-Added = {2016-04-28 18:17:43 +0000}, Date-Modified = {2016-04-28 18:19:53 +0000}, School = {Brigham Young University}, Title = {Design and Experimental Testing of Nanoinjection Protocols for Delivering Molecules into HeLa Cells with a Bio-MEMS Device}, Year = {2014}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QfkRlc2lnbiBhbmQgRXhwZXJpbWVudGFsIFRlc3Rpbmcgb2YgTmFub2luamVjdGlvbiBQcm90b2NvbHMgZm9yIERlbGl2ZXJpbmcgTW9sZWN1bGVzIGludG8gSGVMYSBDZWxscyB3aXRoIGEgQmlvLU1FTVMgRGV2aWNlLnBkZtIXCxgZV05TLmRhdGFPEQMGAAAAAAMGAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfRGVzaWduIGFuZCBFeHBlcmltZW4jOUZCMkFELnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ+yrdNHsDEAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANNIBJEAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBEZXNpZ24gYW5kIEV4cGVyaW1lbiM5RkIyQUQucGRmAA4A/gB+AEQAZQBzAGkAZwBuACAAYQBuAGQAIABFAHgAcABlAHIAaQBtAGUAbgB0AGEAbAAgAFQAZQBzAHQAaQBuAGcAIABvAGYAIABOAGEAbgBvAGkAbgBqAGUAYwB0AGkAbwBuACAAUAByAG8AdABvAGMAbwBsAHMAIABmAG8AcgAgAEQAZQBsAGkAdgBlAHIAaQBuAGcAIABNAG8AbABlAGMAdQBsAGUAcwAgAGkAbgB0AG8AIABIAGUATABhACAAQwBlAGwAbABzACAAdwBpAHQAaAAgAGEAIABCAGkAbwAtAE0ARQBNAFMAIABEAGUAdgBpAGMAZQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCqVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9EZXNpZ24gYW5kIEV4cGVyaW1lbnRhbCBUZXN0aW5nIG9mIE5hbm9pbmplY3Rpb24gUHJvdG9jb2xzIGZvciBEZWxpdmVyaW5nIE1vbGVjdWxlcyBpbnRvIEhlTGEgQ2VsbHMgd2l0aCBhIEJpby1NRU1TIERldmljZS5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgEPARQBHAQmBCgELQQ4BEEETwRTBFoEYwRoBHUEeASKBI0EkgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAASU}} @article{zhou:2016, Abstract = {Abstract Studying complex pore structures is the key to understanding the mechanism of shale gas accumulation. FIB-SEM (focused ion beam-scanning electron microscope) is the mainstream and effective instrument for imaging nanopores in gas shales. Based on this technology, 2D and 3D characteristics of shale samples from Lower Silurian Longmaxi formation in southern Sichuan Basin were investigated. 2D experimental results show that the pores in shale are nanometer-sized, and the structure of those nanopores can be classified into three types: organic pores, inorganic pores and micro fractures. Among the three types, organic pores are dominantly developed in the \{OM\} (organic matter) with three patterns such as continuous distributed OM, \{OM\} between clay minerals and \{OM\} between pyrite particles, and the size of organic pores range from 5 nm to 200 nm.Inveresly, inorganic pores and micro fractures are less developed in the Longmaxi shales. 3D digital rocks were reconstructed and segmented by 600 continuous images by \{FIB\} cutting and \{SEM\} imaging simultaneously. The pore size distribution and porosity can be calculated by this 3D digital core, showing that its average value is 32 nm and porosity is 3.62%.The 3D digital porosity is higher than its helium porosity, which can be regarded as one important parameter for evaluation of shale gas reserves. The 2D and 3D characterized results suggest that the nanometer-sized pores in organic matter take up the fundamental storage space for the Longmaxi shale. These characteristics have contributed to the preservation of shale gas in this complex tectonic area. }, Author = {Shangwen Zhou and Gang Yan and Huaqing Xue and Wei Guo and Xiaobo Li}, Date-Added = {2016-03-19 04:52:24 +0000}, Date-Modified = {2016-03-19 04:52:49 +0000}, Doi = {http://dx.doi.org/10.1016/j.marpetgeo.2016.02.033}, Issn = {0264-8172}, Journal = {Marine and Petroleum Geology}, Keywords = {FIB-SEM}, Pages = {174 - 180}, Title = {2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM}, Url = {http://www.sciencedirect.com/science/article/pii/S0264817216300563}, Volume = {73}, Year = {2016}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QWzJEIGFuZCAzRCBuYW5vcG9yZSBjaGFyYWN0ZXJpemF0aW9uIG9mIGdhcyBzaGFsZSBpbiBMb25nbWF4aSBmb3JtYXRpb24gYmFzZWQgb24gRklCLVNFTS5wZGbSFwsYGVdOUy5kYXRhTxECngAAAAACngACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwHzJEIGFuZCAzRCBuYW5vcG9yZSBjIzk0NUMwQi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUXAvTEjbuAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTEotOAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAMkQgYW5kIDNEIG5hbm9wb3JlIGMjOTQ1QzBCLnBkZgAOALgAWwAyAEQAIABhAG4AZAAgADMARAAgAG4AYQBuAG8AcABvAHIAZQAgAGMAaABhAHIAYQBjAHQAZQByAGkAegBhAHQAaQBvAG4AIABvAGYAIABnAGEAcwAgAHMAaABhAGwAZQAgAGkAbgAgAEwAbwBuAGcAbQBhAHgAaQAgAGYAbwByAG0AYQB0AGkAbwBuACAAYgBhAHMAZQBkACAAbwBuACAARgBJAEIALQBTAEUATQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCHVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS8yRCBhbmQgM0QgbmFub3BvcmUgY2hhcmFjdGVyaXphdGlvbiBvZiBnYXMgc2hhbGUgaW4gTG9uZ21heGkgZm9ybWF0aW9uIGJhc2VkIG9uIEZJQi1TRU0ucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOwA8QD5A5sDnQOiA60DtgPEA8gDzwPYA90D6gPtA/8EAgQHAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABAk=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0264817216300563}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.marpetgeo.2016.02.033}} @article{porochseritan:2011, Abstract = {The central composite experimental design and response surface methodology have been employed for statistical modeling and analysis of the results dealing with nickel electroplating process. The empirical models developed in terms of design variables (current density J (A/dm2), temperature T ($\,^{\circ}$C) and pH) have been found statistically adequate to describe the process responses, i.e. cathode efficiency Y (%), coating thickness U (μm), brightness V (%) and hardness W (HV). The graphical representations consisted of 2D contour plots and 3D surface plots have been used for exploring and analysis of response surfaces in order to identify the main, quadratic and interaction effects. The multi-response optimization of nickel electroplating process has been carried out by means of desirability function approach. To this end, a genetic algorithm has been used for mathematical optimization of the multi-response problem. The optimization algorithm has conducted to a set of equivalent solutions named Pareto optimal set. The confirmation runs have been employed in order to make a decision about the optimal solution approved by experiment. Thus, the optimum conditions of nickel electroplating has been defined in this work as J* = 5.35 (A/dm2), T* = 33.44 ($\,^{\circ}$C) and pH* = 6.22 and respectively the responses confirmed by experiment were Y = 79.12 $\pm$ 0.18 (%), U = 52.77 $\pm$ 0.48 (μm), V = 26.12 $\pm$ 0.45 (%) and W = 371.6 $\pm$ 1.77 (HV). In such conditions the quality of nickel electroplating deposit was the best one in accordance with experimental results. }, Author = {Maria Poroch-Seritan and Sonia Gutt and Gheorghe Gutt and Igor Cretescu and Corneliu Cojocaru and Traian Severin}, Date-Added = {2016-03-19 04:36:14 +0000}, Date-Modified = {2016-03-19 04:36:39 +0000}, Doi = {http://dx.doi.org/10.1016/j.cherd.2010.05.010}, Issn = {0263-8762}, Journal = {Chemical Engineering Research and Design}, Keywords = {Genetic algorithm}, Number = {2}, Pages = {136 - 147}, Title = {Design of experiments for statistical modeling and multi-response optimization of nickel electroplating process}, Url = {http://www.sciencedirect.com/science/article/pii/S0263876210001772}, Volume = {89}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qc0Rlc2lnbiBvZiBleHBlcmltZW50cyBmb3Igc3RhdGlzdGljYWwgbW9kZWxpbmcgYW5kIG11bHRpLXJlc3BvbnNlIG9wdGltaXphdGlvbiBvZiBuaWNrZWwgZWxlY3Ryb3BsYXRpbmcgcHJvY2Vzcy5wZGbSFwsYGVdOUy5kYXRhTxEC5gAAAAAC5gACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0Rlc2lnbiBvZiBleHBlcmltZW50Izk0NUEyMi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUWiLTEjMxAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADTEoeRAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToARGVzaWduIG9mIGV4cGVyaW1lbnQjOTQ1QTIyLnBkZgAOAOgAcwBEAGUAcwBpAGcAbgAgAG8AZgAgAGUAeABwAGUAcgBpAG0AZQBuAHQAcwAgAGYAbwByACAAcwB0AGEAdABpAHMAdABpAGMAYQBsACAAbQBvAGQAZQBsAGkAbgBnACAAYQBuAGQAIABtAHUAbAB0AGkALQByAGUAcwBwAG8AbgBzAGUAIABvAHAAdABpAG0AaQB6AGEAdABpAG8AbgAgAG8AZgAgAG4AaQBjAGsAZQBsACAAZQBsAGUAYwB0AHIAbwBwAGwAYQB0AGkAbgBnACAAcAByAG8AYwBlAHMAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCfVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9EZXNpZ24gb2YgZXhwZXJpbWVudHMgZm9yIHN0YXRpc3RpY2FsIG1vZGVsaW5nIGFuZCBtdWx0aS1yZXNwb25zZSBvcHRpbWl6YXRpb24gb2Ygbmlja2VsIGVsZWN0cm9wbGF0aW5nIHByb2Nlc3MucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAQQBCQERA/sD/QQCBA0EFgQkBCgELwQ4BD0ESgRNBF8EYgRnAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABGk=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0263876210001772}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cherd.2010.05.010}} @article{karumuri:2015, Abstract = {Abstract An attractive approach of increasing functionality of solid surfaces is to create hierarchical multiscale morphology by attaching tailored carpet-like arrays of Carbon nanotubes (CNT) on them. Such surfaces offer fractal morphology along with unprecedented increase in specific surface areas, and significantly boost the potency of porous materials used in surface-active applications. However, full utilization of these structures will require intimate interaction between the solid surface and its environmental fluid. \{CNT\} arrays tend to be hydrophobic, which limit their effectiveness in aqueous environments. In this research, we investigated two different surface modifications methods to induce hydrophilic property to \{CNT\} nano-carpets on graphitic substrates: dry oxygen plasma treatment and wet sol--gel oxide coating. Structure, morphology, composition and chemistry of these multiscale surfaces have been related to wettability and water flow properties. Plasma oxygen treatments did not alter the surface morphology, but induced temporary wettability, that could be reversed by heat treatment. On the other hand, sol--gel treatment permanently coated the nanotubes with a strongly bonded layer of amorphous SiO2. This coating imparts permanent alterations in surface chemistry, contact angle, wettability and water flow. Porous carbon foams were coated with \{CNT\} arrays and their water permeability measured before and after sol--gel silica coating. The hydrophilic coating was seen to increase flow rate and reduce pressure build-up. These results have important implications on all devices that utilize surface activity of porous solids, such as catalytic membranes, antimicrobial filters, and microfluidic sensors. }, Author = {Anil K. Karumuri and Lvmeng He and Sharmila M. Mukhopadhyay}, Date-Added = {2016-03-17 18:49:41 +0000}, Date-Modified = {2016-03-17 18:50:10 +0000}, Doi = {http://dx.doi.org/10.1016/j.apsusc.2014.10.154}, Issn = {0169-4332}, Journal = {Applied Surface Science}, Keywords = {Silica coating}, Pages = {122 - 130}, Title = {Tuning the surface wettability of carbon nanotube carpets in multiscale hierarchical solids}, Url = {http://www.sciencedirect.com/science/article/pii/S0169433214024209}, Volume = {327}, Year = {2015}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QX1R1bmluZyB0aGUgc3VyZmFjZSB3ZXR0YWJpbGl0eSBvZiBjYXJib24gbmFub3R1YmUgY2FycGV0cyBpbiBtdWx0aXNjYWxlIGhpZXJhcmNoaWNhbCBzb2xpZHMucGRm0hcLGBlXTlMuZGF0YU8RAqoAAAAAAqoAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9UdW5pbmcgdGhlIHN1cmZhY2UgdyM5NDBEREEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlA3a0xBYPQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA0xCsnQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFR1bmluZyB0aGUgc3VyZmFjZSB3Izk0MEREQS5wZGYADgDAAF8AVAB1AG4AaQBuAGcAIAB0AGgAZQAgAHMAdQByAGYAYQBjAGUAIAB3AGUAdAB0AGEAYgBpAGwAaQB0AHkAIABvAGYAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQAgAGMAYQByAHAAZQB0AHMAIABpAG4AIABtAHUAbAB0AGkAcwBjAGEAbABlACAAaABpAGUAcgBhAHIAYwBoAGkAYwBhAGwAIABzAG8AbABpAGQAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCLVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UdW5pbmcgdGhlIHN1cmZhY2Ugd2V0dGFiaWxpdHkgb2YgY2FyYm9uIG5hbm90dWJlIGNhcnBldHMgaW4gbXVsdGlzY2FsZSBoaWVyYXJjaGljYWwgc29saWRzLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDwAPUA/QOrA60DsgO9A8YD1APYA98D6APtA/oD/QQPBBIEFwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQZ}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0169433214024209}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.apsusc.2014.10.154}} @article{hanna:2014, Abstract = {Carbon nanotubes (CNTs) can be grown in dense lithographically patterned forests to form framework structures that can be filled in via chemical vapor deposition to form solid structures. These solid structures can then be used in microelectromechanical systems (MEMS) applications. Initial testing with these structures suggests that when these frameworks are filled with carbon, the resulting material exhibits favorable properties for use in compliant MEMS. To better understand this material's properties, we conducted tests to measure its Young's modulus, failure stress, and stress relaxation in the direction perpendicular to the CNT growth, as well as the modulus and stress in the direction parallel to the CNTs. To determine the properties in the transverse direction, we applied vertical loads to the tips of simple cantilever beam samples, and recorded the force and deflection until failure. The results showed failure strain up to 2.48%. Cantilever samples prepared from the same pattern were also used to measure the stress relaxation of the material. The first test for each sample showed an average force relaxation of 3.72%, while successive tests only produced 1.23% after 24 h. To determine the properties in the direction parallel to the CNTs, we prepared simple rectangular beams and subjected them to 3-point bending tests. The average strain calculated in the parallel direction was 8.17%.}, Author = {B. H. Hanna and W. C. Fazio and J. D. Tanner and J. M. Lund and T. S. Wood and R. C. Davis and R. R. Vanfleet and B. D. Jensen}, Date-Added = {2016-03-17 17:50:08 +0000}, Date-Modified = {2016-03-17 17:54:11 +0000}, Journal = {Journal of Microelectromechanical Systems}, Keywords = {Young's modulus;bending;cantilevers;carbon nanotubes;chemical vapour deposition;micromechanical devices;stress relaxation;3-point bending tests;CNT;MEMS applications;Young's modulus;cantilever beam samples;carbon nanotubes;chemical vapor deposition;dense lithographically patterned forests;failure strain;failure stress;framework structures;microelectromechanical systems applications;rectangular beams;solid structures;stress relaxation;transverse direction;vertical loads;Carbon nanotubes;Material properties;Micromechanical devices;Strain;Stress;Young's modulus;Micromechanical devices;carbon nanotubes;material properties;material properties.}, Month = {December}, Number = {6}, Pages = {1330-1339}, Title = {Mechanical Property Measurement of Carbon Infiltrated Carbon Nanotube Structures for Compliant Micromechanisms}, Volume = {23}, Year = {2014}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QdE1lY2hhbmljYWwgUHJvcGVydHkgTWVhc3VyZW1lbnQgb2YgQ2FyYm9uICBJbmZpbHRyYXRlZCBDYXJib24gTmFub3R1YmUgU3RydWN0dXJlcyBmb3IgIENvbXBsaWFudCBNaWNyb21lY2hhbmlzbXMucGRm0hcLGBlXTlMuZGF0YU8RAugAAAAAAugAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9NZWNoYW5pY2FsIFByb3BlcnR5ICM5NDA5NjEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlAlh0xBLQwAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA0xCfowAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AE1lY2hhbmljYWwgUHJvcGVydHkgIzk0MDk2MS5wZGYADgDqAHQATQBlAGMAaABhAG4AaQBjAGEAbAAgAFAAcgBvAHAAZQByAHQAeQAgAE0AZQBhAHMAdQByAGUAbQBlAG4AdAAgAG8AZgAgAEMAYQByAGIAbwBuACAAIABJAG4AZgBpAGwAdAByAGEAdABlAGQAIABDAGEAcgBiAG8AbgAgAE4AYQBuAG8AdAB1AGIAZQAgAFMAdAByAHUAYwB0AHUAcgBlAHMAIABmAG8AcgAgACAAQwBvAG0AcABsAGkAYQBuAHQAIABNAGkAYwByAG8AbQBlAGMAaABhAG4AaQBzAG0AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCgVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NZWNoYW5pY2FsIFByb3BlcnR5IE1lYXN1cmVtZW50IG9mIENhcmJvbiAgSW5maWx0cmF0ZWQgQ2FyYm9uIE5hbm90dWJlIFN0cnVjdHVyZXMgZm9yICBDb21wbGlhbnQgTWljcm9tZWNoYW5pc21zLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAQUBCgESA/4EAAQFBBAEGQQnBCsEMgQ7BEAETQRQBGIEZQRqAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABGw=}} @article{gao:2015, Abstract = {Abstract Microchannel heat exchangers provide large surface area to volume ratios and accelerated heat transfer, leading to compact form factors for application in portable and distributed thermal management and waste heat recovery. The application of microchannel heat exchangers in industry has been slowed by high manufacturing costs. Therefore, efforts are being made to find new ways to manufacture these components. This research investigates the application of a process-based cost and environmental impact assessment model to the evaluation of manufacturing alternatives to produce microchannel heat exchangers. A bottom-up process-based cost modeling method is used to estimate the cost of manufacturing a microchannel heat recovery unit (HRU). Cradle-to-gate life cycle assessment is simultaneously applied to evaluate environmental impact. Both sets of calculations extend from a single common set of data consisting of production and device geometry parameters. An analysis is demonstrated for different manufacturing alternatives for producing the HRU. Among the six manufacturing plans evaluated, the combination of laser cutting and diffusion brazing was found to have the lowest cost but the highest environmental impact, while the combination of photochemical machining and laser welding was found to have the lowest environmental impact with a comparatively high cost. Among the cost categories defined, consumables, capital tooling, and utilities were found to be the primary drivers for cost and environmental impact suggesting these as areas to concentrate in future process capability assessments and technology development. }, Author = {Qi Gao and Jair Lizarazo-Adarme and Brian K. Paul and Karl R. Haapala}, Date-Added = {2016-03-16 19:36:27 +0000}, Date-Modified = {2016-03-16 19:37:24 +0000}, Doi = {http://dx.doi.org/10.1016/j.jclepro.2015.04.141}, Issn = {0959-6526}, Journal = {Journal of Cleaner Production}, Keywords = {Graphical user interface}, Pages = {146 - 156}, Title = {An economic and environmental assessment model for microchannel device manufacturing: part 2 -- Application}, Url = {http://www.sciencedirect.com/science/article/pii/S0959652615006289}, Volume = {120}, Year = {2016}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YW8QbwAgAEEAbgAgAGUAYwBvAG4AbwBtAGkAYwAgAGEAbgBkACAAZQBuAHYAaQByAG8AbgBtAGUAbgB0AGEAbAAgAGEAcwBzAGUAcwBzAG0AZQBuAHQAIABtAG8AZABlAGwAIABmAG8AcgAgAG0AaQBjAHIAbwBjAGgAYQBuAG4AZQBsACAAZABlAHYAaQBjAGUAIABtAGEAbgB1AGYAYQBjAHQAdQByAGkAbgBnAC0AIABwAGEAcgB0ACAAMgAgIBMAIABBAHAAcABsAGkAYwBhAHQAaQBvAG4ALgBwAGQAZtIXCxgZV05TLmRhdGFPEQLcAAAAAALcAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfIEFuIGVjb25vbWljIGFuZCBlbnYjOTNBMEQwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJOg0NMPEZ0AAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANMPZf0AAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgAgQW4gZWNvbm9taWMgYW5kIGVudiM5M0EwRDAucGRmAA4A4ABvACAAQQBuACAAZQBjAG8AbgBvAG0AaQBjACAAYQBuAGQAIABlAG4AdgBpAHIAbwBuAG0AZQBuAHQAYQBsACAAYQBzAHMAZQBzAHMAbQBlAG4AdAAgAG0AbwBkAGUAbAAgAGYAbwByACAAbQBpAGMAcgBvAGMAaABhAG4AbgBlAGwAIABkAGUAdgBpAGMAZQAgAG0AYQBuAHUAZgBhAGMAdAB1AHIAaQBuAGcALQAgAHAAYQByAHQAIAAyACAgEwAgAEEAcABwAGwAaQBjAGEAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCdVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS8gQW4gZWNvbm9taWMgYW5kIGVudmlyb25tZW50YWwgYXNzZXNzbWVudCBtb2RlbCBmb3IgbWljcm9jaGFubmVsIGRldmljZSBtYW51ZmFjdHVyaW5nLSBwYXJ0IDIg4oCTIEFwcGxpY2F0aW9uLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgFvAXQBfARcBF4EYwRuBHcEhQSJBJAEmQSeBKsErgTABMMEyAAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAATK}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0959652615006289}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.jclepro.2015.04.141}} @article{nakanishi:2015, Abstract = {This study assessed the health risks via inhalation and derived the occupational exposure limit (OEL) for the carbon nanotube (CNT) group rather than individual CNT material. We devised two methods: the integration of the intratracheal instillation (IT) data with the inhalation (IH) data, and the ``biaxial approach.'' A four-week IH test and IT test were performed in rats exposed to representative materials to obtain the no observed adverse effect level, based on which the OEL was derived. We used the biaxial approach to conduct a relative toxicity assessment of six types of CNTs. An OEL of 0.03 mg/m3 was selected as the criterion for the CNT group. We proposed that the OEL be limited to 15 years. We adopted adaptive management, in which the values are reviewed whenever new data are obtained. The toxicity level was found to be correlated with the Brunauer-Emmett-Teller (BET)-specific surface area (BET-SSA) of CNT, suggesting the BET-SSA to have potential for use in toxicity estimation. We used the published exposure data and measurement results of dustiness tests to compute the risk in relation to particle size at the workplace and showed that controlling micron-sized respirable particles was of utmost importance. Our genotoxicity studies indicated that CNT did not directly interact with genetic materials. They supported the concept that, even if CNT is genotoxic, it is secondary genotoxicity mediated via a pathway of genotoxic damage resulting from oxidative DNA attack by free radicals generated during CNT-elicited inflammation. Secondary genotoxicity appears to involve a threshold.}, Author = {Nakanishi, Junko and Morimoto, Yasuo and Ogura, Isamu and Kobayashi, Norihiro and Naya, Masato and Ema, Makoto and Endoh, Shigehisa and Shimada, Manabu and Ogami, Akira and Myojyo, Toshihiko and Oyabu, Takako and Gamo, Masashi and Kishimoto, Atsuo and Igarashi, Takuya and Hanai, Sosuke}, Date-Added = {2015-11-22 06:21:41 +0000}, Date-Modified = {2015-11-22 06:22:25 +0000}, Doi = {10.1111/risa.12394}, Issn = {1539-6924}, Journal = {Risk Analysis}, Keywords = {CNT, CNT toxicity; OEL, risk assessment}, Number = {10}, Pages = {1940--1956}, Title = {Risk Assessment of the Carbon Nanotube Group}, Url = {http://dx.doi.org/10.1111/risa.12394}, Volume = {35}, Year = {2015}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QbFJpc2sgQW5hbHlzaXMsIFZvbC4gMzUsIE5vLiAxMCwgMjAxNSBET0ktIDEwLjExMTE6cmlzYS4xMjM5NFJpc2sgQXNzZXNzbWVudCBvZiB0aGUgQ2FyYm9uIE5hbm90dWJlIEdyb3VwLnBkZtIXCxgZV05TLmRhdGFPEQLQAAAAAALQAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfUmlzayBBbmFseXNpcywgVm9sLiAjMjlBRjFCLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmvG9J2q+sAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANJ3DlsAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBSaXNrIEFuYWx5c2lzLCBWb2wuICMyOUFGMUIucGRmAA4A2gBsAFIAaQBzAGsAIABBAG4AYQBsAHkAcwBpAHMALAAgAFYAbwBsAC4AIAAzADUALAAgAE4AbwAuACAAMQAwACwAIAAyADAAMQA1ACAARABPAEkALQAgADEAMAAuADEAMQAxADEALwByAGkAcwBhAC4AMQAyADMAOQA0AFIAaQBzAGsAIABBAHMAcwBlAHMAcwBtAGUAbgB0ACAAbwBmACAAdABoAGUAIABDAGEAcgBiAG8AbgAgAE4AYQBuAG8AdAB1AGIAZQAgAEcAcgBvAHUAcAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCYVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9SaXNrIEFuYWx5c2lzLCBWb2wuIDM1LCBOby4gMTAsIDIwMTUgRE9JLSAxMC4xMTExOnJpc2EuMTIzOTRSaXNrIEFzc2Vzc21lbnQgb2YgdGhlIENhcmJvbiBOYW5vdHViZSBHcm91cC5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgD9AQIBCgPeA+AD5QPwA/kEBwQLBBIEGwQgBC0EMARCBEUESgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAARM}, Bdsk-File-2 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QHi4uLy4uLy4uL0Rvd25sb2Fkcy9zY2llbmNlLmJpYtIXCxgZV05TLmRhdGFPEQFiAAAAAAFiAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPs8kLc2NpZW5jZS5iaWIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxiTNVkD+YAAAAAAAAAAAADAAIAAAkgAAAAAAAAAAAAAAAAAAAACURvd25sb2FkcwAAEAAIAADRqs8IAAAAEQAIAADVZGRGAAAAAQAMAA+zyQAPocAAD6G8AAIALEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb3dubG9hZHM6AHNjaWVuY2UuYmliAA4AGAALAHMAYwBpAGUAbgBjAGUALgBiAGkAYgAPABAABwBMAHUAbgBkAFMAUwBEABIAIVVzZXJzL2phc29uL0Rvd25sb2Fkcy9zY2llbmNlLmJpYgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgCvALQAvAIiAiQCKQI0Aj0CSwJPAlYCXwJkAnECdAKGAokCjgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAKQ}, Bdsk-Url-1 = {http://dx.doi.org/10.1111/risa.12394}} @article{ssnems:ir, Date-Added = {2015-08-04 20:21:39 +0000}, Date-Modified = {2015-08-04 20:50:15 +0000}, Journal = {SSNEMS Internal Report}, Title = {Multiphysics, Multiscale Modeling of CVD-based Carbon Nanotubes Synthesis:}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QTU11bHRpcGh5c2ljcywgTXVsdGlzY2FsZSBNb2RlbGluZyBvZiBDVkQtYmFzZWQgQ2FyYm9uIE5hbm90dWJlcyBTeW50aGVzaXMucGRm0hcLGBlXTlMuZGF0YU8RAnQAAAAAAnQAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9NdWx0aXBoeXNpY3MsIE11bHRpc2MjRkIzMTEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7MRyjqHfAAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAyjrb3AAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AE11bHRpcGh5c2ljcywgTXVsdGlzYyNGQjMxMS5wZGYADgCcAE0ATQB1AGwAdABpAHAAaAB5AHMAaQBjAHMALAAgAE0AdQBsAHQAaQBzAGMAYQBsAGUAIABNAG8AZABlAGwAaQBuAGcAIABvAGYAIABDAFYARAAtAGIAYQBzAGUAZAAgAEMAYQByAGIAbwBuACAATgBhAG4AbwB0AHUAYgBlAHMAIABTAHkAbgB0AGgAZQBzAGkAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB5VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NdWx0aXBoeXNpY3MsIE11bHRpc2NhbGUgTW9kZWxpbmcgb2YgQ1ZELWJhc2VkIENhcmJvbiBOYW5vdHViZXMgU3ludGhlc2lzLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDeAOMA6wNjA2UDagN1A34DjAOQA5cDoAOlA7IDtQPHA8oDzwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAPR}} @article{huang:2010, Abstract = {A few oxide thin films, SiO2, TiO2, Al2O3 and ZrO2 were deposited by e-beam evaporation and evaluated on their encapsulation performance. Ca buttons were used as sensors to detect the permeated oxygen and moisture through the oxide barrier layers. The metal Ca sensors coated by the barrier layers were microscopically observed. The results showed that the optimal single layer thickness was varied from 10 to 50 nm, depending on the oxide material. A thicker layer than 60 nm was not helpful for improvement of barrier performance, likely due to the existence of imperfects on substrate and the creation of cracks due to the large residual stress of the oxide thin films. As thin film encapsulation materials, e-beam evaporated Al2O3 and ZrO2 are superior to SiO2 and TiO2 in barrier performance.}, Author = {Huang, Z. H.}, Date-Added = {2015-08-04 20:16:07 +0000}, Date-Modified = {2015-08-04 21:09:04 +0000}, Journal = {12th Electronics Packaging Technology Conference}, Title = {Thin Film Encapsulation by E-beam Evaporation of Oxides}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QO1RoaW4gRmlsbSBFbmNhcHN1bGF0aW9uIGJ5IEUtYmVhbSBFdmFwb3JhdGlvbiBvZiBPeGlkZXMucGRm0hcLGBlXTlMuZGF0YU8RAj4AAAAAAj4AAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9UaGluIEZpbG0gRW5jYXBzdWxhdGkjRkIzM0EucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7M6yhurTwAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAyhv/rwAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFRoaW4gRmlsbSBFbmNhcHN1bGF0aSNGQjMzQS5wZGYADgB4ADsAVABoAGkAbgAgAEYAaQBsAG0AIABFAG4AYwBhAHAAcwB1AGwAYQB0AGkAbwBuACAAYgB5ACAARQAtAGIAZQBhAG0AIABFAHYAYQBwAG8AcgBhAHQAaQBvAG4AIABvAGYAIABPAHgAaQBkAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBnVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGluIEZpbG0gRW5jYXBzdWxhdGlvbiBieSBFLWJlYW0gRXZhcG9yYXRpb24gb2YgT3hpZGVzLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDMANEA2QMbAx0DIgMtAzYDRANIA08DWANdA2oDbQN/A4IDhwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAOJ}} @article{henthorn:2009, Abstract = {Most current methods of microchannel fabrication are expensive and time consuming or result in noncylindrical channels, which is undesirable for many applications. A rapid inexpensive method for the fabrication of flow-ready cylindrical polymer microchannels from polydimethylsiloxane (PDMS) is presented here. In this method, cylindrical needles are used as molds for the channels and also function as flow delivery devices after fabrication. Validation of channel function and smoothness can be accomplished by comparing experimental data to theoretical models. One model was previously developed by the author to predict the incipient motion of a glass sphere in contact with a perfectly smooth PDMS surface and deviations from the model are expected to be a function of channel roughness. The data collected in the present channels show fairly good agreement with the theoretical model, indicating a relatively smooth and consistent surface. In addition, detailed SEM images of the channel showed that the internal surface was qualitatively very smooth.}, Author = {Henthorn, Kimberly H}, Date-Added = {2015-08-04 18:02:25 +0000}, Date-Modified = {2015-08-04 20:28:20 +0000}, Doi = {10.1063/1.3152365}, Journal = {Rev Sci Instrum}, Journal-Full = {The Review of scientific instruments}, Month = {Jun}, Number = {6}, Pages = {066103}, Pmid = {19566231}, Pst = {ppublish}, Title = {A rapid method for flow-ready cylindrical microchannel fabrication}, Volume = {80}, Year = {2009}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QRkEgcmFwaWQgbWV0aG9kIGZvciBmbG93LXJlYWR5IGN5bGluZHJpY2FsIG1pY3JvY2hhbm5lbCBmYWJyaWNhdGlvbi5wZGbSFwsYGVdOUy5kYXRhTxECXgAAAAACXgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0EgcmFwaWQgbWV0aG9kIGZvciBmbCNGQjJCRC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsr3N0rHhAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADN0wZBAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAQSByYXBpZCBtZXRob2QgZm9yIGZsI0ZCMkJELnBkZgAOAI4ARgBBACAAcgBhAHAAaQBkACAAbQBlAHQAaABvAGQAIABmAG8AcgAgAGYAbABvAHcALQByAGUAYQBkAHkAIABjAHkAbABpAG4AZAByAGkAYwBhAGwAIABtAGkAYwByAG8AYwBoAGEAbgBuAGUAbAAgAGYAYQBiAHIAaQBjAGEAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgByVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BIHJhcGlkIG1ldGhvZCBmb3IgZmxvdy1yZWFkeSBjeWxpbmRyaWNhbCBtaWNyb2NoYW5uZWwgZmFicmljYXRpb24ucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A1wDcAOQDRgNIA00DWANhA28DcwN6A4MDiAOVA5gDqgOtA7IAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADtA==}} @article{mahmoud:2011, Author = {S. Mahmoud and R. Al-Dadah and D.K. Aspinwall and S.L. Soo and H. Hemida}, Date-Added = {2015-08-04 18:02:25 +0000}, Date-Modified = {2015-08-04 20:37:46 +0000}, Journal = {Applied Thermal Engineering}, Pages = {627 - 633}, Title = {Effect of micro fin geometry on natural convection heat transfer of horizontal microstructures}, Volume = {31}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QYkVmZmVjdCBvZiBtaWNybyBmaW4gZ2VvbWV0cnkgb24gbmF0dXJhbCBjb252ZWN0aW9uIGhlYXQgdHJhbnNmZXIgb2YgaG9yaXpvbnRhbCBtaWNyb3N0cnVjdHVyZXMucGRm0hcLGBlXTlMuZGF0YU8RArIAAAAAArIAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9FZmZlY3Qgb2YgbWljcm8gZmluIGcjRkIyREMucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7LczS3QSwAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzS4yuwAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEVmZmVjdCBvZiBtaWNybyBmaW4gZyNGQjJEQy5wZGYADgDGAGIARQBmAGYAZQBjAHQAIABvAGYAIABtAGkAYwByAG8AIABmAGkAbgAgAGcAZQBvAG0AZQB0AHIAeQAgAG8AbgAgAG4AYQB0AHUAcgBhAGwAIABjAG8AbgB2AGUAYwB0AGkAbwBuACAAaABlAGEAdAAgAHQAcgBhAG4AcwBmAGUAcgAgAG8AZgAgAGgAbwByAGkAegBvAG4AdABhAGwAIABtAGkAYwByAG8AcwB0AHIAdQBjAHQAdQByAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCOVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9FZmZlY3Qgb2YgbWljcm8gZmluIGdlb21ldHJ5IG9uIG5hdHVyYWwgY29udmVjdGlvbiBoZWF0IHRyYW5zZmVyIG9mIGhvcml6b250YWwgbWljcm9zdHJ1Y3R1cmVzLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAPMA+AEAA7YDuAO9A8gD0QPfA+MD6gPzA/gEBQQIBBoEHQQiAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABCQ=}} @article{zhao:2009, Author = {Bin Zhao and Don N. Futaba and Satoshi Yasuda and Megumi Akoshima and Takeo Yamada and Kenji Hata}, Date-Added = {2015-08-04 18:02:25 +0000}, Date-Modified = {2015-08-04 20:39:48 +0000}, Journal = {ACS Nano}, Keywords = {CNT}, Number = {1}, Pages = {108 - 114}, Title = {Exploring Advantages of Diverse Carbon Nanotube Forests with Tailored Structures Synthesized by Supergrowth from Engineered Catalysts}, Volume = {3}, Year = {2009}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QiUV4cGxvcmluZyBBZHZhbnRhZ2VzIG9mIERpdmVyc2UgQ2FyYm9uIE5hbm90dWJlIEZvcmVzdHMgd2l0aCBUYWlsb3JlZCBTdHJ1Y3R1cmVzIFN5bnRoZXNpemVkIGJ5IFN1cGVyZ3Jvd3RoIGZyb20gRW5naW5lZXJlZCBDYXRhbHlzdHMucGRm0hcLGBlXTlMuZGF0YU8RAygAAAAAAygAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9FeHBsb3JpbmcgQWR2YW50YWdlcyAjRkIyRTMucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7LjzdQKeAAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzdRe2AAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEV4cGxvcmluZyBBZHZhbnRhZ2VzICNGQjJFMy5wZGYADgEUAIkARQB4AHAAbABvAHIAaQBuAGcAIABBAGQAdgBhAG4AdABhAGcAZQBzACAAbwBmACAARABpAHYAZQByAHMAZQAgAEMAYQByAGIAbwBuACAATgBhAG4AbwB0AHUAYgBlACAARgBvAHIAZQBzAHQAcwAgAHcAaQB0AGgAIABUAGEAaQBsAG8AcgBlAGQAIABTAHQAcgB1AGMAdAB1AHIAZQBzACAAUwB5AG4AdABoAGUAcwBpAHoAZQBkACAAYgB5ACAAUwB1AHAAZQByAGcAcgBvAHcAdABoACAAZgByAG8AbQAgAEUAbgBnAGkAbgBlAGUAcgBlAGQAIABDAGEAdABhAGwAeQBzAHQAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgC1VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9FeHBsb3JpbmcgQWR2YW50YWdlcyBvZiBEaXZlcnNlIENhcmJvbiBOYW5vdHViZSBGb3Jlc3RzIHdpdGggVGFpbG9yZWQgU3RydWN0dXJlcyBTeW50aGVzaXplZCBieSBTdXBlcmdyb3d0aCBmcm9tIEVuZ2luZWVyZWQgQ2F0YWx5c3RzLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgEaAR8BJwRTBFUEWgRlBG4EfASABIcEkASVBKIEpQS3BLoEvwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAATB}} @article{mosig:2001, Author = {K. Mosig and H. Cox and E. Klawuhn and T. Suwwan de Felipe and A. Shiota}, Date-Added = {2015-08-04 18:02:25 +0000}, Date-Modified = {2015-08-04 20:44:14 +0000}, Journal = {IEEE International Electron Devices Meeting}, Keywords = {Low-k, CVD}, Pages = {88 - 91}, Title = {Integration of Porous Ultra Low-k Dielectric with CVD Barriers}, Year = {2001}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QQkludGVncmF0aW9uIG9mIFBvcm91cyBVbHRyYSBMb3ctayBEaWVsZWN0cmljIHdpdGggQ1ZELkJhcnJpZXJzLnBkZtIXCxgZV05TLmRhdGFPEQJSAAAAAAJSAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfSW50ZWdyYXRpb24gb2YgUG9yb3VzI0ZCMkZELnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+y/c3ivVUAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM3jEbUAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBJbnRlZ3JhdGlvbiBvZiBQb3JvdXMjRkIyRkQucGRmAA4AhgBCAEkAbgB0AGUAZwByAGEAdABpAG8AbgAgAG8AZgAgAFAAbwByAG8AdQBzACAAVQBsAHQAcgBhACAATABvAHcALQBrACAARABpAGUAbABlAGMAdAByAGkAYwAgAHcAaQB0AGgAIABDAFYARAAuAEIAYQByAHIAaQBlAHIAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBuVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9JbnRlZ3JhdGlvbiBvZiBQb3JvdXMgVWx0cmEgTG93LWsgRGllbGVjdHJpYyB3aXRoIENWRC5CYXJyaWVycy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDTANgA4AM2AzgDPQNIA1EDXwNjA2oDcwN4A4UDiAOaA50DogAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAOk}} @article{py:2007, Abstract = {Wet fibrous structures such as nanotube carpets or macroscopic brushes tend to self-assemble into bundles when the liquid evaporates. The aggregation process relies on a balance between capillary attraction provided by liquid bridges and restoring torque due to structure stiffness. The final self-organized structure is found to result from a cascade of pairing of smaller bundles into bigger ones. We first describe, both experimentally at a macroscopic scale and theoretically, the case of a single pair of fibers and then generalize this description to more complex 3D assemblies. We finally show the relevance of our results to micro-scale experiments from the literature.}, Author = {C. Py and R. Bastien and J. Bico and B. Roman and A. Boudaoud}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:28:05 +0000}, Journal = {EPL (Europhysics Letters)}, Number = {4}, Pages = {44005}, Title = {3D aggregation of wet fibers}, Url = {http://stacks.iop.org/0295-5075/77/i=4/a=44005}, Volume = {77}, Year = {2007}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YW8QHwAzAEQAIABhAGcAZwByAGUAZwBhAHQAaQBvAG4AIABvAGYAIAB3AGUAdAAg+wEAYgBlAHIAcwAuAHAAZABm0hcLGBlXTlMuZGF0YU8RAewAAAAAAewAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB8zRCBhZ2dyZWdhdGlvbiBvZiB3ZXQg3mJlcnMucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7K0zfsqOAAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzft+mAAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6ADNEIGFnZ3JlZ2F0aW9uIG9mIHdldCDeYmVycy5wZGYADgBAAB8AMwBEACAAYQBnAGcAcgBlAGcAYQB0AGkAbwBuACAAbwBmACAAdwBlAHQAIPsBAGIAZQByAHMALgBwAGQAZgAPABAABwBMAHUAbgBkAFMAUwBEABIATVVzZXJzL2phc29uL0RvY3VtZW50cy9SZXNlYXJjaC9CaWJsaW9ncmFwaHkvM0QgYWdncmVnYXRpb24gb2Ygd2V0IO+sgWJlcnMucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAM8A1ADcAswCzgLTAt4C5wL1AvkDAAMJAw4DGwMeAzADMwM4AAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAAzo=}, Bdsk-Url-1 = {http://stacks.iop.org/0295-5075/77/i=4/a=44005}} @article{kobashi:2013, Abstract = {We propose a strategy utilizing carbon nanotube (CNT) agglomerates in solution{,} typically undesired precipitates from dispersions of isolated CNTs{,} for fabricating advanced composites. Importantly{,} long{,} single-walled carbon nanotubes (SWNTs) were necessary to make highly concentrated (above 3.0 wt%) and very stable CNT suspensions. SWNTs in the agglomerates formed a dendritic network similar to venation and vein patterns observed in nature. Through this strategy{,} we demonstrated a 10-fold increase in electrical conductivity of a rubber-composite. Our results showed that the two CNT dispersion strategies{,} i.e.{,} isolated CNTs{,} and dendritic CNT agglomerates are complementary{,} and each demonstrated distinct advantages and disadvantages{,} and their application is intended toward different uses; our results show the individual values of each approach.}, Author = {Kobashi, Kazufumi and Ata, Seisuke and Yamada, Takeo and Futaba, Don N. and Yumura, Motoo and Hata, Kenji}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:28:00 +0000}, Doi = {10.1039/C2SC21266H}, Issue = {2}, Journal = {Chem. Sci.}, Pages = {727-733}, Publisher = {The Royal Society of Chemistry}, Title = {A dispersion strategy: dendritic carbon nanotube network dispersion for advanced composites}, Url = {http://dx.doi.org/10.1039/C2SC21266H}, Volume = {4}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QX0EgZGlzcGVyc2lvbiBzdHJhdGVneS0gZGVuZHJpdGljIGNhcmJvbiBuYW5vdHViZSBuZXR3b3JrIGRpc3BlcnNpb24gZm9yIGFkdmFuY2VkIGNvbXBvc2l0ZXMucGRm0hcLGBlXTlMuZGF0YU8RAqoAAAAAAqoAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9BIGRpc3BlcnNpb24gc3RyYXRlZ3kjRkIyQjYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7K2zdQJtQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzdReFQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEEgZGlzcGVyc2lvbiBzdHJhdGVneSNGQjJCNi5wZGYADgDAAF8AQQAgAGQAaQBzAHAAZQByAHMAaQBvAG4AIABzAHQAcgBhAHQAZQBnAHkALQAgAGQAZQBuAGQAcgBpAHQAaQBjACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABuAGUAdAB3AG8AcgBrACAAZABpAHMAcABlAHIAcwBpAG8AbgAgAGYAbwByACAAYQBkAHYAYQBuAGMAZQBkACAAYwBvAG0AcABvAHMAaQB0AGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCLVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BIGRpc3BlcnNpb24gc3RyYXRlZ3ktIGRlbmRyaXRpYyBjYXJib24gbmFub3R1YmUgbmV0d29yayBkaXNwZXJzaW9uIGZvciBhZHZhbmNlZCBjb21wb3NpdGVzLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDwAPUA/QOrA60DsgO9A8YD1APYA98D6APtA/oD/QQPBBIEFwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQZ}, Bdsk-Url-1 = {http://dx.doi.org/10.1039/C2SC21266H}} @article{ruffini:2006, Abstract = {We describe the design of a dry electrode sensor for biopotential measurement applications (ENOBIO) designed to eliminate the noise and inconvenience associated to the use of electrolytic gel. \{ENOBIO\} uses nanotechnology to remove gel-related noise, as well as maintaining a good contact impedance to minimise interference noise. The contact surface of the electrode will be covered with an array/forest of carbon nanotubes and will also be tested with an Ag/AgCl coating to provide ionic-electronic transduction. The nanotubes are to penetrate the outer layers of the skin, the Stratum Corneum, improving electrical contact. We discuss requirements, skin properties, nanotube penetration and transduction, noise sources, prototype design logic and biocompatibility. A future paper will report test results. }, Author = {Giulio Ruffini and Stephen Dunne and Esteve Farr{\'e}s and Josep Marco-Pallar{\'e}s and Chris Ray and Ernest Mendoza and Ravi Silva and Carles Grau}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:27:55 +0000}, Doi = {http://dx.doi.org/10.1016/j.sna.2006.06.013}, Issn = {0924-4247}, Journal = {Sensors and Actuators A: Physical}, Keywords = {\{ECG\}}, Note = {The 19th European Conference on Solid-State Transducers}, Number = {1}, Pages = {34 - 41}, Title = {A dry electrophysiology electrode using \{CNT\} arrays}, Url = {http://www.sciencedirect.com/science/article/pii/S0924424706003980}, Volume = {132}, Year = {2006}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QNkEgZHJ5IGVsZWN0cm9waHlzaW9sb2d5IGVsZWN0cm9kZSB1c2luZyBDTlQgYXJyYXlzLnBkZtIXCxgZV05TLmRhdGFPEQIuAAAAAAIuAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfQSBkcnkgZWxlY3Ryb3BoeXNpb2xvI0ZCMkI3LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+yt84xGG4AAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM4xbM4AAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBBIGRyeSBlbGVjdHJvcGh5c2lvbG8jRkIyQjcucGRmAA4AbgA2AEEAIABkAHIAeQAgAGUAbABlAGMAdAByAG8AcABoAHkAcwBpAG8AbABvAGcAeQAgAGUAbABlAGMAdAByAG8AZABlACAAdQBzAGkAbgBnACAAQwBOAFQAIABhAHIAcgBhAHkAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBiVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BIGRyeSBlbGVjdHJvcGh5c2lvbG9neSBlbGVjdHJvZGUgdXNpbmcgQ05UIGFycmF5cy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDHAMwA1AMGAwgDDQMYAyEDLwMzAzoDQwNIA1UDWANqA20DcgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAN0}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0924424706003980}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.sna.2006.06.013}} @article{taberna:2006, Abstract = {Activated carbon/carbon nanotube composite electrodes have been assembled and tested in organic electrolyte (NEt4BF4 1.5 M in acetonitrile). The performances of such cells have been compared with pure activated carbon-based electrodes. \{CNTs\} content of 15 wt.% seems to be a good compromise between power and energy, with a cell series resistance of 0.6 Ω cm2 and an active material capacitance as high as 88 F g−1. }, Author = {Pierre-Louis Taberna and Geoffroy Chevallier and Patrice Simon and Dominique Pl{\'e}e and Thierry Aubert}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:28:49 +0000}, Doi = {http://dx.doi.org/10.1016/j.materresbull.2005.09.029}, Issn = {0025-5408}, Journal = {Materials Research Bulletin}, Keywords = {D. Electrochemical properties}, Number = {3}, Pages = {478 - 484}, Title = {Activated carbon--carbon nanotube composite porous film for supercapacitor applications}, Url = {http://www.sciencedirect.com/science/article/pii/S0025540805003570}, Volume = {41}, Year = {2006}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YW8QWgBBAGMAdABpAHYAYQB0AGUAZAAgAGMAYQByAGIAbwBuIBMAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABjAG8AbQBwAG8AcwBpAHQAZQAgAHAAbwByAG8AdQBzACAAZgBpAGwAbQAgAGYAbwByACAAcwB1AHAAZQByAGMAYQBwAGEAYwBpAHQAbwByACAAYQBwAHAAbABpAGMAYQB0AGkAbwBuAHMALgBwAGQAZtIXCxgZV05TLmRhdGFPEQKcAAAAAAKcAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfQWN0aXZhdGVkIGNhcmJvbtBjYXJiI0ZCMkJGLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+yv83StGoAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM3TCMoAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBBY3RpdmF0ZWQgY2FyYm9u0GNhcmIjRkIyQkYucGRmAA4AtgBaAEEAYwB0AGkAdgBhAHQAZQBkACAAYwBhAHIAYgBvAG4gEwBjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQAgAGMAbwBtAHAAbwBzAGkAdABlACAAcABvAHIAbwB1AHMAIABmAGkAbABtACAAZgBvAHIAIABzAHUAcABlAHIAYwBhAHAAYQBjAGkAdABvAHIAIABhAHAAcABsAGkAYwBhAHQAaQBvAG4AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCIVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BY3RpdmF0ZWQgY2FyYm9u4oCTY2FyYm9uIG5hbm90dWJlIGNvbXBvc2l0ZSBwb3JvdXMgZmlsbSBmb3Igc3VwZXJjYXBhY2l0b3IgYXBwbGljYXRpb25zLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAUUBSgFSA/ID9AP5BAQEDQQbBB8EJgQvBDQEQQREBFYEWQReAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABGA=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0025540805003570}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.materresbull.2005.09.029}} @article{romyen:2012, Abstract = {Usually alignment of carbon nanotubes (CNT) in polymer composites can be induced by a single electrical or magnetic field. Here we report a comparison between the results of simultaneous application of both fields to the polyimide composite and a single field. Alignment of CNT in polyimide was performed under a 2 Tesla magnetic field and various electric fields (150, 300, 450, and 600 V/cm). Polarized Raman spectroscopy was used for assessing the degree of alignment of the nanotubes in the composites and many details of the alignment were examined. The results indicated that at the same electric field strength, incorporation of a magnetic field in a given direction will enhance the level of alignment as compared with only using an electric or magnetic field alone. The best alignment condition was for the CNT samples under parallel magnetic and electric fields. Optical microscopy observations also indicated that nanotube alignment appeared at the highest field strength and decreased when the field strength decreased. A possible mechanism for field alignment is presented. {\copyright} 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012}, Author = {Romyen, Natthakarn and Thongyai, Supakanok and Praserthdam, Piyasan}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:29:19 +0000}, Issn = {1097-4628}, Journal = {Journal of Applied Polymer Science}, Keywords = {alignment, carbon nanotubes, polyimide, electric field, magnetic field}, Number = {6}, Pages = {3470--3475}, Publisher = {Wiley Subscription Services, Inc., A Wiley Company}, Title = {Alignment of carbon nanotubes in polyimide under electric and magnetic fields}, Volume = {123}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUUFsaWdubWVudCBvZiBDYXJib24gTmFub3R1YmVzIGluIFBvbHlpbWlkZSBVbmRlciBFbGVjdHJpYyBhbmQgTWFnbmV0aWMgRmllbGRzLnBkZtIXCxgZV05TLmRhdGFPEQKAAAAAAAKAAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfQWxpZ25tZW50IG9mIENhcmJvbiBOI0ZCMkMzLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+yw83iuOwAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM3jDUwAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBBbGlnbm1lbnQgb2YgQ2FyYm9uIE4jRkIyQzMucGRmAA4ApABRAEEAbABpAGcAbgBtAGUAbgB0ACAAbwBmACAAQwBhAHIAYgBvAG4AIABOAGEAbgBvAHQAdQBiAGUAcwAgAGkAbgAgAFAAbwBsAHkAaQBtAGkAZABlACAAVQBuAGQAZQByACAARQBsAGUAYwB0AHIAaQBjACAAYQBuAGQAIABNAGEAZwBuAGUAdABpAGMAIABGAGkAZQBsAGQAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB9VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BbGlnbm1lbnQgb2YgQ2FyYm9uIE5hbm90dWJlcyBpbiBQb2x5aW1pZGUgVW5kZXIgRWxlY3RyaWMgYW5kIE1hZ25ldGljIEZpZWxkcy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A4gDnAO8DcwN1A3oDhQOOA5wDoAOnA7ADtQPCA8UD1wPaA98AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD4Q==}, Bdsk-Url-1 = {http://dx.doi.org/10.1002/app.34692}} @inproceedings{shapiro:2005, Abstract = {This effort was designed to find a way to reduce the temperature rise of critical components of a 20KV high voltage power supply (HVPS) by improving the thermal conductivity between the component heat sources and a heatsink external to the encapsulated modules. Three strategies were evaluated by developing complete procedures, preparing samples, and performing tests. The three strategies were: 1) improve the thermal conductivity of the polyurethane encapsulant through the addition of thermally conductive powder while minimizing impact on other characteristics of the encapsulant. 2) Improve the thermal conductivity of the polyurethane encapsulated assembly by the addition of a slab of thermally conductive, electrically insulating material, which is to act as a heat spreader. 3) Employ a more thermally conductive substrate (Al 2O3) with the existing encapsulation scheme. The materials were chosen based on the following criteria: high dielectric breakdown strength; high thermal conductivity, ease of manufacturing, high compliance, and other standard space qualified materials properties (low out-gassing, etc.). An optimized cure was determined by a statistical design of experiments for both filled and unfilled materials. The materials were characterized for the desired properties and a complete process was developed and tested}, Author = {Shapiro, A.A. and Inam Haque}, Booktitle = {Aerospace Conference, 2005 IEEE}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:29:38 +0000}, Keywords = {alumina;composite materials;design of experiments;electric breakdown;encapsulation;polymers;space power generation;thermal conductivity;20 kV;Al2O3;HVPS;dielectric breakdown strength;electrically insulating material;encapsulated modules;encapsulation scheme;heat sources;heat spreader;heatsink;high voltage power supply;polyurethane composite;polyurethane encapsulant;space borne power supply;statistical design of experiments;thermal conductivity;thermally conductive powder;thermally conductive substrate;Assembly;Conducting materials;Dielectric materials;Performance evaluation;Powders;Power supplies;Temperature;Testing;Thermal conductivity;Voltage}, Pages = {1-11}, Title = {An Improved Thermal Conductivity Polyurethane Composite for a Space Borne 20KV Power Supply}, Year = {2005}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QX0FuIGltcHJvdmVkIHRoZXJtYWwgY29uZHVjdGl2aXR5IHBvbHl1cmV0aGFuZSBjb21wb3NpdGUgZm9yIGEgc3BhY2UgYm9ybmUgMjBLViBwb3dlciBzdXBwbHkucGRm0hcLGBlXTlMuZGF0YU8RAqoAAAAAAqoAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9BbiBpbXByb3ZlZCB0aGVybWFsIGMjRkIyQzQucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7LEzZtscQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzZvA0QAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEFuIGltcHJvdmVkIHRoZXJtYWwgYyNGQjJDNC5wZGYADgDAAF8AQQBuACAAaQBtAHAAcgBvAHYAZQBkACAAdABoAGUAcgBtAGEAbAAgAGMAbwBuAGQAdQBjAHQAaQB2AGkAdAB5ACAAcABvAGwAeQB1AHIAZQB0AGgAYQBuAGUAIABjAG8AbQBwAG8AcwBpAHQAZQAgAGYAbwByACAAYQAgAHMAcABhAGMAZQAgAGIAbwByAG4AZQAgADIAMABLAFYAIABwAG8AdwBlAHIAIABzAHUAcABwAGwAeQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCLVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BbiBpbXByb3ZlZCB0aGVybWFsIGNvbmR1Y3Rpdml0eSBwb2x5dXJldGhhbmUgY29tcG9zaXRlIGZvciBhIHNwYWNlIGJvcm5lIDIwS1YgcG93ZXIgc3VwcGx5LnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDwAPUA/QOrA60DsgO9A8YD1APYA98D6APtA/oD/QQPBBIEFwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQZ}} @article{abbas:2009, Abstract = {This paper reports the first use of cold plasma deposition of polymerizable monomers for the fast, cost-effective and easy fabrication of buried air microchannels. A new method named 'plasma polymerization on sacrificial layer' (PPSL) is presented. It consists in the direct polymerization of tetramethyldisiloxane (TMDS) on a photopatterned sacrificial layer. Channels are formed with only one lithographic mask and without any etching or bonding process. The use of polymerized TMDS allows rapid creation of capillarity-driven flow systems with the channel width ranging from 4 to 700 µm without pillars. Channels are characterized and successfully tested. Capillary forces draw water, as well as aqueous solution into the channel from the inlet reservoir to the outlet one, avoiding the need of microfluidic connectors with the surrounding environment. Filling of the capillaries is very fast. It reaches the initial velocity of 4.4 cm s −1 with the geometries and water used here. In addition, PPSL easily allows the building of transparent channel networks directly on processed electrochemical or electromagnetic components. An example of one such integrated fluidic microelectromechanical system (MEMS) is described.}, Author = {A Abbas and P Supiot and V Mille and D Guillochon and B Bocquet}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:32:42 +0000}, Journal = {Journal of Micromechanics and Microengineering}, Number = {4}, Pages = {045022}, Title = {Capillary microchannel fabrication using plasma polymerized TMDS for fluidic MEMS technology}, Url = {http://stacks.iop.org/0960-1317/19/i=4/a=045022}, Volume = {19}, Year = {2009}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QYENhcGlsbGFyeSBtaWNyb2NoYW5uZWwgZmFicmljYXRpb24gdXNpbmcgcGxhc21hIHBvbHltZXJpemVkIFRNRFMgZm9yIGZsdWlkaWMgTUVNUyB0ZWNobm9sb2d5LnBkZtIXCxgZV05TLmRhdGFPEQKsAAAAAAKsAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfQ2FwaWxsYXJ5IG1pY3JvY2hhbm5lI0ZCMkNDLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+yzMwTQsQAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAMwTlyQAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBDYXBpbGxhcnkgbWljcm9jaGFubmUjRkIyQ0MucGRmAA4AwgBgAEMAYQBwAGkAbABsAGEAcgB5ACAAbQBpAGMAcgBvAGMAaABhAG4AbgBlAGwAIABmAGEAYgByAGkAYwBhAHQAaQBvAG4AIAB1AHMAaQBuAGcAIABwAGwAYQBzAG0AYQAgAHAAbwBsAHkAbQBlAHIAaQB6AGUAZAAgAFQATQBEAFMAIABmAG8AcgAgAGYAbAB1AGkAZABpAGMAIABNAEUATQBTACAAdABlAGMAaABuAG8AbABvAGcAeQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCMVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9DYXBpbGxhcnkgbWljcm9jaGFubmVsIGZhYnJpY2F0aW9uIHVzaW5nIHBsYXNtYSBwb2x5bWVyaXplZCBUTURTIGZvciBmbHVpZGljIE1FTVMgdGVjaG5vbG9neS5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDxAPYA/gOuA7ADtQPAA8kD1wPbA+ID6wPwA/0EAAQSBBUEGgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQc}, Bdsk-Url-1 = {http://stacks.iop.org/0960-1317/19/i=4/a=045022}} @article{makris:2005, Abstract = {Carbon nanotubes (CNT) were grown on alumina supported nickel catalyst by thermal Chemical Vapour Deposition (CVD), using \{H2\} and \{CH4\} as gas precursors. Commercial Al2O3 pellets with various Ni concentrations, normally used for methane reforming, have been used as catalysts in order to produce massive quantities of CNT. Different growth parameters, such as temperature, time process, total pressure and methane concentration, were investigated on 40% weighted Ni on Al2O3 substrates and relationships with the total product amount were found. \{CNT\} with different characteristics were observed by varying growth parameters. These parameters were optimised in order to maximise the yield. \{CNT\} with high density and smooth walls were obtained. Morphological characterisation has been performed on grown CNT. }, Author = {Th. Dikonimos Makris and L. Giorgi and R. Giorgi and N. Lisi and E. Salernitano}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:33:46 +0000}, Doi = {http://dx.doi.org/10.1016/j.diamond.2004.11.001}, Issn = {0925-9635}, Journal = {Diamond and Related Materials}, Keywords = {Gas phase reactions}, Note = {Proceedings of Diamond 2004, the 15th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide 15th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide}, Number = {3--7}, Pages = {815 - 819}, Title = {\{CNT\} growth on alumina supported nickel catalyst by thermal \{CVD\}}, Url = {http://www.sciencedirect.com/science/article/pii/S0925963504003929}, Volume = {14}, Year = {2005}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QQkNOVCBncm93dGggb24gYWx1bWluYSBzdXBwb3J0ZWQgbmlja2VsIGNhdGFseXN0IGJ5IHRoZXJtYWwgQ1ZELnBkZtIXCxgZV05TLmRhdGFPEQJSAAAAAAJSAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfQ05UIGdyb3d0aCBvbiBhbHVtaW4jRkJDOERBLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPvI2snu23cAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAMnvL9cAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBDTlQgZ3Jvd3RoIG9uIGFsdW1pbiNGQkM4REEucGRmAA4AhgBCAEMATgBUACAAZwByAG8AdwB0AGgAIABvAG4AIABhAGwAdQBtAGkAbgBhACAAcwB1AHAAcABvAHIAdABlAGQAIABuAGkAYwBrAGUAbAAgAGMAYQB0AGEAbAB5AHMAdAAgAGIAeQAgAHQAaABlAHIAbQBhAGwAIABDAFYARAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBuVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9DTlQgZ3Jvd3RoIG9uIGFsdW1pbmEgc3VwcG9ydGVkIG5pY2tlbCBjYXRhbHlzdCBieSB0aGVybWFsIENWRC5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDTANgA4AM2AzgDPQNIA1EDXwNjA2oDcwN4A4UDiAOaA50DogAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAOk}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0925963504003929}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.diamond.2004.11.001}} @article{hospach:2011, Author = {Andreas Hospach and Georg Mauer and Robert Va{\ss}en and Detlev Stover}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:34:04 +0000}, Journal = {Journal of Thermal Spray Technology}, Month = {January}, Pages = {116 - 120}, Title = {Columnar-Structured Thermal Barrier Coatings by Thin Film Low-Pressure Plasma Spraying}, Volume = {20}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qa0NvbHVtbmFyLVN0cnVjdHVyZWQgVGhlcm1hbCBCYXJyaWVyIENvYXRpbmdzIChUQkNzKSBieSBUaGluIEZpbG0gTG93LVByZXNzdXJlIFBsYXNtYSBTcHJheWluZyAoTFBQUy1URikucGRm0hcLGBlXTlMuZGF0YU8RAs4AAAAAAs4AAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9Db2x1bW5hci1TdHJ1Y3R1cmVkIFQjRkIyRDEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7LRzBNJfwAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzBOd3wAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AENvbHVtbmFyLVN0cnVjdHVyZWQgVCNGQjJEMS5wZGYADgDYAGsAQwBvAGwAdQBtAG4AYQByAC0AUwB0AHIAdQBjAHQAdQByAGUAZAAgAFQAaABlAHIAbQBhAGwAIABCAGEAcgByAGkAZQByACAAQwBvAGEAdABpAG4AZwBzACAAKABUAEIAQwBzACkAIABiAHkAIABUAGgAaQBuACAARgBpAGwAbQAgAEwAbwB3AC0AUAByAGUAcwBzAHUAcgBlACAAUABsAGEAcwBtAGEAIABTAHAAcgBhAHkAaQBuAGcAIAAoAEwAUABQAFMALQBUAEYAKQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCXVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Db2x1bW5hci1TdHJ1Y3R1cmVkIFRoZXJtYWwgQmFycmllciBDb2F0aW5ncyAoVEJDcykgYnkgVGhpbiBGaWxtIExvdy1QcmVzc3VyZSBQbGFzbWEgU3ByYXlpbmcgKExQUFMtVEYpLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgD8AQEBCQPbA90D4gPtA/YEBAQIBA8EGAQdBCoELQQ/BEIERwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAARJ}} @article{du:2005, Abstract = {Chemical vapor deposition (CVD) growth of carbon nanotubes directly on nickel substrates was carried out at different temperatures. Effects of temperature on the growth of carbon nanotubes were investigated, and the nucleation and growth mechanism of carbon nanotubes at different temperature ranges were also discussed. Based on the growth mechanism of nanotubes, small amounts of Fe nanoparticles were deposited on the nickel substrate to introduce more nucleation sites at elevated temperature, and the density of nanotubes on the surface of the substrate was greatly improved. }, Author = {Chunsheng Du and Ning Pan}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2016-05-11 04:04:48 +0000}, Doi = {http://dx.doi.org/10.1016/j.matlet.2005.01.043}, Issn = {0167-577X}, Journal = {Materials Letters}, Keywords = {Nickel substrates}, Number = {13}, Pages = {1678 - 1682}, Title = {\{CVD\} growth of carbon nanotubes directly on nickel substrate}, Url = {http://www.sciencedirect.com/science/article/pii/S0167577X05000881}, Volume = {59}, Year = {2005}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QP0NWRCBncm93dGggb2YgY2FyYm9uIG5hbm90dWJlcyBkaXJlY3RseSBvbiBuaWNrZWwgc3Vic3RyYXRlLnBkZtIXCxgZV05TLmRhdGFPEQJKAAAAAAJKAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfQ1ZEIGdyb3d0aCBvZiBjYXJib24jRkJDN0Y3LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPvH98njankAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAMnjvtkAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBDVkQgZ3Jvd3RoIG9mIGNhcmJvbiNGQkM3RjcucGRmAA4AgAA/AEMAVgBEACAAZwByAG8AdwB0AGgAIABvAGYAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQBzACAAZABpAHIAZQBjAHQAbAB5ACAAbwBuACAAbgBpAGMAawBlAGwAIABzAHUAYgBzAHQAcgBhAHQAZQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBrVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9DVkQgZ3Jvd3RoIG9mIGNhcmJvbiBuYW5vdHViZXMgZGlyZWN0bHkgb24gbmlja2VsIHN1YnN0cmF0ZS5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A0ADVAN0DKwMtAzIDPQNGA1QDWANfA2gDbQN6A30DjwOSA5cAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADmQ==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0167577X05000881}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.matlet.2005.01.043}} @article{huigao:2010, Abstract = { We demonstrated a new nanoassembly strategy based on capillary force-induced cohesion of high-aspect ratio nanostructures made by electron-beam lithography. Using this strategy, ordered complex pattern were fabricated from individual nanostructures at the 10 nm length scale. This method enables the formation of complex designed networks from a sparse array of nanostructures, suggesting a number of potential applications in fabrication of nanodevices, nanopatterning, and fluid-flow investigations. }, Author = {Duan, Huigao and Berggren, Karl K.}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:36:13 +0000}, Doi = {10.1021/nl102259s}, Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl102259s}, Journal = {Nano Letters}, Number = {9}, Pages = {3710-3716}, Title = {Directed Self-Assembly at the 10 nm Scale by Using Capillary Force-Induced Nanocohesion}, Url = {http://pubs.acs.org/doi/abs/10.1021/nl102259s}, Volume = {10}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QXERpcmVjdGVkIFNlbGYtQXNzZW1ibHkgYXQgdGhlIDEwLW5tIFNjYWxlIGJ5IFVzaW5nIENhcGlsbGFyeS0gRm9yY2UtSW5kdWNlZCBOYW5vY29oZXNpb24ucGRm0hcLGBlXTlMuZGF0YU8RAqAAAAAAAqAAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9EaXJlY3RlZCBTZWxmLUFzc2VtYmwjRkIyRDgucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7LYzeKxewAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzeMF2wAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AERpcmVjdGVkIFNlbGYtQXNzZW1ibCNGQjJEOC5wZGYADgC6AFwARABpAHIAZQBjAHQAZQBkACAAUwBlAGwAZgAtAEEAcwBzAGUAbQBiAGwAeQAgAGEAdAAgAHQAaABlACAAMQAwAC0AbgBtACAAUwBjAGEAbABlACAAYgB5ACAAVQBzAGkAbgBnACAAQwBhAHAAaQBsAGwAYQByAHkALQAgAEYAbwByAGMAZQAtAEkAbgBkAHUAYwBlAGQAIABOAGEAbgBvAGMAbwBoAGUAcwBpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCIVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9EaXJlY3RlZCBTZWxmLUFzc2VtYmx5IGF0IHRoZSAxMC1ubSBTY2FsZSBieSBVc2luZyBDYXBpbGxhcnktIEZvcmNlLUluZHVjZWQgTmFub2NvaGVzaW9uLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAO0A8gD6A54DoAOlA7ADuQPHA8sD0gPbA+AD7QPwBAIEBQQKAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABAw=}, Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl102259s}, Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl102259s}} @article{bico:2004, Author = {Jos{\'e} Bico and Beno{\^\i}t Roman and Lo{\"\i}c Moulin and Arezki Boudaoud}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:39:04 +0000}, Journal = {Nature}, Month = {December}, Pages = {690}, Title = {Elastocapillary Elastocapillary coalescence in wet hair}, Volume = {432}, Year = {2004}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QK0VsYXN0b2NhcGlsbGFyeSBjb2FsZXNjZW5jZSBpbiB3ZXQgaGFpci5wZGbSFwsYGVdOUy5kYXRhTxECDgAAAAACDgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0VsYXN0b2NhcGlsbGFyeSBjb2FsZSNGQjJERi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPst/N+yfRAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADN+3wxAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToARWxhc3RvY2FwaWxsYXJ5IGNvYWxlI0ZCMkRGLnBkZgAOAFgAKwBFAGwAYQBzAHQAbwBjAGEAcABpAGwAbABhAHIAeQAgAGMAbwBhAGwAZQBzAGMAZQBuAGMAZQAgAGkAbgAgAHcAZQB0ACAAaABhAGkAcgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBXVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9FbGFzdG9jYXBpbGxhcnkgY29hbGVzY2VuY2UgaW4gd2V0IGhhaXIucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOALwAwQDJAtsC3QLiAu0C9gMEAwgDDwMYAx0DKgMtAz8DQgNHAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA0k=}} @article{xu:2006, Abstract = {Heat-conduction interfaces that employ carbon nanotube (CNT) arrays have been fabricated and studied experimentally using a reference calorimeter testing rig in a vacuum environment with infrared temperature measurements. Arrays of multiwalled CNTs are grown directly on silicon substrates with microwave plasma-enhanced chemical vapor deposition. Iron and nickel were used as CNT catalysts. CNT arrays grown under different synthesis conditions exhibit different pressure-contact conductance characteristics. The thermal contact resistance of CNTs with a copper interface exhibits promising results with a minimum value of 19.8mm2K/W at a pressure of 0.445MPa}, Author = {Xu, Jun and Fisher, Timothy S.}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:39:34 +0000}, Journal = {Components and Packaging Technologies, IEEE Transactions on}, Keywords = {calorimeters;carbon nanotubes;contact resistance;plasma CVD;silicon;thermal resistance;calorimeter testing;carbon nanotube array interfaces;enhanced thermal contact conductance;heat-conduction interfaces;infrared temperature measurements;plasma-enhanced chemical vapor deposition;Carbon nanotubes;Electromagnetic heating;Infrared heating;Microwave antenna arrays;Plasma chemistry;Plasma properties;Silicon;Temperature measurement;Testing;Thermal conductivity;Carbon nanotubes (CNTs);enhanced thermal contact conductance;microwave plasma enhanced chemical vapor deposition (PECVD)}, Number = {2}, Pages = {261-267}, Title = {Enhanced thermal contact conductance using carbon nanotube array interfaces}, Volume = {29}, Year = {2006}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QT0VuaGFuY2VkIFRoZXJtYWwgQ29udGFjdCBDb25kdWN0YW5jZSBVc2luZyBDYXJib24gTmFub3R1YmUgQXJyYXkgSW50ZXJmYWNlcy5wZGbSFwsYGVdOUy5kYXRhTxECegAAAAACegACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0VuaGFuY2VkIFRoZXJtYWwgQ29udCNGQjJFMS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsuHOBhUtAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADOBmmNAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToARW5oYW5jZWQgVGhlcm1hbCBDb250I0ZCMkUxLnBkZgAOAKAATwBFAG4AaABhAG4AYwBlAGQAIABUAGgAZQByAG0AYQBsACAAQwBvAG4AdABhAGMAdAAgAEMAbwBuAGQAdQBjAHQAYQBuAGMAZQAgAFUAcwBpAG4AZwAgAEMAYQByAGIAbwBuACAATgBhAG4AbwB0AHUAYgBlACAAQQByAHIAYQB5ACAASQBuAHQAZQByAGYAYQBjAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB7VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9FbmhhbmNlZCBUaGVybWFsIENvbnRhY3QgQ29uZHVjdGFuY2UgVXNpbmcgQ2FyYm9uIE5hbm90dWJlIEFycmF5IEludGVyZmFjZXMucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOAA5QDtA2sDbQNyA30DhgOUA5gDnwOoA60DugO9A88D0gPXAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA9k=}} @article{mei:2008, Abstract = {Metal-based microchannel heat exchangers (MHEs) are of current interest due to the combination of high heat transfer performance and improved mechanical integrity. Efficient methods for fabrication and assembly of functional metal-based MHEs are essential to ensure the economic viability of such devices. In this paper, the results on fabrication, assembly, and heat transfer testing of Cu- and Al-based MHE prototypes are reported. Efficient fabrication of Cu- and Al-based high-aspect-ratio microscale structures (HARMSs) has been achieved through molding replication using surface-engineered metallic mold inserts. Replicated metallic HARMSs were assembled through eutectic bonding to form entirely Cu- and Al-based MHE prototypes, on which heat transfer tests were conducted to determine the average rate of heat transfer from electrically heated Cu blocks placed outside the MHEs to water flowing within the molding replicated microchannel arrays. Experimentally observed heat transfer rates are higher as compared to those from previous studies on microchannel devices with similar geometries. The potential influence of microchannel surface profile on heat transfer rates is discussed. The present results illustrate the potential of metal-based MHEs in wide-ranging applications. }, Author = {Fanghua Mei and Parida, P.R. and Jing Jiang and Wen Jin Meng and Ekkad, S.V.}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:39:58 +0000}, Journal = {Microelectromechanical Systems, Journal of}, Keywords = {aluminium;copper;heat exchangers;heat transfer;micromechanical devices;moulding;Al;Cu;eutectic bonding;heat transfer;high-aspect-ratio microscale structures;metal-based microchannel heat exchangers;molding replication;surface-engineered metallic mold inserts;Heat transfer characteristics;metal-based microchannel heat exchangers (MHEs);molding replication}, Number = {4}, Pages = {869-881}, Title = {Fabrication, Assembly, and Testing of Cu- and Al-Based Microchannel Heat Exchangers}, Volume = {17}, Year = {2008}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QLk1laSAyMDA4IE1ldGFsIE1pcmNvY2hhbm5lbCBIZWF0IEV4Y2hhbmdlci5wZGbSFwsYGVdOUy5kYXRhTxECFgAAAAACFgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH01laSAyMDA4IE1ldGFsIE1pcmNvYyNGQjMwQi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPswvMEz8yAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADME5OSAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToATWVpIDIwMDggTWV0YWwgTWlyY29jI0ZCMzBCLnBkZgAOAF4ALgBNAGUAaQAgADIAMAAwADgAIABNAGUAdABhAGwAIABNAGkAcgBjAG8AYwBoAGEAbgBuAGUAbAAgAEgAZQBhAHQAIABFAHgAYwBoAGEAbgBnAGUAcgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBaVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NZWkgMjAwOCBNZXRhbCBNaXJjb2NoYW5uZWwgSGVhdCBFeGNoYW5nZXIucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4AvwDEAMwC5gLoAu0C+AMBAw8DEwMaAyMDKAM1AzgDSgNNA1IAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADVA==}} @article{yan:2007, Author = {Xing-bin Yan and Beng-kang Tay and Yi Yang and Wendy Yung Ka Po}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:40:08 +0000}, Journal = {Journal of Physical Chemistry C}, Number = {46}, Pages = {17254 - 17259}, Title = {Fabrication of Three-Dimensional ZnO-Carbon Nanotube (CNT) Hybrids Using Self-Assembled CNT Micropatterns as Framework}, Volume = {111}, Year = {2007}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QekZhYnJpY2F0aW9uIG9mIFRocmVlLURpbWVuc2lvbmFsIFpuTy1DYXJib24gTmFub3R1YmUgKENOVCkgSHlicmlkcyBVc2luZyBTZWxmLUFzc2VtYmxlZCBDTlQgTWljcm9wYXR0ZXJucyBhcyBGcmFtZXdvcmsucGRm0hcLGBlXTlMuZGF0YU8RAvoAAAAAAvoAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9GYWJyaWNhdGlvbiBvZiBUaHJlZS0jRkIyRTQucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7Lkzfe+5QAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzfgTRQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEZhYnJpY2F0aW9uIG9mIFRocmVlLSNGQjJFNC5wZGYADgD2AHoARgBhAGIAcgBpAGMAYQB0AGkAbwBuACAAbwBmACAAVABoAHIAZQBlAC0ARABpAG0AZQBuAHMAaQBvAG4AYQBsACAAWgBuAE8ALQBDAGEAcgBiAG8AbgAgAE4AYQBuAG8AdAB1AGIAZQAgACgAQwBOAFQAKQAgAEgAeQBiAHIAaQBkAHMAIABVAHMAaQBuAGcAIABTAGUAbABmAC0AQQBzAHMAZQBtAGIAbABlAGQAIABDAE4AVAAgAE0AaQBjAHIAbwBwAGEAdAB0AGUAcgBuAHMAIABhAHMAIABGAHIAYQBtAGUAdwBvAHIAawAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCmVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9GYWJyaWNhdGlvbiBvZiBUaHJlZS1EaW1lbnNpb25hbCBabk8tQ2FyYm9uIE5hbm90dWJlIChDTlQpIEh5YnJpZHMgVXNpbmcgU2VsZi1Bc3NlbWJsZWQgQ05UIE1pY3JvcGF0dGVybnMgYXMgRnJhbWV3b3JrLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAQsBEAEYBBYEGAQdBCgEMQQ/BEMESgRTBFgEZQRoBHoEfQSCAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABIQ=}} @article{shaojing:2004, Author = {Shaojing Bu and Zhengguo Jin and Xiaoxin Liu and Lirong Yang and Zhijie Cheng}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:40:36 +0000}, Journal = {Materials Chemistry and Physics}, Pages = {273 - 279}, Rating = {1}, Read = {0}, Title = {Fabrication of TiO2 porous thin films using peg templates and chemistry of the process}, Volume = {88}, Year = {2004}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QWkZhYnJpY2F0aW9uIG9mIFRpTzIgcG9yb3VzIHRoaW4gZmlsbXMgdXNpbmcgcGVnIHRlbXBsYXRlcyBhbmQgY2hlbWlzdHJ5IG9mIHRoZSBwcm9jZXNzLnBkZtIXCxgZV05TLmRhdGFPEQKaAAAAAAKaAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfRmFicmljYXRpb24gb2YgVGlPMiBwI0ZCMkU1LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+y5c3Sq9wAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM3TADwAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBGYWJyaWNhdGlvbiBvZiBUaU8yIHAjRkIyRTUucGRmAA4AtgBaAEYAYQBiAHIAaQBjAGEAdABpAG8AbgAgAG8AZgAgAFQAaQBPADIAIABwAG8AcgBvAHUAcwAgAHQAaABpAG4AIABmAGkAbABtAHMAIAB1AHMAaQBuAGcAIABwAGUAZwAgAHQAZQBtAHAAbABhAHQAZQBzACAAYQBuAGQAIABjAGgAZQBtAGkAcwB0AHIAeQAgAG8AZgAgAHQAaABlACAAcAByAG8AYwBlAHMAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCGVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9GYWJyaWNhdGlvbiBvZiBUaU8yIHBvcm91cyB0aGluIGZpbG1zIHVzaW5nIHBlZyB0ZW1wbGF0ZXMgYW5kIGNoZW1pc3RyeSBvZiB0aGUgcHJvY2Vzcy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDrAPAA+AOWA5gDnQOoA7EDvwPDA8oD0wPYA+UD6AP6A/0EAgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQE}} @techreport{SummitV:2005sandia, Author = {Sandia National Laboratories}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 18:02:04 +0000}, Institution = {Sandia National Laboratories}, Month = {September}, Title = {Five Level Surface Micromachining Technology Design Manual}, Type = {Design Manual}, Year = {2005}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QHFNVTU1pVCBEZXNpZ24gTWFudWFsIDEuMy5wZGbSFwsYGVdOUy5kYXRhTxEB3gAAAAAB3gACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwHFNVTU1pVCBEZXNpZ24gTWFudWFsIDEuMy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsyO/bE5RAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAAC/bKKxAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBVTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAU1VNTWlUIERlc2lnbiBNYW51YWwgMS4zLnBkZgAADgA6ABwAUwBVAE0ATQBpAFQAIABEAGUAcwBpAGcAbgAgAE0AYQBuAHUAYQBsACAAMQAuADMALgBwAGQAZgAPABAABwBMAHUAbgBkAFMAUwBEABIASFVzZXJzL2phc29uL0RvY3VtZW50cy9SZXNlYXJjaC9CaWJsaW9ncmFwaHkvU1VNTWlUIERlc2lnbiBNYW51YWwgMS4zLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAK0AsgC6ApwCngKjAq4CtwLFAskC0ALZAt4C6wLuAwADAwMIAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAAwo=}} @proceedings{IMECE:2007, Author = {Mahmoud Reza Hosseini and Nader Jalili}, Booktitle = {ASME 2007 International Mechanical Engineering Congress and Exposition}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:41:05 +0000}, Month = {November}, Number = {Micro and Nano Systems, Parts A and B}, Organization = {ASME}, Title = {from: Multiphysics, Multiphase Modeling of Carbon Nanotube Synthesis Process by Chemical Vapor Deposition}, Volume = {11}, Year = {2007}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QTU11bHRpcGh5c2ljcywgTXVsdGlzY2FsZSBNb2RlbGluZyBvZiBDVkQtYmFzZWQgQ2FyYm9uIE5hbm90dWJlcyBTeW50aGVzaXMucGRm0hcLGBlXTlMuZGF0YU8RAnQAAAAAAnQAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9NdWx0aXBoeXNpY3MsIE11bHRpc2MjRkIzMTEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7MRyjqHfAAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAyjrb3AAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AE11bHRpcGh5c2ljcywgTXVsdGlzYyNGQjMxMS5wZGYADgCcAE0ATQB1AGwAdABpAHAAaAB5AHMAaQBjAHMALAAgAE0AdQBsAHQAaQBzAGMAYQBsAGUAIABNAG8AZABlAGwAaQBuAGcAIABvAGYAIABDAFYARAAtAGIAYQBzAGUAZAAgAEMAYQByAGIAbwBuACAATgBhAG4AbwB0AHUAYgBlAHMAIABTAHkAbgB0AGgAZQBzAGkAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB5VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NdWx0aXBoeXNpY3MsIE11bHRpc2NhbGUgTW9kZWxpbmcgb2YgQ1ZELWJhc2VkIENhcmJvbiBOYW5vdHViZXMgU3ludGhlc2lzLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDeAOMA6wNjA2UDagN1A34DjAOQA5cDoAOlA7IDtQPHA8oDzwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAPR}} @article{lee:2007, Author = {H. C. Lee and P. S. Alegaonkar and D. Y. Kim and J. H. Lee and J. B. Yoo}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:42:31 +0000}, Journal = {Philosophical Magazine Letters}, Keywords = {CNT, diffusion, oxidation, Fe, iron}, Month = {October}, Number = {10}, Pages = {767 - 780}, Title = {Growth of carbon nanotubes: effect of Fe diffusion and oxidation}, Volume = {87}, Year = {2007}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QREdyb3d0aCBvZiBjYXJib24gbmFub3R1YmVzLSBlZmZlY3Qgb2YgRmUgZGlmZnVzaW9uIGFuZCBveGlkYXRpb24ucGRm0hcLGBlXTlMuZGF0YU8RAlgAAAAAAlgAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9Hcm93dGggb2YgY2FyYm9uIG5hbm8jRkIyRjAucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7LwzeK8ZwAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzeMQxwAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEdyb3d0aCBvZiBjYXJib24gbmFubyNGQjJGMC5wZGYADgCKAEQARwByAG8AdwB0AGgAIABvAGYAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQBzAC0AIABlAGYAZgBlAGMAdAAgAG8AZgAgAEYAZQAgAGQAaQBmAGYAdQBzAGkAbwBuACAAYQBuAGQAIABvAHgAaQBkAGEAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBwVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Hcm93dGggb2YgY2FyYm9uIG5hbm90dWJlcy0gZWZmZWN0IG9mIEZlIGRpZmZ1c2lvbiBhbmQgb3hpZGF0aW9uLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOANUA2gDiAz4DQANFA1ADWQNnA2sDcgN7A4ADjQOQA6IDpQOqAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA6w=}} @article{huyan:2010, Author = {M. K. Bhuyan and F. Courvoisier and P.-A. Lacourt and M. Jacquot and L. Furfaro and M. J. Withford and J. M. Dudley}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:43:15 +0000}, Journal = {OPTICS EXPRESS}, Keywords = {microchannel}, Month = {January}, Number = {2}, Pages = {566 - 574}, Title = {High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams}, Volume = {18}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QWEhpZ2ggYXNwZWN0IHJhdGlvIHRhcGVyLWZyZWUgbWljcm9jaGFubmVsIGZhYnJpY2F0aW9uIHVzaW5nIGZlbXRvc2Vjb25kIEJlc3NlbCBiZWFtcy5wZGbSFwsYGVdOUy5kYXRhTxEClAAAAAAClAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0hpZ2ggYXNwZWN0IHJhdGlvIHRhcCNGQjJGNi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsvbN0rJuAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADN0wbOAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToASGlnaCBhc3BlY3QgcmF0aW8gdGFwI0ZCMkY2LnBkZgAOALIAWABIAGkAZwBoACAAYQBzAHAAZQBjAHQAIAByAGEAdABpAG8AIAB0AGEAcABlAHIALQBmAHIAZQBlACAAbQBpAGMAcgBvAGMAaABhAG4AbgBlAGwAIABmAGEAYgByAGkAYwBhAHQAaQBvAG4AIAB1AHMAaQBuAGcAIABmAGUAbQB0AG8AcwBlAGMAbwBuAGQAIABCAGUAcwBzAGUAbAAgAGIAZQBhAG0AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCEVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9IaWdoIGFzcGVjdCByYXRpbyB0YXBlci1mcmVlIG1pY3JvY2hhbm5lbCBmYWJyaWNhdGlvbiB1c2luZyBmZW10b3NlY29uZCBCZXNzZWwgYmVhbXMucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A6QDuAPYDjgOQA5UDoAOpA7cDuwPCA8sD0APdA+AD8gP1A/oAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD/A==}} @article{solis:2004, Author = {J. L. Solis and J. Rodriguez and W. Estrada}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:43:42 +0000}, Journal = {Physica Status Solidi (a)}, Number = {10}, Title = {Highly porous thin films obtained by spray-gel technique}, Volume = {201}, Year = {2004}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QPEhpZ2hseSBwb3JvdXMgdGhpbiBmaWxtcyBvYnRhaW5lZCBieSBzcHJheS1nZWwgdGVjaG5pcXVlLnBkZtIXCxgZV05TLmRhdGFPEQJAAAAAAAJAAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfSGlnaGx5IHBvcm91cyB0aGluIGZpI0ZCMkY3LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+y983Sr38AAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM3TA98AAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBIaWdobHkgcG9yb3VzIHRoaW4gZmkjRkIyRjcucGRmAA4AegA8AEgAaQBnAGgAbAB5ACAAcABvAHIAbwB1AHMAIAB0AGgAaQBuACAAZgBpAGwAbQBzACAAbwBiAHQAYQBpAG4AZQBkACAAYgB5ACAAcwBwAHIAYQB5AC0AZwBlAGwAIAB0AGUAYwBoAG4AaQBxAHUAZQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBoVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9IaWdobHkgcG9yb3VzIHRoaW4gZmlsbXMgb2J0YWluZWQgYnkgc3ByYXktZ2VsIHRlY2huaXF1ZS5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDNANIA2gMeAyADJQMwAzkDRwNLA1IDWwNgA20DcAOCA4UDigAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAOM}} @article{joseph:2005, Abstract = {The fabrication of air-channels for microelectromechanical systems and microfluidic devices using polynorbornene and polycarbonates as thermally or photolitically decomposable materials to form air-gaps in dielectric materials has been reported. In this study, the incompatibility of some overcoat polymers with the sacrificial materials was addressed. SiO 2 was used as a barrier layer for the fabrication of single- and multi-layer air-channels via different sacrificial and overcoat materials. The structural rigidity of SiO 2 mitigates problems associated with overcoat polymers that can easily deform at the processing temperature (overcoat cure or sacrificial decomposition temperature). The chemical inertness and low permeability of SiO 2 allows the use of solvent-cast polymers, for which the solvents would have otherwise dissolved the sacrificial material.}, Author = {Paul Jayachandran Joseph and Hollie A Kelleher and Sue Ann Bidstrup Allen and Paul A Kohl}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:44:03 +0000}, Journal = {Journal of Micromechanics and Microengineering}, Number = {1}, Pages = {35}, Title = {Improved fabrication of micro air-channels by incorporation of a structural barrier}, Url = {http://stacks.iop.org/0960-1317/15/i=1/a=006}, Volume = {15}, Year = {2005}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QV0ltcHJvdmVkIGZhYnJpY2F0aW9uIG9mIG1pY3JvIGFpci1jaGFubmVscyBieSBpbmNvcnBvcmF0aW9uIG9mIGEgc3RydWN0dXJhbCBiYXJyaWVyLnBkZtIXCxgZV05TLmRhdGFPEQKSAAAAAAKSAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfSW1wcm92ZWQgZmFicmljYXRpb24gI0ZCMkZBLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+y+smvvZMAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAMmwEfMAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBJbXByb3ZlZCBmYWJyaWNhdGlvbiAjRkIyRkEucGRmAA4AsABXAEkAbQBwAHIAbwB2AGUAZAAgAGYAYQBiAHIAaQBjAGEAdABpAG8AbgAgAG8AZgAgAG0AaQBjAHIAbwAgAGEAaQByAC0AYwBoAGEAbgBuAGUAbABzACAAYgB5ACAAaQBuAGMAbwByAHAAbwByAGEAdABpAG8AbgAgAG8AZgAgAGEAIABzAHQAcgB1AGMAdAB1AHIAYQBsACAAYgBhAHIAcgBpAGUAcgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCDVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9JbXByb3ZlZCBmYWJyaWNhdGlvbiBvZiBtaWNybyBhaXItY2hhbm5lbHMgYnkgaW5jb3Jwb3JhdGlvbiBvZiBhIHN0cnVjdHVyYWwgYmFycmllci5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A6ADtAPUDiwONA5IDnQOmA7QDuAO/A8gDzQPaA90D7wPyA/cAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD+Q==}, Bdsk-Url-1 = {http://stacks.iop.org/0960-1317/15/i=1/a=006}} @article{Wong:2001, Author = {H. Wong and P.G. Han and M.C. Poon and Y. Gao}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:44:29 +0000}, Journal = {Microelectronics Reliability}, Pages = {179 - 184}, Title = {Investigation of the surface silica layer on porous poly-Si thin films}, Volume = {41}, Year = {2001}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QSkludmVzdGlnYXRpb24gb2YgdGhlIHN1cmZhY2Ugc2lsaWNhIGxheWVyIG9uIHBvcm91cyBwb2x5LVNpIHRoaW4gZmlsbXMucGRm0hcLGBlXTlMuZGF0YU8RAmoAAAAAAmoAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9JbnZlc3RpZ2F0aW9uIG9mIHRoZSAjRkIyRkYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7L/zdKwsgAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzdMFEgAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEludmVzdGlnYXRpb24gb2YgdGhlICNGQjJGRi5wZGYADgCWAEoASQBuAHYAZQBzAHQAaQBnAGEAdABpAG8AbgAgAG8AZgAgAHQAaABlACAAcwB1AHIAZgBhAGMAZQAgAHMAaQBsAGkAYwBhACAAbABhAHkAZQByACAAbwBuACAAcABvAHIAbwB1AHMAIABwAG8AbAB5AC0AUwBpACAAdABoAGkAbgAgAGYAaQBsAG0AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB2VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9JbnZlc3RpZ2F0aW9uIG9mIHRoZSBzdXJmYWNlIHNpbGljYSBsYXllciBvbiBwb3JvdXMgcG9seS1TaSB0aGluIGZpbG1zLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOANsA4ADoA1YDWANdA2gDcQN/A4MDigOTA5gDpQOoA7oDvQPCAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA8Q=}} @article{correaDuarte:2004, Author = {Miguel A. Correa-Duarte and Neli Sobal and Luis M. Liz-Marzan and Michael Giersig}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:45:32 +0000}, Journal = {Advanced Materials}, Keywords = {CNT, silica}, Month = {December}, Number = {23 - 24}, Pages = {2179 - 2184}, Title = {Linear Assemblies of Silica-Coated Gold Nanoparticles Using Carbon Nanotubes as Templates}, Volume = {16}, Year = {2004}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QXUxpbmVhciBhc3NlbWJsaWVzIG9mIHNpbGljYS1jb2F0ZWQgZ29sZCBuYW5vcGFydGljbGVzIHVzaW5nIGNhcmJvbiBuYW5vdHViZXMgYXMgdGVtcGxhdGVzLnBkZtIXCxgZV05TLmRhdGFPEQKkAAAAAAKkAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfTGluZWFyIGFzc2VtYmxpZXMgb2YgI0ZCMzAxLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+zAc33xeIAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM34GkIAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBMaW5lYXIgYXNzZW1ibGllcyBvZiAjRkIzMDEucGRmAA4AvABdAEwAaQBuAGUAYQByACAAYQBzAHMAZQBtAGIAbABpAGUAcwAgAG8AZgAgAHMAaQBsAGkAYwBhAC0AYwBvAGEAdABlAGQAIABnAG8AbABkACAAbgBhAG4AbwBwAGEAcgB0AGkAYwBsAGUAcwAgAHUAcwBpAG4AZwAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlAHMAIABhAHMAIAB0AGUAbQBwAGwAYQB0AGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCJVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9MaW5lYXIgYXNzZW1ibGllcyBvZiBzaWxpY2EtY29hdGVkIGdvbGQgbmFub3BhcnRpY2xlcyB1c2luZyBjYXJib24gbmFub3R1YmVzIGFzIHRlbXBsYXRlcy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A7gDzAPsDowOlA6oDtQO+A8wD0APXA+AD5QPyA/UEBwQKBA8AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEEQ==}} @article{jauffres:2011, Author = {David Jauffr{\`e}s and Christelle Yacou and Marc Verdier and R{\'e}my Dendievel and Andr{\'e} Ayral}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:47:13 +0000}, Journal = {Microporous and Mesoporous Materials}, Pages = {120 - 129}, Title = {Mechanical properties of hierarchical porous silica thin films: Experimental characterization by nanoindentation and Finite Element modeling}, Volume = {140}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QkE1lY2hhbmljYWwgcHJvcGVydGllcyBvZiBoaWVyYXJjaGljYWwgcG9yb3VzIHNpbGljYSB0aGluIGZpbG1zLSBFeHBlcmltZW50YWwgY2hhcmFjdGVyaXphdGlvbiBieSBuYW5vaW5kZW50YXRpb24gYW5kIEZpbml0ZSBFbGVtZW50IG1vZGVsaW5nLnBkZtIXCxgZV05TLmRhdGFPEQM8AAAAAAM8AAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfTWVjaGFuaWNhbCBwcm9wZXJ0aWVzI0ZCMzA3LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+zB83SsAUAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM3TBGUAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBNZWNoYW5pY2FsIHByb3BlcnRpZXMjRkIzMDcucGRmAA4BIgCQAE0AZQBjAGgAYQBuAGkAYwBhAGwAIABwAHIAbwBwAGUAcgB0AGkAZQBzACAAbwBmACAAaABpAGUAcgBhAHIAYwBoAGkAYwBhAGwAIABwAG8AcgBvAHUAcwAgAHMAaQBsAGkAYwBhACAAdABoAGkAbgAgAGYAaQBsAG0AcwAtACAARQB4AHAAZQByAGkAbQBlAG4AdABhAGwAIABjAGgAYQByAGEAYwB0AGUAcgBpAHoAYQB0AGkAbwBuACAAYgB5ACAAbgBhAG4AbwBpAG4AZABlAG4AdABhAHQAaQBvAG4AIABhAG4AZAAgAEYAaQBuAGkAdABlACAARQBsAGUAbQBlAG4AdAAgAG0AbwBkAGUAbABpAG4AZwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgC8VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NZWNoYW5pY2FsIHByb3BlcnRpZXMgb2YgaGllcmFyY2hpY2FsIHBvcm91cyBzaWxpY2EgdGhpbiBmaWxtcy0gRXhwZXJpbWVudGFsIGNoYXJhY3Rlcml6YXRpb24gYnkgbmFub2luZGVudGF0aW9uIGFuZCBGaW5pdGUgRWxlbWVudCBtb2RlbGluZy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgEhASYBLgRuBHAEdQSABIkElwSbBKIEqwSwBL0EwATSBNUE2gAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAATc}} @article{tawfick:2013, Author = {Tawfick, Sameh and Zhao, Zhouzhou and Maschmann, Matthew and Brieland-Shoultz, Anna and De Volder, Michael and Baur, Jeffery W. and Lu, Wei and Hart, A. John}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:47:47 +0000}, Doi = {10.1021/la4002219}, Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la4002219}, Journal = {Langmuir}, Number = {17}, Pages = {5190-5198}, Title = {Mechanics of Capillary Forming of Aligned Carbon Nanotube Assemblies}, Url = {http://pubs.acs.org/doi/abs/10.1021/la4002219}, Volume = {29}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QSE1lY2hhbmljcyBvZiBDYXBpbGxhcnkgRm9ybWluZyBvZiBBbGlnbmVkIENhcmJvbiBOYW5vdHViZSBBc3NlbWJsaWVzLnBkZtIXCxgZV05TLmRhdGFPEQJkAAAAAAJkAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfTWVjaGFuaWNzIG9mIENhcGlsbGFyI0ZCMzA5LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+zCc3itG0AAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM3jCM0AAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBNZWNoYW5pY3Mgb2YgQ2FwaWxsYXIjRkIzMDkucGRmAA4AkgBIAE0AZQBjAGgAYQBuAGkAYwBzACAAbwBmACAAQwBhAHAAaQBsAGwAYQByAHkAIABGAG8AcgBtAGkAbgBnACAAbwBmACAAQQBsAGkAZwBuAGUAZAAgAEMAYQByAGIAbwBuACAATgBhAG4AbwB0AHUAYgBlACAAQQBzAHMAZQBtAGIAbABpAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB0VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NZWNoYW5pY3Mgb2YgQ2FwaWxsYXJ5IEZvcm1pbmcgb2YgQWxpZ25lZCBDYXJib24gTmFub3R1YmUgQXNzZW1ibGllcy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDZAN4A5gNOA1ADVQNgA2kDdwN7A4IDiwOQA50DoAOyA7UDugAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAO8}, Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la4002219}, Bdsk-Url-2 = {http://dx.doi.org/10.1021/la4002219}} @article{brukh:2006, Abstract = {The carbon nanotubes (CNTs) formation by catalytic chemical vapor deposition is initiated by precursor decomposition to form a multitude of reactive species. During large-scale \{CNT\} self-assembly, these species vary with residence time leading to a non-uniform \{CNT\} growth. This Letter studies the self-assembly, and the reaction pathways leading to \{CNT\} formation. A tubular plug flow reactor, where \{CNT\} deposition occurred at various residence times was used to study the process, and kinetic simulation was used to predict the reaction pathways. There was excellent agreement between experimental and the modeling results, providing an insight into the mechanism of \{CNT\} growth. }, Author = {Roman Brukh and Somenath Mitra}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:47:59 +0000}, Doi = {http://dx.doi.org/10.1016/j.cplett.2006.04.028}, Issn = {0009-2614}, Journal = {Chemical Physics Letters}, Number = {1--3}, Pages = {126 - 132}, Title = {Mechanism of carbon nanotube growth by \{CVD\}}, Url = {http://www.sciencedirect.com/science/article/pii/S0009261406005100}, Volume = {424}, Year = {2006}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QLk1lY2hhbmlzbSBvZiBjYXJib24gbmFub3R1YmUgZ3Jvd3RoIGJ5IENWRC5wZGbSFwsYGVdOUy5kYXRhTxECFgAAAAACFgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH01lY2hhbmlzbSBvZiBjYXJib24gbiNGQjMwQS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPswrKOpMnAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADKOueHAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToATWVjaGFuaXNtIG9mIGNhcmJvbiBuI0ZCMzBBLnBkZgAOAF4ALgBNAGUAYwBoAGEAbgBpAHMAbQAgAG8AZgAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlACAAZwByAG8AdwB0AGgAIABiAHkAIABDAFYARAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBaVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NZWNoYW5pc20gb2YgY2FyYm9uIG5hbm90dWJlIGdyb3d0aCBieSBDVkQucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4AvwDEAMwC5gLoAu0C+AMBAw8DEwMaAyMDKAM1AzgDSgNNA1IAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADVA==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0009261406005100}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cplett.2006.04.028}} @article{malecha:2008, Author = {Karol Malecha and Leszek J. Golonka}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:48:10 +0000}, Journal = {Microelectronics Reliability}, Pages = {866 - 871}, Title = {Microchannel fabrication process in LTCC ceramics}, Volume = {48}, Year = {2008}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QNU1pY3JvY2hhbm5lbCBmYWJyaWNhdGlvbiBwcm9jZXNzIGluIExUQ0MgY2VyYW1pY3MucGRm0hcLGBlXTlMuZGF0YU8RAiwAAAAAAiwAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9NaWNyb2NoYW5uZWwgZmFicmljYXQjRkIzMEMucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7MMzdKzyQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzdMIKQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AE1pY3JvY2hhbm5lbCBmYWJyaWNhdCNGQjMwQy5wZGYADgBsADUATQBpAGMAcgBvAGMAaABhAG4AbgBlAGwAIABmAGEAYgByAGkAYwBhAHQAaQBvAG4AIABwAHIAbwBjAGUAcwBzACAAaQBuACAATABUAEMAQwAgAGMAZQByAGEAbQBpAGMAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBhVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NaWNyb2NoYW5uZWwgZmFicmljYXRpb24gcHJvY2VzcyBpbiBMVENDIGNlcmFtaWNzLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDGAMsA0wMDAwUDCgMVAx4DLAMwAzcDQANFA1IDVQNnA2oDbwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAANx}} @article{lee:2013, Abstract = { Polydimethylsiloxane (PDMS) is widely used as a substrate in miniaturized devices, given its suitability for execution of biological and chemical assays. Here, we present a patterning approach for PDMS, which uses an on-chip Parylene-C microstencil to pattern proteins and cells. To implement the on-chip Parylene-C microstencil, we applied SiOx-like nanoparticle layers using atmospheric-pressure plasma-enhanced chemical vapor deposition (AP-PECVD) of tetraethyl orthosilicate (TEOS) mixed with oxygen. The complete removal of Parylene-C from PDMS following application of SiOx-like nanoparticle layers was demonstrated by various surface characterization analysis, including optical transparency, surface morphology, chemical composition, and peel-off force. Furthermore, the effects of the number of AP-PECVD treatments were investigated. Our approach overcomes the tendency of Parylene-C to peel off incompletely from PDMS, which has limited its use with PDMS to date. The on-chip Parylene-C microstencil approach that is based on this Parylene-C peel-off process on PDMS can pattern proteins with 2-μm resolution and cells at single-cell resolution with a vacancy ratio as small as 10%. This provides superior user-friendliness and a greater degree of geometrical freedom than previously described approaches that require meticulous care in handling of stencil. Thus, this patterning method could be applied in various research fields to pattern proteins or cells on the flexible PDMS substrate. }, Author = {Lee, Donghee and Yang, Sung}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:51:01 +0000}, Doi = {10.1021/am4001166}, Eprint = {http://pubs.acs.org/doi/pdf/10.1021/am4001166}, Journal = {ACS Applied Materials & Interfaces}, Number = {7}, Pages = {2658-2668}, Title = {On-Chip Parylene-C Microstencil for Simple-to-Use Patterning of Proteins and Cells on Polydimethylsiloxane}, Url = {http://pubs.acs.org/doi/abs/10.1021/am4001166}, Volume = {5}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YW8QbgBPAG4ALQBDAGgAaQBwACAAUABhAHIAeQBsAGUAbgBlIBAAQwAgAE0AaQBjAHIAbwBzAHQAZQBuAGMAaQBsACAAZgBvAHIAIABTAGkAbQBwAGwAZQAtAHQAbwAtAFUAcwBlACAAUABhAHQAdABlAHIAbgBpAG4AZwAgAG8AZgAgAFAAcgBvAHQAZQBpAG4AcwAgAGEAbgBkACAAQwBlAGwAbABzACAAbwBuACAAUABvAGwAeQBkAGkAbQBlAHQAaAB5AGwAcwBpAGwAbwB4AGEAbgBlAC4AcABkAGbSFwsYGVdOUy5kYXRhTxEC1AAAAAAC1AACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwGk9uLUNoaXAgUGFyeWxlbmUjRkIzMTUucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsxXOOmIEAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADOOrZkAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBTTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAT24tQ2hpcCBQYXJ5bGVuZSNGQjMxNS5wZGYAAA4A3gBuAE8AbgAtAEMAaABpAHAAIABQAGEAcgB5AGwAZQBuAGUgEABDACAATQBpAGMAcgBvAHMAdABlAG4AYwBpAGwAIABmAG8AcgAgAFMAaQBtAHAAbABlAC0AdABvAC0AVQBzAGUAIABQAGEAdAB0AGUAcgBuAGkAbgBnACAAbwBmACAAUAByAG8AdABlAGkAbgBzACAAYQBuAGQAIABDAGUAbABsAHMAIABvAG4AIABQAG8AbAB5AGQAaQBtAGUAdABoAHkAbABzAGkAbABvAHgAYQBuAGUALgBwAGQAZgAPABAABwBMAHUAbgBkAFMAUwBEABIAnFVzZXJzL2phc29uL0RvY3VtZW50cy9SZXNlYXJjaC9CaWJsaW9ncmFwaHkvT24tQ2hpcCBQYXJ5bGVuZeKAkEMgTWljcm9zdGVuY2lsIGZvciBTaW1wbGUtdG8tVXNlIFBhdHRlcm5pbmcgb2YgUHJvdGVpbnMgYW5kIENlbGxzIG9uIFBvbHlkaW1ldGh5bHNpbG94YW5lLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAW0BcgF6BFIEVARZBGQEbQR7BH8EhgSPBJQEoQSkBLYEuQS+AAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABMA=}, Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/am4001166}, Bdsk-Url-2 = {http://dx.doi.org/10.1021/am4001166}} @inproceedings{sit:1999, Abstract = {Porous thin films with tailored chiral microstructure fabricated using glancing angle deposition (GLAD) have previously been shown to exhibit unique chiral optic response. Recently, the pores of chiral GLAD films were filled with liquid crystalline (LC) materials to produce a new class of hybrid materials which exhibit enhanced chiral optic response. We demonstrate here reversible electro-optic switching of the LC component in a cell structure composed of a chiral GLAD film embedded with a nematic LC. When the cell is addressed, the chiral optic response vanishes.}, Author = {Sit, J.C. and Broer, D.J. and Brett, M.J.}, Booktitle = {Electron Devices Meeting, 1999. IEDM '99. Technical Digest. International}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:51:23 +0000}, Keywords = {chirality;electro-optical switches;liquid crystal devices;nematic liquid crystals;optical films;porous materials;silicon compounds;vacuum deposited coatings;SiO/sub 2/;cell addressing;chiral GLAD film;chiral optic response;enhanced chiral optic response;glancing angle deposition;hybrid materials;liquid crystal embedding;nematic liquid crystal;physical vapour deposition;porous SiO/sub 2/ thin films;reversible electro-optic switching;tailored chiral microstructure;Crystalline materials;Filling;Liquid crystal devices;Liquid crystal polymers;Liquid crystals;Optical devices;Optical films;Optical materials;Optical scattering;Thin film devices}, Pages = {123-126}, Title = {Optical devices fabricated from porous thin films embedded with liquid crystals}, Year = {1999}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QU09wdGljYWwgZGV2aWNlcyBmYWJyaWNhdGVkIGZyb20gcG9yb3VzIHRoaW4gZmlsbXMgZW1iZWRkZWQgd2l0aCBsaXF1aWQgY3J5c3RhbHMucGRm0hcLGBlXTlMuZGF0YU8RAoYAAAAAAoYAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9PcHRpY2FsIGRldmljZXMgZmFicmkjRkIzMTcucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7MXzdKt1QAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzdMCNQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AE9wdGljYWwgZGV2aWNlcyBmYWJyaSNGQjMxNy5wZGYADgCoAFMATwBwAHQAaQBjAGEAbAAgAGQAZQB2AGkAYwBlAHMAIABmAGEAYgByAGkAYwBhAHQAZQBkACAAZgByAG8AbQAgAHAAbwByAG8AdQBzACAAdABoAGkAbgAgAGYAaQBsAG0AcwAgAGUAbQBiAGUAZABkAGUAZAAgAHcAaQB0AGgAIABsAGkAcQB1AGkAZAAgAGMAcgB5AHMAdABhAGwAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB/VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9PcHRpY2FsIGRldmljZXMgZmFicmljYXRlZCBmcm9tIHBvcm91cyB0aGluIGZpbG1zIGVtYmVkZGVkIHdpdGggbGlxdWlkIGNyeXN0YWxzLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDkAOkA8QN7A30DggONA5YDpAOoA68DuAO9A8oDzQPfA+ID5wAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAPp}} @article{frank:2010, Abstract = { The oxidation of multiwalled carbon nanotubes (CNTs) was investigated with regard to a detailed prediction of the lifetime of this material as a catalyst for oxidative dehydrogenations. A power-law kinetics is found to be adequate for the description of CO2 formation in the temperature range of 623−823 K and under O2 partial pressures of 0.025−0.6 bar. The stability against oxidation can be enhanced by passivation with B2O3 or P2O5 and by high temperature treatment. The progress of oxidative degradation was monitored by TEM and Raman spectroscopy. A mechanistic study supported by high pressure XPS and SSITKA reveals full agreement with the established model of the oxidation of conventional carbon materials; however, the theory of sequential layer degradation as observed for single crystal graphite is not transferable to a technical grade CNT material, and instead, various modes of propagation of combustion sites are identified. }, Author = {Frank, Benjamin and Rinaldi, Ali and Blume, Raoul and Schl{\"o}gl, Robert and Su, Dang Sheng}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 20:51:59 +0000}, Doi = {10.1021/cm101234d}, Eprint = {http://pubs.acs.org/doi/pdf/10.1021/cm101234d}, Journal = {Chemistry of Materials}, Number = {15}, Pages = {4462-4470}, Title = {Oxidation Stability of Multiwalled Carbon Nanotubes for Catalytic Applications}, Url = {http://pubs.acs.org/doi/abs/10.1021/cm101234d}, Volume = {22}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUk94aWRhdGlvbiBTdGFiaWxpdHkgb2YgTXVsdGl3YWxsZWQgQ2FyYm9uIE5hbm90dWJlcyBmb3IgQ2F0YWx5dGljIEFwcGxpY2F0aW9ucy5wZGbSFwsYGVdOUy5kYXRhTxECggAAAAACggACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH094aWRhdGlvbiBTdGFiaWxpdHkgbyNGQjMxOS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsxnNKeUdAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADNKkeNAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAT3hpZGF0aW9uIFN0YWJpbGl0eSBvI0ZCMzE5LnBkZgAOAKYAUgBPAHgAaQBkAGEAdABpAG8AbgAgAFMAdABhAGIAaQBsAGkAdAB5ACAAbwBmACAATQB1AGwAdABpAHcAYQBsAGwAZQBkACAAQwBhAHIAYgBvAG4AIABOAGEAbgBvAHQAdQBiAGUAcwAgAGYAbwByACAAQwBhAHQAYQBsAHkAdABpAGMAIABBAHAAcABsAGkAYwBhAHQAaQBvAG4AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB+VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9PeGlkYXRpb24gU3RhYmlsaXR5IG9mIE11bHRpd2FsbGVkIENhcmJvbiBOYW5vdHViZXMgZm9yIENhdGFseXRpYyBBcHBsaWNhdGlvbnMucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A4wDoAPADdgN4A30DiAORA58DowOqA7MDuAPFA8gD2gPdA+IAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD5A==}, Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/cm101234d}, Bdsk-Url-2 = {http://dx.doi.org/10.1021/cm101234d}} @article{harris:2001, Abstract = {A new approach is described in the deposition of thin films for thermal barrier applications. Using controlled substrate motion, porous layers and capping layers were vacuum deposited in an alternating fashion, creating a new, multilayered film structure. Direct measurements of the thermal properties of these multilayers were made using the 3ω and Mirage techniques. In the 3ω technique, heat is introduced into the coating by an \{AC\} current flowing through an evaporated resistor with a frequency ω. A fit of resistor voltage as a function of frequency yields the thermal conductivity. In the Mirage technique, an oscillating temperature is induced immediately above the film using a pulsed laser. A second probe laser aligned parallel to the surface is deflected by these temperature variations, and the thermal diffusivity is then found by fitting amplitude and phase shift data to the solution of the three-dimensional diffusion equation. Typically, the 3ω and Mirage techniques measure thermal constants in directions normal and parallel to the substrate, respectively. Measurements using these methods led to estimates of a reduction in thermal diffusivity of as little as 9% of that of films deposited entirely at normal incidence. Thermal simulations of similar structures also predicted a substantial decrease in overall thermal conductivity. In a specific case, an improved conductivity of 18% of that of films deposited by standard techniques was estimated. }, Author = {K.D. Harris and D. Vick and E.J. Gonzalez and T. Smy and K. Robbie and M.J. Brett}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 21:01:41 +0000}, Doi = {http://dx.doi.org/10.1016/S0257-8972(00)01155-5}, Issn = {0257-8972}, Journal = {Surface and Coatings Technology}, Keywords = {Thermal barrier coatings}, Number = {2--3}, Pages = {185 - 191}, Title = {Porous thin films for thermal barrier coatings}, Url = {http://www.sciencedirect.com/science/article/pii/S0257897200011555}, Volume = {138}, Year = {2001}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QMXBvcm91cyB0aGluIGZpbG0gZm9yIHRoZXJtYWwgYmFycmllciBjb2F0aW5ncy5wZGbSFwsYGVdOUy5kYXRhTxECIAAAAAACIAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH3Bvcm91cyB0aGluIGZpbG0gZm9yICNGQjM0NS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPs0XNl4srAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADNl9+LAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAcG9yb3VzIHRoaW4gZmlsbSBmb3IgI0ZCMzQ1LnBkZgAOAGQAMQBwAG8AcgBvAHUAcwAgAHQAaABpAG4AIABmAGkAbABtACAAZgBvAHIAIAB0AGgAZQByAG0AYQBsACAAYgBhAHIAcgBpAGUAcgAgAGMAbwBhAHQAaQBuAGcAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBdVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9wb3JvdXMgdGhpbiBmaWxtIGZvciB0aGVybWFsIGJhcnJpZXIgY29hdGluZ3MucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAMIAxwDPAvMC9QL6AwUDDgMcAyADJwMwAzUDQgNFA1cDWgNfAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA2E=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0257897200011555}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0257-8972(00)01155-5}} @article{voigt:2005, Abstract = {Size-selected silicon nanocrystals (Si-nc) with diameters d ≈ (5--6) nm, prepared in a flow reactor by CO2-laser-induced SiH4 decomposition and showing strong photoluminescence in the visible regime after oxidation of their surface, have been accumulated as thin films on quartz substrates. These films also contain clusters of agglomerated Si-nc which conserve the electronic properties of the single Si-nc such as the compression of the electronic wave function and show a similar size distribution of Si-nc as the porous Si-nc layer underneath, which has been verified by spectral photoluminescence measurements. The porosity has been modelled by Monte Carlo computer simulations within a simple stick-ball approach for the local arrangement of the Si-nc versus film growth time to (85.6 $\pm$ 0.8)% which reasonably agrees with an earlier experimental result. Simultaneously with growth of porous thin films we have recorded charge transport in coplanar contact arrangement showing three regimes: i) negligible contribution at the beginning of film growth due to missing connections, ii) a percolation type of superlinear increase of current with exponent 3 / 2, and iii) linear increase with further film thickness. }, Author = {F. Voigt and R. Br{\"u}ggemann and T. Unold and F. Huisken and G.H. Bauer}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 21:01:54 +0000}, Doi = {http://dx.doi.org/10.1016/j.msec.2005.06.035}, Issn = {0928-4931}, Journal = {Materials Science and Engineering: C}, Keywords = {Charge transport}, Note = {Current Trends in Nanoscience - from Materials to Applications Proceedings of the European Materials Research Society 2004 - Symposium G Current Trends in Nanoscience - from Materials to Applications Proceedings of the European Materials Research Society 2004 - Symposium G Current Trends in Nanoscience - from Materials to Applications Proceedings of the European Materials Research Society 2004 - Symposium G}, Number = {5--8}, Pages = {584 - 589}, Title = {Porous thin films grown from size-selected silicon nanocrystals}, Url = {http://www.sciencedirect.com/science/article/pii/S0928493105001529}, Volume = {25}, Year = {2005}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QQ1Bvcm91cyB0aGluIGZpbG1zIGdyb3duIGZyb20gc2l6ZS1zZWxlY3RlZCBzaWxpY29uIG5hbm9jcnlzdGFscy5wZGbSFwsYGVdOUy5kYXRhTxECVgAAAAACVgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1Bvcm91cyB0aGluIGZpbG1zIGdybyNGQjMxRi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsx/N0q60AAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADN0wMUAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAUG9yb3VzIHRoaW4gZmlsbXMgZ3JvI0ZCMzFGLnBkZgAOAIgAQwBQAG8AcgBvAHUAcwAgAHQAaABpAG4AIABmAGkAbABtAHMAIABnAHIAbwB3AG4AIABmAHIAbwBtACAAcwBpAHoAZQAtAHMAZQBsAGUAYwB0AGUAZAAgAHMAaQBsAGkAYwBvAG4AIABuAGEAbgBvAGMAcgB5AHMAdABhAGwAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBvVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Qb3JvdXMgdGhpbiBmaWxtcyBncm93biBmcm9tIHNpemUtc2VsZWN0ZWQgc2lsaWNvbiBuYW5vY3J5c3RhbHMucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOANQA2QDhAzsDPQNCA00DVgNkA2gDbwN4A30DigONA58DogOnAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA6k=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0928493105001529}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.msec.2005.06.035}} @article{dementev:2009, Abstract = {We describe a new approach to the purification of single-walled carbon nanotubes (SWCNTs){,} based on the selective oxidation of carbonaceous impurities by heating at a constantly increasing temperature (i.e. dynamic oxidation) in air. Using UV-VIS-NIR spectroscopy{,} Raman spectroscopy and transmission electron microscopy (TEM) we demonstrate the superior purity of dynamically oxidized SWCNTs. In addition to being faster than other methods{,} dynamic oxidation allows for an efficient removal of carbonaceous impurities without significant loss of nanotubes. It is hypothesized that the advantages of dynamic oxidation arise from the exposure of the raw material to a wider range of temperatures than in conventional isothermal oxidation.}, Author = {Dementev, Nikolay and Osswald, Sebastian and Gogotsi, Yury and Borguet, Eric}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 21:02:45 +0000}, Doi = {10.1039/B910217E}, Issue = {42}, Journal = {J. Mater. Chem.}, Pages = {7904-7908}, Publisher = {The Royal Society of Chemistry}, Title = {Purification of carbon nanotubes by dynamic oxidation in air}, Url = {http://dx.doi.org/10.1039/B910217E}, Volume = {19}, Year = {2009}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QQFB1dGlmaWNhdGlvbiBvZiBjYXJib24gbmFub3R1YmVzIGJ5IGR5bmFtaWMgb3hpZGF0aW9uIGluIGFpci5wZGbSFwsYGVdOUy5kYXRhTxECTAAAAAACTAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1B1dGlmaWNhdGlvbiBvZiBjYXJibyNGQjMyMC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsyDNKdz1AAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADNKj9lAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAUHV0aWZpY2F0aW9uIG9mIGNhcmJvI0ZCMzIwLnBkZgAOAIIAQABQAHUAdABpAGYAaQBjAGEAdABpAG8AbgAgAG8AZgAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlAHMAIABiAHkAIABkAHkAbgBhAG0AaQBjACAAbwB4AGkAZABhAHQAaQBvAG4AIABpAG4AIABhAGkAcgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBsVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9QdXRpZmljYXRpb24gb2YgY2FyYm9uIG5hbm90dWJlcyBieSBkeW5hbWljIG94aWRhdGlvbiBpbiBhaXIucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A0QDWAN4DLgMwAzUDQANJA1cDWwNiA2sDcAN9A4ADkgOVA5oAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADnA==}, Bdsk-Url-1 = {http://dx.doi.org/10.1039/B910217E}} @article{hamzah:2008, Abstract = {Deflection behavior of several encapsulant materials under uniform pressure was studied to determine the best outer encapsulant for MEMS device. Encapsulation is needed to protect movable parts of MEMS devices during high-pressure transfer molded packaging process. The selected outer encapsulant material has to have surface deflection of less than 5 μm under 100 atm vertical loading. Deflection was simulated using Coventorware ver.2005 software and verified with calculation results obtained using shell bending theory. Screening design was used to construct a systematic approach for selecting the best encapsulant material and thickness under uniform pressure up to 100 atm. Materials considered for this study were SMC polyimide, liquid crystal polymer (LCP) carbon fiber and polyphenylene sulfide (PPS) high modulus carbon fiber. It was observed that PPS high modulus carbon fiber has deflection of less than 5 μm for all thickness and pressure variations. LCP carbon fiber is acceptable and SMC polyimide is unsuitable as high strength encapsulant. PPS high modulus carbon fiber is considered the best encapsulation material for MEMS under high-pressure packaging process due to its high strength. The generalized mathematical model and equations developed for predicting deflection of encapsulation under uniform loading could be used to determine the suitability of any candidate material and encapsulation design with similar domed shaped structure.}, Author = {Azrul Azlan Hamzah and Yusnira Husaini and Burhanuddin Yeop Majlis and Ibrahim Ahmad}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 21:04:02 +0000}, Journal = {Microsystem Technologies}, Month = {June}, Number = {6}, Pages = {761 - 766}, Title = {Selection of high strength encapsulant for MEMS devices undergoing high-pressure packaging}, Volume = {14}, Year = {2008}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QXlNlbGVjdGlvbiBvZiBoaWdoIHN0cmVuZ3RoIGVuY2Fwc3VsYW50IGZvciBNRU1TIGRldmljZXMgdW5kZXJnb2luZyBoaWdoLXByZXNzdXJlIHBhY2thZ2luZy5wZGbSFwsYGVdOUy5kYXRhTxECpgAAAAACpgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1NlbGVjdGlvbiBvZiBoaWdoIHN0ciNGQjMyNS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsyXLMf7DAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADLMmEzAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAU2VsZWN0aW9uIG9mIGhpZ2ggc3RyI0ZCMzI1LnBkZgAOAL4AXgBTAGUAbABlAGMAdABpAG8AbgAgAG8AZgAgAGgAaQBnAGgAIABzAHQAcgBlAG4AZwB0AGgAIABlAG4AYwBhAHAAcwB1AGwAYQBuAHQAIABmAG8AcgAgAE0ARQBNAFMAIABkAGUAdgBpAGMAZQBzACAAdQBuAGQAZQByAGcAbwBpAG4AZwAgAGgAaQBnAGgALQBwAHIAZQBzAHMAdQByAGUAIABwAGEAYwBrAGEAZwBpAG4AZwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCKVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TZWxlY3Rpb24gb2YgaGlnaCBzdHJlbmd0aCBlbmNhcHN1bGFudCBmb3IgTUVNUyBkZXZpY2VzIHVuZGVyZ29pbmcgaGlnaC1wcmVzc3VyZSBwYWNrYWdpbmcucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A7wD0APwDpgOoA60DuAPBA88D0wPaA+MD6AP1A/gECgQNBBIAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEFA==}} @article{fu:2002, Abstract = { Single walled carbon nanotubes (SWNTs) have been shown to be highly sensitive gas sensors. However, attaching functional groups with selective sensing functions on nanotubes without destroying the intrinsic electronic property of the nanotubes is still challenging. Here, we report a new method of coating SWNTs with a thin layer of SiO2 using 3-aminopropyltriethoxyysilane as coupling layers. The thickness of the SiO2 could be controlled at about 1 nm. The coating of SiO2 on SWNTs was confirmed by burning the SWNTs in air. The effect of 3-aminopropyltriethoxyysilane was also discussed. }, Author = {Fu, Qiang and Lu, Chenguang and Liu, Jie}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 21:04:19 +0000}, Doi = {10.1021/nl025513d}, Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl025513d}, Journal = {Nano Letters}, Number = {4}, Pages = {329-332}, Title = {Selective Coating of Single Wall Carbon Nanotubes with Thin SiO2 Layer}, Url = {http://pubs.acs.org/doi/abs/10.1021/nl025513d}, Volume = {2}, Year = {2002}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QSlNlbGVjdGl2ZSBDb2F0aW5nIG9mIFNpbmdsZSBXYWxsIENhcmJvbiBOYW5vdHViZXMgd2l0aCBUaGluIFNpTzIgTGF5ZXIucGRm0hcLGBlXTlMuZGF0YU8RAmoAAAAAAmoAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9TZWxlY3RpdmUgQ29hdGluZyBvZiAjRkIzMjYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7MmygwvfwAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAygyD3wAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFNlbGVjdGl2ZSBDb2F0aW5nIG9mICNGQjMyNi5wZGYADgCWAEoAUwBlAGwAZQBjAHQAaQB2AGUAIABDAG8AYQB0AGkAbgBnACAAbwBmACAAUwBpAG4AZwBsAGUAIABXAGEAbABsACAAQwBhAHIAYgBvAG4AIABOAGEAbgBvAHQAdQBiAGUAcwAgAHcAaQB0AGgAIABUAGgAaQBuACAAUwBpAE8AMgAgAEwAYQB5AGUAcgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB2VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TZWxlY3RpdmUgQ29hdGluZyBvZiBTaW5nbGUgV2FsbCBDYXJib24gTmFub3R1YmVzIHdpdGggVGhpbiBTaU8yIExheWVyLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOANsA4ADoA1YDWANdA2gDcQN/A4MDigOTA5gDpQOoA7oDvQPCAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA8Q=}, Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl025513d}, Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl025513d}} @article{janmohamed:2007, Abstract = {Amorphous carbon is an interesting material and its properties can be varied by tuning its diamond-like (sp3) fractions. The diamond-like fractions in an amorphous carbon films depends on the kinetic energy of the deposited carbon ions. Porous amorphous carbon thin films were deposited onto silicon substrates at room temperature in a vacuum chamber by Glancing Angle Pulsed Laser Deposition (GAPLD). Krypton fluoride (248 nm) laser pulses with duration of 15 ns and intensities of 1--20 GW/cm2 were used. In GAPLD, the angles between the substrate normal and the trajectory of the incident deposition flux are set to be almost 90$\,^{\circ}$. Porous thin films consisting of carbon nanowires with diameters less than 100 nm were formed due to a self-shadowing effect. The kinetic energies of the deposited ions, the deposition rate of the films and the size of the nanowires were investigated. The sp3 fraction of the porous carbon films produced at intensity around 20 GW/cm2 were estimated from their Raman spectra. }, Author = {R. Janmohamed and J.J. Steele and C. Scurtescu and Y.Y. Tsui}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2016-05-09 21:06:37 +0000}, Doi = {http://dx.doi.org/10.1016/j.apsusc.2007.02.157}, Issn = {0169-4332}, Journal = {Applied Surface Science}, Keywords = {Amorphous carbon}, Note = {Photon-Assisted Synthesis and Processing of Functional Materials E-MRS-H Symposium}, Number = {19}, Pages = {7964 - 7968}, Title = {Study of porous carbon thin films produced by pulsed laser deposition}, Url = {http://www.sciencedirect.com/science/article/pii/S0169433207002930}, Volume = {253}, Year = {2007}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QSVN0dWR5IG9mIHBvcm91cyBjYXJib24gdGhpbiBmaWxtcyBwcm9kdWNlZCBieSBwdWxzZWQgbGFzZXIgZGVwb3NpdGlvbi5wZGbSFwsYGVdOUy5kYXRhTxECaAAAAAACaAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1N0dWR5IG9mIHBvcm91cyBjYXJibyNGQjMyQy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsyzN0rAvAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADN0wSPAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAU3R1ZHkgb2YgcG9yb3VzIGNhcmJvI0ZCMzJDLnBkZgAOAJQASQBTAHQAdQBkAHkAIABvAGYAIABwAG8AcgBvAHUAcwAgAGMAYQByAGIAbwBuACAAdABoAGkAbgAgAGYAaQBsAG0AcwAgAHAAcgBvAGQAdQBjAGUAZAAgAGIAeQAgAHAAdQBsAHMAZQBkACAAbABhAHMAZQByACAAZABlAHAAbwBzAGkAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB1VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TdHVkeSBvZiBwb3JvdXMgY2FyYm9uIHRoaW4gZmlsbXMgcHJvZHVjZWQgYnkgcHVsc2VkIGxhc2VyIGRlcG9zaXRpb24ucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOANoA3wDnA1MDVQNaA2UDbgN8A4ADhwOQA5UDogOlA7cDugO/AAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA8E=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0169433207002930}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.apsusc.2007.02.157}} @article{campo:2007, Abstract = {SU-8 has become the favourite photoresist for high-aspect-ratio (HAR) and three-dimensional (3D) lithographic patterning due to its excellent coating, planarization and processing properties as well as its mechanical and chemical stability. However, as feature sizes get smaller and pattern complexity increases, particular difficulties and a number of material-related issues arise and need to be carefully considered. This review presents a detailed description of these effects and describes reported strategies and achieved SU-8 HAR and 3D structures up to August 2006.}, Author = {A del Campo and C Greiner}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 21:05:56 +0000}, Journal = {Journal of Micromechanics and Microengineering}, Number = {6}, Pages = {R81}, Title = {SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography}, Url = {http://stacks.iop.org/0960-1317/17/i=6/a=R01}, Volume = {17}, Year = {2007}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QSVNVLTggYSBwaG90b3Jlc2lzdCBmb3IgaGlnaC1hc3BlY3QtcmF0aW8gYW5kIDNEIHN1Ym1pY3JvbiBsaXRob2dyYXBoeS5wZGbSFwsYGVdOUy5kYXRhTxECaAAAAAACaAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1NVLTggYSBwaG90b3Jlc2lzdCBmbyNGQjMyMi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsyLJr7zeAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADJsBE+AAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAU1UtOCBhIHBob3RvcmVzaXN0IGZvI0ZCMzIyLnBkZgAOAJQASQBTAFUALQA4ACAAYQAgAHAAaABvAHQAbwByAGUAcwBpAHMAdAAgAGYAbwByACAAaABpAGcAaAAtAGEAcwBwAGUAYwB0AC0AcgBhAHQAaQBvACAAYQBuAGQAIAAzAEQAIABzAHUAYgBtAGkAYwByAG8AbgAgAGwAaQB0AGgAbwBnAHIAYQBwAGgAeQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB1VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TVS04IGEgcGhvdG9yZXNpc3QgZm9yIGhpZ2gtYXNwZWN0LXJhdGlvIGFuZCAzRCBzdWJtaWNyb24gbGl0aG9ncmFwaHkucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOANoA3wDnA1MDVQNaA2UDbgN8A4ADhwOQA5UDogOlA7cDugO/AAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA8E=}, Bdsk-Url-1 = {http://stacks.iop.org/0960-1317/17/i=6/a=R01}} @article{hongo:2003, Abstract = {We systematically studied the support materials for chemical vapor deposition of single-wall carbon nanotubes (SWNTs). Four support materials with iron catalysts were investigated: silicon dioxide, aluminum film, boehmite, and γ-alumina. The boehmite and the γ-alumina were progressively converted from evaporated aluminum film. The iron catalysts on the aluminum film, the boehmite, and the γ-alumina produced a good \{SWNT\} yield in the growth temperature range of 650--800 $\,^{\circ}$C, while the catalysts on silicon dioxide produced a poor \{SWNT\} yield. The X-ray diffraction patterns suggested that the catalyst particle sizes were kept small on these aluminum-based support materials. }, Author = {H. Hongo and F. Nihey and T. Ichihashi and Y. Ochiai and M. Yudasaka and S. Iijima}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 21:06:06 +0000}, Doi = {http://dx.doi.org/10.1016/j.cplett.2003.08.103}, Issn = {0009-2614}, Journal = {Chemical Physics Letters}, Number = {1--2}, Pages = {158 - 164}, Title = {Support materials based on converted aluminum films for chemical vapor deposition growth of single-wall carbon nanotubes}, Url = {http://www.sciencedirect.com/science/article/pii/S0009261403015471}, Volume = {380}, Year = {2003}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QfFN1cHBvcnQgbWF0ZXJpYWxzIGJhc2VkIG9uIGNvbnZlcnRlZCBhbHVtaW51bSBmaWxtcyBmb3IgY2hlbWljYWwgdmFwb3IgZGVwb3NpdGlvbiBncm93dGggb2Ygc2luZ2xlLXdhbGwgY2FyYm9uIG5hbm90dWJlcy5wZGbSFwsYGVdOUy5kYXRhTxEDAAAAAAADAAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1N1cHBvcnQgbWF0ZXJpYWxzIGJhcyNGQjMyRC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsy3OBhOlAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADOBmgFAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAU3VwcG9ydCBtYXRlcmlhbHMgYmFzI0ZCMzJELnBkZgAOAPoAfABTAHUAcABwAG8AcgB0ACAAbQBhAHQAZQByAGkAYQBsAHMAIABiAGEAcwBlAGQAIABvAG4AIABjAG8AbgB2AGUAcgB0AGUAZAAgAGEAbAB1AG0AaQBuAHUAbQAgAGYAaQBsAG0AcwAgAGYAbwByACAAYwBoAGUAbQBpAGMAYQBsACAAdgBhAHAAbwByACAAZABlAHAAbwBzAGkAdABpAG8AbgAgAGcAcgBvAHcAdABoACAAbwBmACAAcwBpAG4AZwBsAGUALQB3AGEAbABsACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCoVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TdXBwb3J0IG1hdGVyaWFscyBiYXNlZCBvbiBjb252ZXJ0ZWQgYWx1bWludW0gZmlsbXMgZm9yIGNoZW1pY2FsIHZhcG9yIGRlcG9zaXRpb24gZ3Jvd3RoIG9mIHNpbmdsZS13YWxsIGNhcmJvbiBuYW5vdHViZXMucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BDQESARoEHgQgBCUEMAQ5BEcESwRSBFsEYARtBHAEggSFBIoAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEjA==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0009261403015471}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cplett.2003.08.103}} @Article{smart:2006, author = {S.K. Smart and A.I. Cassady and G.Q. Lu and D.J. Martin}, title = {The biocompatibility of carbon nanotubes}, journal = {Carbon}, year = {2006}, volume = {44}, number = {6}, pages = {1034 - 1047}, issn = {0008-6223}, note = {Toxicology of Carbon Nanomaterials}, abstract = {Carbon nanotubes (CNT) are well-ordered, high aspect ratio allotropes of carbon. The two main variants, single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) both possess a high tensile strength, are ultra-light weight, and have excellent chemical and thermal stability. They also possess semi- and metallic-conductive properties. This startling array of features has led to many proposed applications in the biomedical field, including biosensors, drug and vaccine delivery and the preparation of unique biomaterials such as reinforced and/or conductive polymer nanocomposites. Despite an explosion of research into potential devices and applications, it is only recently that information on toxicity and biocompatibility has become available. This review presents a summary of the performance of existing carbon biomaterials and gives an outline of the emerging field of nanotoxicology, before reviewing the available and often conflicting investigations into the cytotoxicity and biocompatibility of CNT. Finally, future areas of investigation and possible solutions to current problems are proposed. }, bdsk-file-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QLFRoZSBiaW9jb21wYXRpYmlsaXR5IG9mIGNhcmJvbiBuYW5vdHViZXMucGRm0hcLGBlXTlMuZGF0YU8RAhAAAAAAAhAAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9UaGUgYmlvY29tcGF0aWJpbGl0eSAjRkIzMzEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7MxzjEZlwAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzjFt9wAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFRoZSBiaW9jb21wYXRpYmlsaXR5ICNGQjMzMS5wZGYADgBaACwAVABoAGUAIABiAGkAbwBjAG8AbQBwAGEAdABpAGIAaQBsAGkAdAB5ACAAbwBmACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBYVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGUgYmlvY29tcGF0aWJpbGl0eSBvZiBjYXJib24gbmFub3R1YmVzLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAL0AwgDKAt4C4ALlAvAC+QMHAwsDEgMbAyADLQMwA0IDRQNKAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA0w=}, bdsk-url-1 = {http://www.sciencedirect.com/science/article/pii/S000862230500607X}, bdsk-url-2 = {http://dx.doi.org/10.1016/j.carbon.2005.10.011}, date-added = {2015-08-04 18:02:04 +0000}, date-modified = {2015-08-04 21:06:49 +0000}, doi = {http://dx.doi.org/10.1016/j.carbon.2005.10.011}, keywords = {Biocompatibility}, url = {http://www.sciencedirect.com/science/article/pii/S000862230500607X}, } @article{kee:2011, Abstract = {This paper reports the model-based design and experimental performance evaluation of an all-ceramic compact counter-flow microchannel heat exchanger. Ceramic materials enable high-temperature operation that can exceed the capabilities of comparable metal heat exchangers. Additionally, ceramics may enable operation in harsh chemical environments in which metals cannot be used. Although the internal manifolds and channel layouts can be complex, a unique fabrication process called Pressure Laminated Integrated Structures (PLIS) facilitates low-cost manufacturing. The heat exchangers are tested using inlet air heated up to 750 $\,^{\circ}$C on the hot side, room-temperature inlet air on the cold side, and flow rates up to 3 × 10−3 kg s−1 (150 standard liters per minute of air). The paper reports measured performance of single units at the kilowatt scale for which heat-exchanger effectiveness up to 70% has been achieved. }, Author = {Robert J. Kee and Berkeley B. Almand and Justin M. Blasi and Benjamin L. Rosen and Marco Hartmann and Neal P. Sullivan and Huayang Zhu and Anthony R. Manerbino and Sophie Menzer and W. Grover Coors and Jerry L. Martin}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 21:06:59 +0000}, Doi = {http://dx.doi.org/10.1016/j.applthermaleng.2011.03.009}, Issn = {1359-4311}, Journal = {Applied Thermal Engineering}, Keywords = {Ceramic}, Number = {11--12}, Pages = {2004 - 2012}, Title = {The design, fabrication, and evaluation of a ceramic counter-flow microchannel heat exchanger}, Url = {http://www.sciencedirect.com/science/article/pii/S1359431111001414}, Volume = {31}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QO1RoaW4gRmlsbSBFbmNhcHN1bGF0aW9uIGJ5IEUtYmVhbSBFdmFwb3JhdGlvbiBvZiBPeGlkZXMucGRm0hcLGBlXTlMuZGF0YU8RAj4AAAAAAj4AAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9UaGluIEZpbG0gRW5jYXBzdWxhdGkjRkIzM0EucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7M6yhurTwAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAyhv/rwAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFRoaW4gRmlsbSBFbmNhcHN1bGF0aSNGQjMzQS5wZGYADgB4ADsAVABoAGkAbgAgAEYAaQBsAG0AIABFAG4AYwBhAHAAcwB1AGwAYQB0AGkAbwBuACAAYgB5ACAARQAtAGIAZQBhAG0AIABFAHYAYQBwAG8AcgBhAHQAaQBvAG4AIABvAGYAIABPAHgAaQBkAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBnVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGluIEZpbG0gRW5jYXBzdWxhdGlvbiBieSBFLWJlYW0gRXZhcG9yYXRpb24gb2YgT3hpZGVzLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDMANEA2QMbAx0DIgMtAzYDRANIA08DWANdA2oDbQN/A4IDhwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAOJ}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S1359431111001414}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.applthermaleng.2011.03.009}} @techreport{GenProps:2002vs, Author = {Virginia Semiconductor}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 21:07:51 +0000}, Institution = {Virginia Semiconductor}, Month = {June}, Title = {The General Properties of Si, Ge, SiGe, SiO2 and Si3N4}, Year = {2002}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QHGdlbmVyYWxwcm9wZXJ0aWVzU2k2MjAwMi5wZGbSFwsYGVdOUy5kYXRhTxEB3gAAAAAB3gACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwHGdlbmVyYWxwcm9wZXJ0aWVzU2k2MjAwMi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPs0TJ5ywPAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADJ54BvAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBVTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAZ2VuZXJhbHByb3BlcnRpZXNTaTYyMDAyLnBkZgAADgA6ABwAZwBlAG4AZQByAGEAbABwAHIAbwBwAGUAcgB0AGkAZQBzAFMAaQA2ADIAMAAwADIALgBwAGQAZgAPABAABwBMAHUAbgBkAFMAUwBEABIASFVzZXJzL2phc29uL0RvY3VtZW50cy9SZXNlYXJjaC9CaWJsaW9ncmFwaHkvZ2VuZXJhbHByb3BlcnRpZXNTaTYyMDAyLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAK0AsgC6ApwCngKjAq4CtwLFAskC0ALZAt4C6wLuAwADAwMIAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAAwo=}} @article{theodoropoulou:2003, Abstract = {AC impendance spectroscopy measurements as a function of the applied voltage in the range 0.5 V up to 3 V, as well as measurements of the transient current of porous silicon thin films as function of the applied voltage in the range 1V up to 9 V were performed in order to investigate the conduction mechanisms in PS. The analysis of the experimental results shows that within the range of the frequency span and time range the conductivity is attributed to ions in the early stages (up to 10--3s) of the applied voltage. The voltage dependence of the ionic conductivity is ohmic. The Poole--Frenkel conduction mechanism prevails following the establishment of high internal electric fields, which occur for times greater than 10--3s after the application of the voltage.}, Author = {Theodoropoulou, M. and Krontiras, C. A. and Xanthopoulos, N. and Georga, S. N. and Pisanias, M. N. and Tsamis, C. and Nassiopoulou, A. G.}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 21:09:31 +0000}, Doi = {10.1002/pssa.200306481}, Issn = {1521-396X}, Journal = {physica status solidi (a)}, Keywords = {73.40.Qv, 73.50.Fq, 77.55.+f}, Number = {1}, Pages = {279--283}, Publisher = {WILEY-VCH Verlag}, Title = {Transient and AC electrical conductivity of porous silicon thin films}, Url = {http://dx.doi.org/10.1002/pssa.200306481}, Volume = {197}, Year = {2003}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QSVRyYW5zaWVudCBhbmQgQUMgZWxlY3RyaWNhbCBjb25kdWN0aXZpdHkgb2YgcG9yb3VzIHNpbGljb24gdGhpbiBmaWxtcy5wZGbSFwsYGVdOUy5kYXRhTxECaAAAAAACaAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1RyYW5zaWVudCBhbmQgQUMgZWxlYyNGQjMzQy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPszzN0rBcAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADN0wS8AAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVHJhbnNpZW50IGFuZCBBQyBlbGVjI0ZCMzNDLnBkZgAOAJQASQBUAHIAYQBuAHMAaQBlAG4AdAAgAGEAbgBkACAAQQBDACAAZQBsAGUAYwB0AHIAaQBjAGEAbAAgAGMAbwBuAGQAdQBjAHQAaQB2AGkAdAB5ACAAbwBmACAAcABvAHIAbwB1AHMAIABzAGkAbABpAGMAbwBuACAAdABoAGkAbgAgAGYAaQBsAG0AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB1VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UcmFuc2llbnQgYW5kIEFDIGVsZWN0cmljYWwgY29uZHVjdGl2aXR5IG9mIHBvcm91cyBzaWxpY29uIHRoaW4gZmlsbXMucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOANoA3wDnA1MDVQNaA2UDbgN8A4ADhwOQA5UDogOlA7cDugO/AAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA8E=}, Bdsk-Url-1 = {http://dx.doi.org/10.1002/pssa.200306481}} @article{najafi:2006, Abstract = {Treatment of multi walled carbon nanotubes (MWNTs) with UV-ozone (UVO) under ambient conditions has a dramatic effect on the nature of the surface oxidation, leading to the production of quinines, esters, and hydroxyl functional groups. Using a 60 min exposure time, the solubility in polar organic solvents was increased by as much as 320%, compared to raw carbon nanotubes (CNTs), which is comparable to the effect of a vigorous acid treatment. Interestingly, the \{UVO\} exposure had no effect on the aspect ratio of the CNTs. The results of thermogravimetric analyses suggest that \{UVO\} treated \{CNTs\} have almost the same thermal stability as raw CNTs, suggesting that an insignificant number of defects are produced during the ozonation procedure. Moreover, surface resistance measurements showed that, due to their preserved higher aspect ratio, \{UVO\} modified \{CNTs\} induced a higher electrical conductivity in polymer matrices. These findings clearly demonstrate that a solvent-free \{UVO\} treatment can produce solvent-dispersible \{CNT\} powders without accompanying morphological defects, offering the potential for producing a versatile \{CNT\} solution. }, Author = {Ebrahim Najafi and Jae-Yong Kim and Song-Hee Han and Kwanwoo Shin}, Date-Added = {2015-08-04 18:02:04 +0000}, Date-Modified = {2015-08-04 21:10:02 +0000}, Doi = {http://dx.doi.org/10.1016/j.colsurfa.2005.11.074}, Issn = {0927-7757}, Journal = {Colloids and Surfaces A: Physicochemical and Engineering Aspects}, Keywords = {Solubility improvement}, Note = {A selection of papers from the 11th International Conference on Organized Molecular Films (LB11), June 26-30, 2005, Sapporo}, Number = {0}, Pages = {373 - 378}, Title = {UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion}, Url = {http://www.sciencedirect.com/science/article/pii/S0927775705009222}, Volume = {284--285}, Year = {2006}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QX1VWLW96b25lIHRyZWF0bWVudCBvZiBtdWx0aS13YWxsZWQgY2FyYm9uIG5hbm90dWJlcyBmb3IgZW5oYW5jZWQgb3JnYW5pYyBzb2x2ZW50IGRpc3BlcnNpb24ucGRm0hcLGBlXTlMuZGF0YU8RAqoAAAAAAqoAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9VVi1vem9uZSB0cmVhdG1lbnQgb2YjRkIzM0QucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7M9zfe67QAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzfgPTQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFVWLW96b25lIHRyZWF0bWVudCBvZiNGQjMzRC5wZGYADgDAAF8AVQBWAC0AbwB6AG8AbgBlACAAdAByAGUAYQB0AG0AZQBuAHQAIABvAGYAIABtAHUAbAB0AGkALQB3AGEAbABsAGUAZAAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlAHMAIABmAG8AcgAgAGUAbgBoAGEAbgBjAGUAZAAgAG8AcgBnAGEAbgBpAGMAIABzAG8AbAB2AGUAbgB0ACAAZABpAHMAcABlAHIAcwBpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCLVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9VVi1vem9uZSB0cmVhdG1lbnQgb2YgbXVsdGktd2FsbGVkIGNhcmJvbiBuYW5vdHViZXMgZm9yIGVuaGFuY2VkIG9yZ2FuaWMgc29sdmVudCBkaXNwZXJzaW9uLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDwAPUA/QOrA60DsgO9A8YD1APYA98D6APtA/oD/QQPBBIEFwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQZ}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0927775705009222}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.colsurfa.2005.11.074}} @inproceedings{abdellah:2011, Abstract = {A significant step towards commercialization of novel CNT electronics involves the development of large-area and high-throughput processes for the fabrication of high quality CNT films. In this article, we demonstrate a reliable and reproducible spray deposition process for the fabrication of highly uniform CNT films exhibiting state-of-the-art performance. CNT films with average surface roughness as low as 5.8 nm, and conductivities reaching 4000 S/cm for films of 45 nm thickness, are presented. Incorporating this kind of high quality films as resistive networks for gas detection in ammonia (NH3) gas sensors, yields device sensitivities reaching 5% at a concentration of 100 ppm for the short exposure interval of only 60 sec. This high NH3 sensitivity is achieved without any further functionalization of the CNT film, thereby maintaining a simple fabrication process.}, Author = {Abdellah, A and Yaqub, A and Ferrari, C. and Fabel, B. and Lugli, P. and Scarpa, G.}, Booktitle = {Nanotechnology (IEEE-NANO), 2011 11th IEEE Conference on}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 21:05:12 +0000}, Keywords = {ammonia;carbon nanotubes;chemical sensors;electrical conductivity;nanofabrication;nanosensors;spray coatings;surface roughness;thin films;C;NH3;ammonia gas sensors;device sensitivity;electrical conductivity;exposure interval;film functionalization;gas detection;gas sensing application;high-throughput process;nanotube electronics;reproducible spray deposition process;resistive networks;size 45 nm;surface roughness;time 60 s;uniform carbon nanotube films;Conductivity;Fabrication;Optical films;Resistance;Sensitivity;Substrates;carbon nanotubes;gas sensors;solution processing;spray deposition;thin-films}, Month = {Aug}, Pages = {1118-1123}, Title = {Spray deposition of highly uniform CNT films and their application in gas sensing}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QVlNwcmF5IERlcG9zaXRpb24gb2YgSGlnaGx5IFVuaWZvcm0gQ05UIEZpbG1zICBhbmQgVGhlaXIgQXBwbGljYXRpb24gaW4gR2FzIFNlbnNpbmcucGRm0hcLGBlXTlMuZGF0YU8RAo4AAAAAAo4AAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9TcHJheSBEZXBvc2l0aW9uIG9mIEgjRkIzMkEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7Mq0BEYyQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA0BFtKQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFNwcmF5IERlcG9zaXRpb24gb2YgSCNGQjMyQS5wZGYADgCuAFYAUwBwAHIAYQB5ACAARABlAHAAbwBzAGkAdABpAG8AbgAgAG8AZgAgAEgAaQBnAGgAbAB5ACAAVQBuAGkAZgBvAHIAbQAgAEMATgBUACAARgBpAGwAbQBzACAAIABhAG4AZAAgAFQAaABlAGkAcgAgAEEAcABwAGwAaQBjAGEAdABpAG8AbgAgAGkAbgAgAEcAYQBzACAAUwBlAG4AcwBpAG4AZwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCCVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TcHJheSBEZXBvc2l0aW9uIG9mIEhpZ2hseSBVbmlmb3JtIENOVCBGaWxtcyAgYW5kIFRoZWlyIEFwcGxpY2F0aW9uIGluIEdhcyBTZW5zaW5nLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOcA7AD0A4YDiAONA5gDoQOvA7MDugPDA8gD1QPYA+oD7QPyAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA/Q=}} @article{akapo:1999, Abstract = {Gas chromatography has proven to be a very useful analytical technique for in situ analysis of extraterrestrial environments as demonstrated by its successful operation on spacecraft missions to Mars and Venus. The technique is also one of the six scientific instruments aboard the Huygens probe to explore Titan's atmosphere and surface. A review of gas chromatography in previous space missions and some recent developments in the current environment of fiscal constraints and payload size limitations are presented. }, Author = {S.O Akapo and J.-M.D Dimandja and D.R Kojiro and J.R Valentin and G.C Carle}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:41:24 +0000}, Doi = {http://dx.doi.org/10.1016/S0021-9673(98)00947-9}, Issn = {0021-9673}, Journal = {Journal of Chromatography A}, Keywords = {Hydrocarbons}, Number = {1--2}, Pages = {147-162}, Title = {Gas chromatography in space}, Url = {http://www.sciencedirect.com/science/article/pii/S0021967398009479}, Volume = {843}, Year = {1999}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QH0dhcyBjaHJvbWF0b2dyYXBoeSBpbiBzcGFjZS5wZGbSFwsYGVdOUy5kYXRhTxEB6gAAAAAB6gACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0dhcyBjaHJvbWF0b2dyYXBoeSBpbiBzcGFjZS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsurOpu7YAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADOp1FIAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAR2FzIGNocm9tYXRvZ3JhcGh5IGluIHNwYWNlLnBkZgAOAEAAHwBHAGEAcwAgAGMAaAByAG8AbQBhAHQAbwBnAHIAYQBwAGgAeQAgAGkAbgAgAHMAcABhAGMAZQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBLVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9HYXMgY2hyb21hdG9ncmFwaHkgaW4gc3BhY2UucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOALAAtQC9AqsCrQKyAr0CxgLUAtgC3wLoAu0C+gL9Aw8DEgMXAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAAxk=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0021967398009479}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0021-9673(98)00947-9}} @article{aten:2011, Abstract = {This paper investigates the accumulation and release of deoxyribonucleic acid (DNA) relative to a surface micromachined silicon lance. The lance is a critical element of nanoinjection, a proposed approach for injecting foreign DNA into living cells. The quantity of DNA accumulated on the nanoinjector lance and the speed at which it can be moved on and off the lance are essential to the proposed system's function. Prototype nanoinjector lances were fabricated using a multilayer surface micromachining process. DNA stained with the fluorescent dye 4', 6-diamidino-2-phenylidole dihydrochloride was visualized using fluorescent illumination as the DNA was accumulated on and released from the tips of microelectromechanical systems (MEMS) microlances using a 1.5-V dc source. In 5 min 46 s, the lance accumulated over 32 000 DNA molecules from a dilute DNA solution. The lance then released over 6200 DNA molecules within 6 s. Finally, the nanoinjector lance was used to inject a reporter gene encoding a red fluorescent protein into a mouse embryo, resulting in expression of the gene. The nanoinjector lance represents an important and significant step in the development of a self-contained MEMS-based DNA injection system.}, Author = {Aten, Q.T. and Jensen, Brian D. and Burnett, S.H. and Howell, L.L.}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:39:14 +0000}, Journal = {Microelectromechanical Systems, Journal of}, Keywords = {DNA;bioMEMS;bioelectric potentials;cellular biophysics;drug delivery systems;fluorescence;gene therapy;molecular biophysics;nanomedicine;proteins;silicon;4',6-diamidino-2-phenylidole dihydrochloride;DNA injection system;Si;deoxyribonucleic acid;electrostatic accumulation;electrostatic release;embryo;fluorescent dye stain;fluorescent illumination;gene expression;living cells;microelectromechanical systems;micromachined lance;multilayer surface micromachining;nanoinjection;prototype nanoinjector lance;red fluorescent protein;reporter gene encoding;self-contained MEMS;surface micromachined silicon lance;Cells (biology);DNA;Electrodes;Embryo;Genetics;Micromechanical devices;Nanobioscience;Biological cells;deoxyribonucleic acid (DNA);gene delivery;nanoinjection}, Number = {6}, Pages = {1449-1461}, Title = {Electrostatic Accumulation and Release of DNA Using a Micromachined Lance}, Volume = {20}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QTUVsZWN0cm9zdGF0aWMgQWNjdW11bGF0aW9uIGFuZCBSZWxlYXNlIG9mIEROQSBVc2luZyBhIE1pY3JvbWFjaGluZWQgTGFuY2UucGRm0hcLGBlXTlMuZGF0YU8RAnQAAAAAAnQAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9FbGVjdHJvc3RhdGljIEFjY3VtdWwjRkIyRTAucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7Lgzuzd8AAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzu1AYAAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEVsZWN0cm9zdGF0aWMgQWNjdW11bCNGQjJFMC5wZGYADgCcAE0ARQBsAGUAYwB0AHIAbwBzAHQAYQB0AGkAYwAgAEEAYwBjAHUAbQB1AGwAYQB0AGkAbwBuACAAYQBuAGQAIABSAGUAbABlAGEAcwBlACAAbwBmACAARABOAEEAIABVAHMAaQBuAGcAIABhACAATQBpAGMAcgBvAG0AYQBjAGgAaQBuAGUAZAAgAEwAYQBuAGMAZQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB5VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9FbGVjdHJvc3RhdGljIEFjY3VtdWxhdGlvbiBhbmQgUmVsZWFzZSBvZiBETkEgVXNpbmcgYSBNaWNyb21hY2hpbmVkIExhbmNlLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDeAOMA6wNjA2UDagN1A34DjAOQA5cDoAOlA7IDtQPHA8oDzwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAPR}} @article{aten:2012, Annote = {No extra fluid injected into the cell using a solid lance. The cross-section of the cell damage is small with nanoinjection. Transport transgene copies to the pronucleus and maintain viability. }, Author = {Aten, Quentin T. and Jensen, Brian D. and Tamowski, Susan and Wilson, Aubrey M. and Howell, Larry L. and Burnett, Sandra H.}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2016-04-28 18:24:11 +0000}, Journal = {Transgenic Research}, Keywords = {Nanoinjection; Microinjection; Transgenic; DNA transfer; MEMS}, Number = {6}, Pages = {1279-1290}, Title = {Nanoinjection: pronuclear DNA delivery using a charged lance}, Volume = {21}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QQE5hbm9pbmplY3Rpb24tIHByb251Y2xlYXIgRE5BIGRlbGl2ZXJ5IHVzaW5nIGEgY2hhcmdlZCBsYW5jZS5wZGbSFwsYGVdOUy5kYXRhTxECTAAAAAACTAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH05hbm9pbmplY3Rpb24tIHByb251IzlGQjVGRi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACftf/O7y8xAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADO75GhAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToATmFub2luamVjdGlvbi0gcHJvbnUjOUZCNUZGLnBkZgAOAIIAQABOAGEAbgBvAGkAbgBqAGUAYwB0AGkAbwBuAC0AIABwAHIAbwBuAHUAYwBsAGUAYQByACAARABOAEEAIABkAGUAbABpAHYAZQByAHkAIAB1AHMAaQBuAGcAIABhACAAYwBoAGEAcgBnAGUAZAAgAGwAYQBuAGMAZQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBsVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9OYW5vaW5qZWN0aW9uLSBwcm9udWNsZWFyIEROQSBkZWxpdmVyeSB1c2luZyBhIGNoYXJnZWQgbGFuY2UucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A0QDWAN4DLgMwAzUDQANJA1cDWwNiA2sDcAN9A4ADkgOVA5oAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADnA==}} @phdthesis{aten:2011_phdThesis, Abstract = {A novel method for charged macromolecule delivery, called nanoinjection, has been developed at Brigham Young University. Nanoinjection combines micro-fabrication technology, mechanism design, and nano-scale electrical phenomenon to transport exogenous DNA across cell membranes on a nano-featured lance. DNA is electrically accumulated on the lance, precision movements of microelectromechanical systems (MEMS) physically insert the lance into cell, and DNA is electrically released from the lance into the cell. Penetration into the cell is achieved through a two-phase, self-reconfiguring metamorphic mechanism. The surface-micromachined, metamorphic nanoinjector mechanism elevates the lance above the fabrication substrate, then translates in-plane at a constant height as the lance penetrates the cell membranes. In-vitro studies indicate no statistical difference in viability between nanoinjected and untreated mouse zygotes. Pronuclear nanoinjection experiments on mouse zygotes, using microinjection as a control, demonstrate integration and expression of a nanoinjected transgene, and higher rates of zygote survival and pup births than the microinjection control. A new compliant mechanism analysis method, the minimization of potential energy method (MinPE method) is presented to model the equilibrium position of compliant mechanisms with more degrees of freedom (DOF) than inputs, such as a fully-compliant nanoinjector. The MinPE method position and force predictions agree with the method of virtual work and non-linear finite element analyses of under-actuated and underconstrained compliant mechanisms. Additionally, a performance-based comparison is made between quadratic shell finite elements elements and 3-D quadratic solid elements for modeling geometrically non-linear spacial deflection of thin-film compliant mechanisms. The comparison's results suggest the more computationally efficient quadratic shell elements can be used to model spatially deforming thin-film compliant mechanisms. Finally, this dissertation presents preliminary results for a proposed method of DNA transfer called cytoplasm-to-pronucleus nanoinjection. By placing a DNA coated lance into the cytoplasm of a mouse zygote and applying a voltage pulse of sufficient magnitude and duration, pores may open in the pronuclear membranes and DNA may be electrophoretically repelled from the lance. If effective, this process could result in transgenes without having to visualize and physically penetrate into the pronucleus. While embryo survival has been demonstrated under a variety of injection conditions, further study is needed to increase the process' consistency, and to determine if cytoplasm-to-pronucleus nanoinjection can generate transgenic animals.}, Author = {Aten, Quentin Theodore}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:35:27 +0000}, Keywords = {nanoinjection, MEMS, DNA, mice, transgenic, lance}, School = {Brigham Young University}, Title = {Devices and Methods for Electro-Physical Transport of DNA Across Cell Membranes}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUkRldmljZXNfYW5kX01ldGhvZHNfZm9yX0VsZWN0cm9QaHlzaWNhbF9UcmFuc3BvcnRfb2ZfRE5BX0Fjcm9zc19DZWxsX01lbWJyYW5lcy5wZGbSFwsYGVdOUy5kYXRhTxECggAAAAACggACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0RldmljZXNfYW5kX01ldGhvZHNfZiNGQjJENy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPstfO7zCwAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADO75MgAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToARGV2aWNlc19hbmRfTWV0aG9kc19mI0ZCMkQ3LnBkZgAOAKYAUgBEAGUAdgBpAGMAZQBzAF8AYQBuAGQAXwBNAGUAdABoAG8AZABzAF8AZgBvAHIAXwBFAGwAZQBjAHQAcgBvAFAAaAB5AHMAaQBjAGEAbABfAFQAcgBhAG4AcwBwAG8AcgB0AF8AbwBmAF8ARABOAEEAXwBBAGMAcgBvAHMAcwBfAEMAZQBsAGwAXwBNAGUAbQBiAHIAYQBuAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB+VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9EZXZpY2VzX2FuZF9NZXRob2RzX2Zvcl9FbGVjdHJvUGh5c2ljYWxfVHJhbnNwb3J0X29mX0ROQV9BY3Jvc3NfQ2VsbF9NZW1icmFuZXMucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A4wDoAPADdgN4A30DiAORA58DowOqA7MDuAPFA8gD2gPdA+IAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD5A==}} @article{bonitz:2004, Author = {J. Bonitz and S.E. Schulz and T. Gessner}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 21:09:41 +0000}, Doi = {http://dx.doi.org/10.1016/j.mee.2004.07.025}, Issn = {0167-9317}, Journal = {Microelectronic Engineering}, Keywords = {Aerogel}, Note = {Materials for Advanced Metallization 2004}, Number = {1--4}, Pages = {82 - 88}, Title = {Ultra thin \{CVD\} TiN layers as diffusion barrier films on porous low-k materials}, Url = {http://www.sciencedirect.com/science/article/pii/S0167931704003740}, Volume = {76}, Year = {2004}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUlVsdHJhIHRoaW4gQ1ZEIFRpTiBsYXllcnMgYXMgZGlmZnVzaW9uIGJhcnJpZXIgZmlsbXMgb24gcG9yb3VzIGxvdy1rIG1hdGVyaWFscy5wZGbSFwsYGVdOUy5kYXRhTxECggAAAAACggACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1VsdHJhIHRoaW4gQ1ZEIFRpTiBsYSNGQjMzRS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsz7PWGAeAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADPWLR+AAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVWx0cmEgdGhpbiBDVkQgVGlOIGxhI0ZCMzNFLnBkZgAOAKYAUgBVAGwAdAByAGEAIAB0AGgAaQBuACAAQwBWAEQAIABUAGkATgAgAGwAYQB5AGUAcgBzACAAYQBzACAAZABpAGYAZgB1AHMAaQBvAG4AIABiAGEAcgByAGkAZQByACAAZgBpAGwAbQBzACAAbwBuACAAcABvAHIAbwB1AHMAIABsAG8AdwAtAGsAIABtAGEAdABlAHIAaQBhAGwAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB+VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9VbHRyYSB0aGluIENWRCBUaU4gbGF5ZXJzIGFzIGRpZmZ1c2lvbiBiYXJyaWVyIGZpbG1zIG9uIHBvcm91cyBsb3ctayBtYXRlcmlhbHMucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A4wDoAPADdgN4A30DiAORA58DowOqA7MDuAPFA8gD2gPdA+IAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD5A==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0167931704003740}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.mee.2004.07.025}} @article{bottino:2014, Abstract = {Abstract The synthesis of thin, defect-free and long lifetime Pd-based membranes for \{H2\} separation is still a challenging task. A porous support is necessary in order to give mechanical stability to very thin layers. Sintered porous metal supports are very promising candidates having numerous advantages over the widely studied ceramic supports. The deposition of a non-metallic barrier between the stainless steel support and the Pd dense layer can prevent the intermetallic diffusion of elements from the support to the Pd-based layer and improve the characteristics (e.g. pore size, topography) of the support surface which actually limits the minimum Pd thickness required in order to obtain high selectivity membranes. In the present paper, the deposition of intermetallic barrier layers made of alumina obtained via sol gel technique was investigated using commercial porous stainless steel supports, both with their original roughness and after a mechanical smoothing treatment. The quality of the deposited alumina layer was related to the surface characteristics of the supports, sol composition (aluminium and additive content) and viscosity. Pd dense layers were grown via electroless plating technique on the alumina barrier by activation with an additional Pd doped thin alumina layer. }, Author = {A. Bottino and M. Broglia and G. Capannelli and A. Comite and P. Pinacci and M. Scrignari and F. Azzurri}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 21:04:57 +0000}, Doi = {http://dx.doi.org/10.1016/j.ijhydene.2013.11.096}, Issn = {0360-3199}, Journal = {International Journal of Hydrogen Energy}, Keywords = {Intermetallic barrier}, Number = {9}, Pages = {4717 - 4724}, Title = {Solgel synthesis of thin alumina layers on porous stainless steel supports for high temperature palladium membranes}, Url = {http://www.sciencedirect.com/science/article/pii/S0360319913028590}, Volume = {39}, Year = {2014}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QeFNvbGVnZWwgc3ludGhlc2lzIG9mIHRoaW4gYWx1bWluYSBsYXllcnMgb24gcG9yb3VzIHN0YWlubGVzcyBzdGVlbCBzdXBwb3J0cyBmb3IgaGlnaCB0ZW1wZXJhdHVyZSBwYWxsYWRpdW0gbWVtYnJhbmVzLnBkZtIXCxgZV05TLmRhdGFPEQL0AAAAAAL0AAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfU29sZWdlbCBzeW50aGVzaXMgb2YgI0ZCMzI5LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+zKc/kZyAAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM/ku4AAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBTb2xlZ2VsIHN5bnRoZXNpcyBvZiAjRkIzMjkucGRmAA4A8gB4AFMAbwBsAGUAZwBlAGwAIABzAHkAbgB0AGgAZQBzAGkAcwAgAG8AZgAgAHQAaABpAG4AIABhAGwAdQBtAGkAbgBhACAAbABhAHkAZQByAHMAIABvAG4AIABwAG8AcgBvAHUAcwAgAHMAdABhAGkAbgBsAGUAcwBzACAAcwB0AGUAZQBsACAAcwB1AHAAcABvAHIAdABzACAAZgBvAHIAIABoAGkAZwBoACAAdABlAG0AcABlAHIAYQB0AHUAcgBlACAAcABhAGwAbABhAGQAaQB1AG0AIABtAGUAbQBiAHIAYQBuAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCkVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Tb2xlZ2VsIHN5bnRoZXNpcyBvZiB0aGluIGFsdW1pbmEgbGF5ZXJzIG9uIHBvcm91cyBzdGFpbmxlc3Mgc3RlZWwgc3VwcG9ydHMgZm9yIGhpZ2ggdGVtcGVyYXR1cmUgcGFsbGFkaXVtIG1lbWJyYW5lcy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgEJAQ4BFgQOBBAEFQQgBCkENwQ7BEIESwRQBF0EYARyBHUEegAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAR8}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0360319913028590}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.ijhydene.2013.11.096}} @article{chen:2006, Abstract = {Direct formation of structures that comprise freestanding \{CNTs\} connected to two surfaces was, thus far, not possible. In this article we report a novel approach to grow structured, highly oriented carbon nanotubes that are vertically aligned between a substrate and a massive cover. Growth is feasible at pre-determined, e.g., lithographically defined sites on metallic, semiconducting, or glass substrates. A novel, sandwiched catalyst structure and microwave plasma chemical vapor deposition (CVD) led to the formation of freestanding, small diameter carbon nanotubes. Our new technology offers a simple and scalable pathway to create 3D structured nanotube-based two-terminal electronic devices, device arrays, sensors and corresponding electronic circuits. }, Author = {Zexiang Chen and Jacqueline Merikhi and Irmgard Koehler and Peter K. Bachmann}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 21:03:52 +0000}, Doi = {http://dx.doi.org/10.1016/j.diamond.2005.07.024}, Issn = {0925-9635}, Journal = {Diamond and Related Materials}, Number = {1}, Pages = {104 - 108}, Title = {Sandwich growth of carbon nanotubes}, Url = {http://www.sciencedirect.com/science/article/pii/S0925963505002773}, Volume = {15}, Year = {2006}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QJ1NhbmR3aWNoIGdyb3d0aCBvZiBjYXJib24gbmFub3R1YmVzLnBkZtIXCxgZV05TLmRhdGFPEQICAAAAAAICAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfU2FuZHdpY2ggZ3Jvd3RoIG9mIGNhI0ZCMzI0LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+zJM5f0pIAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM5gJvIAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBTYW5kd2ljaCBncm93dGggb2YgY2EjRkIzMjQucGRmAA4AUAAnAFMAYQBuAGQAdwBpAGMAaAAgAGcAcgBvAHcAdABoACAAbwBmACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBTVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TYW5kd2ljaCBncm93dGggb2YgY2FyYm9uIG5hbm90dWJlcy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4AuAC9AMUCywLNAtIC3QLmAvQC+AL/AwgDDQMaAx0DLwMyAzcAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADOQ==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0925963505002773}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.diamond.2005.07.024}} @article{chiang:2011, Abstract = {We present the wall number control of carbon nanotube (CNT) forests grown on metal catalyst films in a water-assisted chemical vapor deposition (CVD) by measuring the sheet resistances of metal catalyst films. Catalyst film thicknesses and thickness variations are monitored using a 2-point-based electrical characterization methodology. The electrical characterization and high-resolution transmission electron microscopy analysis showed that single-, double-, and triple-walled \{CNT\} forests were grown on iron (Fe) catalyst films with mean sheet resistances of 646.63, 75.40, and 27.84 MΩ/sq, respectively. The average wall number and outer diameter of \{CNT\} forests were found to linearly depend on the logarithm of the mean sheet resistances of Fe catalyst films. }, Author = {Wei-Hung Chiang and Don N. Futaba and Motoo Yumura and Kenji Hata}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:41:48 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2011.06.015}, Issn = {0008-6223}, Journal = {Carbon}, Number = {13}, Pages = {4368 - 4375}, Title = {Growth control of single-walled, double-walled, and triple-walled carbon nanotube forests by a priori electrical resistance measurement of catalyst films}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622311004507}, Volume = {49}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QnUdyb3d0aCBjb250cm9sIG9mIHNpbmdsZS13YWxsZWQsIGRvdWJsZS13YWxsZWQsIGFuZCB0cmlwbGUtd2FsbGVkIGNhcmJvbiBuYW5vdHViZSBmb3Jlc3RzIGJ5IGEgcHJpb3JpIGVsZWN0cmljYWwgcmVzaXN0YW5jZSBtZWFzdXJlbWVudCBvZiBjYXRhbHlzdCBmaWxtcy5wZGbSFwsYGVdOUy5kYXRhTxEDZAAAAAADZAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0dyb3d0aCBjb250cm9sIG9mIHNpbiNGQjJFQy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsuzRjWW9AAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADRjbodAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAR3Jvd3RoIGNvbnRyb2wgb2Ygc2luI0ZCMkVDLnBkZgAOATwAnQBHAHIAbwB3AHQAaAAgAGMAbwBuAHQAcgBvAGwAIABvAGYAIABzAGkAbgBnAGwAZQAtAHcAYQBsAGwAZQBkACwAIABkAG8AdQBiAGwAZQAtAHcAYQBsAGwAZQBkACwAIABhAG4AZAAgAHQAcgBpAHAAbABlAC0AdwBhAGwAbABlAGQAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQAgAGYAbwByAGUAcwB0AHMAIABiAHkAIABhACAAcAByAGkAbwByAGkAIABlAGwAZQBjAHQAcgBpAGMAYQBsACAAcgBlAHMAaQBzAHQAYQBuAGMAZQAgAG0AZQBhAHMAdQByAGUAbQBlAG4AdAAgAG8AZgAgAGMAYQB0AGEAbAB5AHMAdAAgAGYAaQBsAG0AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgDJVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Hcm93dGggY29udHJvbCBvZiBzaW5nbGUtd2FsbGVkLCBkb3VibGUtd2FsbGVkLCBhbmQgdHJpcGxlLXdhbGxlZCBjYXJib24gbmFub3R1YmUgZm9yZXN0cyBieSBhIHByaW9yaSBlbGVjdHJpY2FsIHJlc2lzdGFuY2UgbWVhc3VyZW1lbnQgb2YgY2F0YWx5c3QgZmlsbXMucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAS4BMwE7BKMEpQSqBLUEvgTMBNAE1wTgBOUE8gT1BQcFCgUPAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABRE=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622311004507}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2011.06.015}} @article{contreras:2013_dtg, Abstract = {The use of negative axial thermal gradients in gas chromatography (TGGC) has intrigued chromatographers since the early 1950s because of the dramatic narrowing of analyte bands and concomitant raised expectations for improving resolving power. However, technical difficulties experienced in construction of TGGC instrumentation and control of the temperature along the column have made its implementation and, hence, detailed study difficult. In this work, we describe a TGGC system capable of rapidly producing and varying thermal gradient profiles by simultaneous use of resistive heating and convective cooling. Heating and cooling rates as high as 1200 and 2500 $\,^{\circ}$C/min, respectively, allowed the creation of dynamic temperature gradients. The separation characteristics of TGGC with dynamically changing temperature gradients are demonstrated. A gradient velocity of 2.22 cm/s provided repetitive separations every 45 s, and injection band widths of 45 s duration were transformed into approximately 1-s peak widths. Peak tailing for basic compounds was nearly eliminated. Dynamic TGGC allows unique control over separations, oftentimes improving resolution and detection signal-to-noise. Thermally controlled elution in TGGC holds great promise for performing smart separations in which the separation time window is most efficiently utilized, and optimized separations can be quickly achieved. Rapid adjustment of relative compound elution can be used to greatly reduce GC method development time.}, Annote = {"the stationary phase loading capacity (i.e., stationary phase thickness) is expected to play a role in the minimum peak width achievable." What is this and how might it play a role. Is there a theoretical limit to gradient steepness? Does this influence needed resolution? What is a compound with a "wide polarity"?}, Author = {Jesse A. Contreras and Anzi Wang and Alan L. Rockwood and H. Dennis Tolley and Milton L. Lee}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:58:07 +0000}, Journal = {Journal of Chromatography A}, Number = {0}, Pages = {143 - 151}, Title = {Dynamic thermal gradient gas chromatography}, Volume = {1302}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QL0R5bmFtaWMgdGhlcm1hbCBncmFkaWVudCBnYXMgY2hyb21hdG9ncmFwaHkucGRm0hcLGBlXTlMuZGF0YU8RAhoAAAAAAhoAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9EeW5hbWljIHRoZXJtYWwgZ3JhZGkjRkIyREEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7LazkOT0QAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzkPoMQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AER5bmFtaWMgdGhlcm1hbCBncmFkaSNGQjJEQS5wZGYADgBgAC8ARAB5AG4AYQBtAGkAYwAgAHQAaABlAHIAbQBhAGwAIABnAHIAYQBkAGkAZQBuAHQAIABnAGEAcwAgAGMAaAByAG8AbQBhAHQAbwBnAHIAYQBwAGgAeQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBbVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9EeW5hbWljIHRoZXJtYWwgZ3JhZGllbnQgZ2FzIGNocm9tYXRvZ3JhcGh5LnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDAAMUAzQLrAu0C8gL9AwYDFAMYAx8DKAMtAzoDPQNPA1IDVwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAANZ}} @article{contreras:2013_psg, Abstract = {When axial temperature gradients are applied in gas chromatography (GC), i.e., ``thermal gradient GC'' (TGGC), the temperature changes both in time and position, T(t,L), along the column, allowing unique control of the movement and elution of sample components. One method of performing \{TGGC\} involves introducing a sample into a column with a preset decreasing temperature gradient along its length, waiting for a short time until the sample separates along the gradient, and then raising the temperature to sweep all of the compounds out of the column and into the detector (i.e., ``peak sweeping''). This method of operation is demonstrated here using a simple laboratory apparatus based on simultaneous resistive heating and convective cooling. An experimental comparison between isothermal \{GC\} (ITGC), temperature programmed \{GC\} (TPGC) and \{TGGC\} shows that \{TGGC\} is essentially equivalent in performance to \{TPGC\} operation when using the same column length (peak capacity production rate of 106, 381 and 469 min−1, respectively); however, narrower peaks and higher signal-to-noise are achieved in TGGC. Furthermore, \{TGGC\} helps to minimize band broadening and peak tailing that arise from column adsorption and less than perfect sample injection. The low thermal mass of the \{TGGC\} system allows rapid column heating (4000 $\,^{\circ}$C/min) and cooling (3500 $\,^{\circ}$C/min) for selective separation (i.e., ``peak gating'') of compounds in a mixture without sacrificing the resolution of earlier or later eluting compounds. }, Author = {Jesse A. Contreras and Alan L. Rockwood and H. Dennis Tolley and Milton L. Lee}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:57:44 +0000}, Doi = {http://dx.doi.org/10.1016/j.chroma.2013.01.010}, Issn = {0021-9673}, Journal = {Journal of Chromatography A}, Keywords = {Peak gating}, Number = {0}, Pages = {160 - 165}, Title = {Peak sweeping and gating using thermal gradient gas chromatography}, Url = {http://www.sciencedirect.com/science/article/pii/S0021967313000502}, Volume = {1278}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QRlBlYWsgc3dlZXBpbmcgYW5kIGdhdGluZyB1c2luZyB0aGVybWFsIGdyYWRpZW50IGdhcyBjaHJvbWF0b2dyYXBoeS5wZGbSFwsYGVdOUy5kYXRhTxECXgAAAAACXgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1BlYWsgc3dlZXBpbmcgYW5kIGdhdCNGQjMxQy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsxzOQ5POAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADOQ+guAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAUGVhayBzd2VlcGluZyBhbmQgZ2F0I0ZCMzFDLnBkZgAOAI4ARgBQAGUAYQBrACAAcwB3AGUAZQBwAGkAbgBnACAAYQBuAGQAIABnAGEAdABpAG4AZwAgAHUAcwBpAG4AZwAgAHQAaABlAHIAbQBhAGwAIABnAHIAYQBkAGkAZQBuAHQAIABnAGEAcwAgAGMAaAByAG8AbQBhAHQAbwBnAHIAYQBwAGgAeQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgByVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9QZWFrIHN3ZWVwaW5nIGFuZCBnYXRpbmcgdXNpbmcgdGhlcm1hbCBncmFkaWVudCBnYXMgY2hyb21hdG9ncmFwaHkucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A1wDcAOQDRgNIA00DWANhA28DcwN6A4MDiAOVA5gDqgOtA7IAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADtA==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0021967313000502}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.chroma.2013.01.010}} @phdthesis{contreras:2010_atg, Author = {Contreras, Jesse Alberto}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:58:16 +0000}, School = {Brigham Young University}, Title = {Axial Temperature Gradients in Gas Chromatography}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QNUF4aWFsIFRlbXBlcmF0dXJlIEdyYWRpZW50cyBpbiBHYXMgQ2hyb21hdG9ncmFwaHkucGRm0hcLGBlXTlMuZGF0YU8RAiwAAAAAAiwAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9BeGlhbCBUZW1wZXJhdHVyZSBHcmEjRkIyQzcucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7LHz4SUvwAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAz4TpHwAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEF4aWFsIFRlbXBlcmF0dXJlIEdyYSNGQjJDNy5wZGYADgBsADUAQQB4AGkAYQBsACAAVABlAG0AcABlAHIAYQB0AHUAcgBlACAARwByAGEAZABpAGUAbgB0AHMAIABpAG4AIABHAGEAcwAgAEMAaAByAG8AbQBhAHQAbwBnAHIAYQBwAGgAeQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBhVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BeGlhbCBUZW1wZXJhdHVyZSBHcmFkaWVudHMgaW4gR2FzIENocm9tYXRvZ3JhcGh5LnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDGAMsA0wMDAwUDCgMVAx4DLAMwAzcDQANFA1IDVQNnA2oDbwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAANx}} @article{volder:2010, Author = {De Volder, Michael and Tawfick, Sameh H. and Park, Sei Jin and Copic, Davor and Zhao, Zhouzhou and Lu, Wei and Hart, A. John}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2016-05-06 20:01:31 +0000}, Doi = {10.1002/adma.201001893}, Issn = {1521-4095}, Journal = {Advanced Materials}, Keywords = {Carbon Nanotubes, Self-Assembly, Microstructures, Microelectromechanical Systems, Polymeric Materials}, Number = {39}, Pages = {4384--4389}, Publisher = {WILEY-VCH Verlag}, Title = {Diverse 3D Microarchitectures Made by Capillary Forming of Carbon Nanotubes}, Url = {http://dx.doi.org/10.1002/adma.201001893}, Volume = {22}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUERpdmVyc2UgM0QgTWljcm9hcmNoaXRlY3R1cmVzIE1hZGUgYnkgQ2FwaWxsYXJ5IEZvcm1pbmcgIG9mIENhcmJvbiBOYW5vdHViZXMucGRm0hcLGBlXTlMuZGF0YU8RAnwAAAAAAnwAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9EaXZlcnNlIDNEIE1pY3JvYXJjaGkjRkIyRDkucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7LZzu5PCQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzu6xeQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AERpdmVyc2UgM0QgTWljcm9hcmNoaSNGQjJEOS5wZGYADgCiAFAARABpAHYAZQByAHMAZQAgADMARAAgAE0AaQBjAHIAbwBhAHIAYwBoAGkAdABlAGMAdAB1AHIAZQBzACAATQBhAGQAZQAgAGIAeQAgAEMAYQBwAGkAbABsAGEAcgB5ACAARgBvAHIAbQBpAG4AZwAgACAAbwBmACAAQwBhAHIAYgBvAG4AIABOAGEAbgBvAHQAdQBiAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB8VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9EaXZlcnNlIDNEIE1pY3JvYXJjaGl0ZWN0dXJlcyBNYWRlIGJ5IENhcGlsbGFyeSBGb3JtaW5nICBvZiBDYXJib24gTmFub3R1YmVzLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOEA5gDuA24DcAN1A4ADiQOXA5sDogOrA7ADvQPAA9ID1QPaAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA9w=}, Bdsk-Url-1 = {http://dx.doi.org/10.1002/adma.201001893}} @MastersThesis{fazio:2012_msThesis, author = {Fazio, Walter C.}, title = {Mechanical properties and MEMS applications of carbon-infiltrated carbon nanotube forests}, school = {Brigham Young University}, year = {2012}, bdsk-file-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QXU1lY2hhbmljYWwgcHJvcGVydGllcyBhbmQgTUVNUyBhcHBsaWNhdGlvbnMgb2YgY2FyYm9uLWluZmlsdHJhdGVkIGNhcmJvbiBuYW5vdHViZSBmb3Jlc3RzLnBkZtIXCxgZV05TLmRhdGFPEQKkAAAAAAKkAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfTWVjaGFuaWNhbCBwcm9wZXJ0aWVzI0ZCMzA2LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+zBs5OESAAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM5OZYAAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBNZWNoYW5pY2FsIHByb3BlcnRpZXMjRkIzMDYucGRmAA4AvABdAE0AZQBjAGgAYQBuAGkAYwBhAGwAIABwAHIAbwBwAGUAcgB0AGkAZQBzACAAYQBuAGQAIABNAEUATQBTACAAYQBwAHAAbABpAGMAYQB0AGkAbwBuAHMAIABvAGYAIABjAGEAcgBiAG8AbgAtAGkAbgBmAGkAbAB0AHIAYQB0AGUAZAAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlACAAZgBvAHIAZQBzAHQAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCJVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NZWNoYW5pY2FsIHByb3BlcnRpZXMgYW5kIE1FTVMgYXBwbGljYXRpb25zIG9mIGNhcmJvbi1pbmZpbHRyYXRlZCBjYXJib24gbmFub3R1YmUgZm9yZXN0cy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A7gDzAPsDowOlA6oDtQO+A8wD0APXA+AD5QPyA/UEBwQKBA8AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEEQ==}, date-added = {2015-08-04 17:58:23 +0000}, date-modified = {2015-08-04 20:46:15 +0000}, file = {:Mechanical properties and MEMS applications of carbon-infiltrated carbon nanotube forests.pdf:PDF}, } @article{gauthier:2004, Abstract = {Aerogels are a class of ceramic materials fabricated from a sol--gel procedure followed by a carefully controlled solvent evacuation. This fabrication results in a porous nanostructure that is approximately 90--99% air by volume. The intricate pore structure of an aerogel results in remarkable properties. This paper describes a novel rapid supercritical extraction technique for fabricating aerogel monoliths. The technique uses a temperature controlled hydraulic hot press and a metal mold to contain and heat the precursors for a tetramethoxysilane-derived (TMOS) aerogel to supercritical state. During heating, the sol gels, strengthens, and ages. After a short soak at the supercritical state, the hot press restraining force is released and the supercritical gases are evacuated without causing damage to the silica nanostructure. Using a TMOS-based recipe (TMOS:MeOH:H2O:NH4OH with a molar ratio of 1.0:12.0:4.0:3.7 × 10−3), cylindrical silica aerogel monoliths have been fabricated as large as 22 mm in diameter and 17 mm high in a 5 h process. The thermo-physical properties are comparable to those of aerogels made using conventional techniques with bulk densities of 0.066 g cm−3, \{BET\} surface areas of 320 m2 g−1, thermal conductivities of 30--40 mW K−1 and optical transmittance rates of 80--90% in the near-infrared. }, Author = {Ben M. Gauthier and Smitesh D. Bakrania and Ann M. Anderson and Mary K. Carroll}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:27:48 +0000}, Doi = {http://dx.doi.org/10.1016/j.jnoncrysol.2004.06.044}, Issn = {0022-3093}, Journal = {Journal of Non-Crystalline Solids}, Note = {Proceedings of the 7th International Symposium on Aerogels}, Pages = {238-243}, Title = {A fast supercritical extraction technique for aerogel fabrication}, Url = {http://www.sciencedirect.com/science/article/pii/S0022309304008208}, Volume = {350}, Year = {2004}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QRUEgZmFzdCBzdXBlcmNyaXRpY2FsIGV4dHJhY3Rpb24gdGVjaG5pcXVlIGZvciBhZXJvZ2VsIGZhYnJpY2F0aW9uLnBkZtIXCxgZV05TLmRhdGFPEQJcAAAAAAJcAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfQSBmYXN0IHN1cGVyY3JpdGljYWwgI0ZCMkI4LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+yuM607UYAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM61T7YAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBBIGZhc3Qgc3VwZXJjcml0aWNhbCAjRkIyQjgucGRmAA4AjABFAEEAIABmAGEAcwB0ACAAcwB1AHAAZQByAGMAcgBpAHQAaQBjAGEAbAAgAGUAeAB0AHIAYQBjAHQAaQBvAG4AIAB0AGUAYwBoAG4AaQBxAHUAZQAgAGYAbwByACAAYQBlAHIAbwBnAGUAbAAgAGYAYQBiAHIAaQBjAGEAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBxVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BIGZhc3Qgc3VwZXJjcml0aWNhbCBleHRyYWN0aW9uIHRlY2huaXF1ZSBmb3IgYWVyb2dlbCBmYWJyaWNhdGlvbi5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A1gDbAOMDQwNFA0oDVQNeA2wDcAN3A4ADhQOSA5UDpwOqA68AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADsQ==}, Bdsk-Url-1 = {http://dx.doi.org/10.1016/j.jnoncrysol.2004.06.044}} @article{gomezMartnez:2011, Abstract = {Microworld barcoding has become a promising tool for cell biology. Individual and subpopulation cell tracking is of great interest to evaluate cell behaviour. Nowadays, many micrometer and even nanometer size silicon structures can be fabricated using microelectronics techniques. In this work we report for first time the development of 3D barcodes based on silicon substrate. The proposed silicon micromachining technology based on deep reactive ion etching (DRIE) allows to obtain micrometer-sized cylindrical structures with vertical etch profile that defines a bit = 1 and non-vertical etch profile that defines a bit = 0. Although this technology will allow more than 15 bits representation, only 4--8 bits are necessary for cell labelling. The results of this work show that \{DRIE\} has become a versatile technique to produce high aspect 3D biocompatible silicon-based barcodes structures for cell studies.}, Author = {R. G{\'o}mez-Mart{\'\i}nez and A. S{\'a}nchez and M. Duch and J. Esteve and J. A. Plaza}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:45:41 +0000}, Journal = {Sensors and Actuators B: Chemical}, Keywords = {Barcodes}, Number = {2}, Pages = {181 - 184}, Title = {DRIE based technology for 3D silicon barcodes fabrication}, Volume = {154}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QPURSSUUgYmFzZWQgdGVjaG5vbG9neSBmb3IgM0Qgc2lsaWNvbiBiYXJjb2RlcyBmYWJyaWNhdGlvbi5wZGbSFwsYGVdOUy5kYXRhTxECRAAAAAACRAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0RSSUUgYmFzZWQgdGVjaG5vbG9neSNGQjJEMy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPstPO7z/ZAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADO76JJAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToARFJJRSBiYXNlZCB0ZWNobm9sb2d5I0ZCMkQzLnBkZgAOAHwAPQBEAFIASQBFACAAYgBhAHMAZQBkACAAdABlAGMAaABuAG8AbABvAGcAeQAgAGYAbwByACAAMwBEACAAcwBpAGwAaQBjAG8AbgAgAGIAYQByAGMAbwBkAGUAcwAgAGYAYQBiAHIAaQBjAGEAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBpVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9EUklFIGJhc2VkIHRlY2hub2xvZ3kgZm9yIDNEIHNpbGljb24gYmFyY29kZXMgZmFicmljYXRpb24ucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAM4A0wDbAyMDJQMqAzUDPgNMA1ADVwNgA2UDcgN1A4cDigOPAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA5E=}} @article{hopkins:2012, Abstract = {We demonstrate the use time domain thermoreflectance(TDTR) to measure the thermal conductivity of the solidsilica network of aerogel thin-films. TDTR presents a unique experimental capability for measuring the thermal conductivity of porous media due to the nanosecond time domain aspect of the measurement. In short, TDTR is capable of explicitly measuring the change in temperature with time of the solid portion of porous media independently from the pores or effective media. This makes TDTR ideal for determining the thermal transport through the solid network of the aerogel film. We measure the thermal conductivity of the solidsilica networks of an aerogel film that is 10% solid, and the thermal conductivity of the same type of film that has been calcined to remove the terminating methyl groups. We find that for similar densities, the thermal conductivity through the silica in the aerogel thin films is similar to that of bulk aerogels. We theoretically describe the thermal transport in the aerogel films with a modified minimum limit to thermal conductivity that accounts for porosity through a reduction in phonon velocity. Our porous minimum limit agrees well with a wide range of experimental data in addition to sound agreement with differential effective medium theory. This porous minimum limit therefore demonstrates an approach to predict the thermal conductivity of porous disordered materials with no a priori knowledge of the corresponding bulk phase, unlike differential effective medium theory.}, Author = {Hopkins, Patrick E. and Kaehr, Bryan and Piekos, Edward S. and Dunphy, Darren and Jeffrey Brinker, C.}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:49:35 +0000}, Doi = {http://dx.doi.org/10.1063/1.4729325}, Eid = 113532, Journal = {Journal of Applied Physics}, Number = {11}, Pages = {-}, Title = {Minimum thermal conductivity considerations in aerogel thin films}, Url = {http://scitation.aip.org/content/aip/journal/jap/111/11/10.1063/1.4729325}, Volume = {111}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QRU1pbmltdW0gdGhlcm1hbCBjb25kdWN0aXZpdHkgY29uc2lkZXJhdGlvbnMgaW4gYWVyb2dlbCB0aGluIGZpbG1zLnBkZtIXCxgZV05TLmRhdGFPEQJcAAAAAAJcAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfTWluaW11bSB0aGVybWFsIGNvbmR1I0ZCMzBGLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+zD87s0CMAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM7tMpMAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBNaW5pbXVtIHRoZXJtYWwgY29uZHUjRkIzMEYucGRmAA4AjABFAE0AaQBuAGkAbQB1AG0AIAB0AGgAZQByAG0AYQBsACAAYwBvAG4AZAB1AGMAdABpAHYAaQB0AHkAIABjAG8AbgBzAGkAZABlAHIAYQB0AGkAbwBuAHMAIABpAG4AIABhAGUAcgBvAGcAZQBsACAAdABoAGkAbgAgAGYAaQBsAG0AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBxVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NaW5pbXVtIHRoZXJtYWwgY29uZHVjdGl2aXR5IGNvbnNpZGVyYXRpb25zIGluIGFlcm9nZWwgdGhpbiBmaWxtcy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A1gDbAOMDQwNFA0oDVQNeA2wDcAN3A4ADhQOSA5UDpwOqA68AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADsQ==}, Bdsk-Url-1 = {http://scitation.aip.org/content/aip/journal/jap/111/11/10.1063/1.4729325}, Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.4729325}} @Article{hutchison:2010, author = {Hutchison, D.N. and Morrill, N.B. and Aten, Q. and Turner, Brendan W. and Jensen, Brian D. and Howell, L.L. and Vanfleet, R.R. and Davis, R.C.}, title = {Carbon Nanotubes as a Framework for High-Aspect-Ratio {MEMS} Fabrication}, journal = {Journal of Microelectromechanical Systems}, year = {2010}, volume = {19}, number = {1}, pages = {75-82}, abstract = {A class of carbon-nanotube (CNT) composite materials was developed to take advantage of the precise high-aspect-ratio shape of patterned vertically grown nanotube forests. These patterned forests were rendered mechanically robust by chemical vapor infiltration and released by etching an underlying sacrificial layer. We fabricated a diverse variety of functional MEMS devices, including cantilevers, bistable mechanisms, and thermomechanical actuators, using this technique. A wide range of chemical-vapor-depositable materials could be used as fillers; here, we specifically explored infiltration by silicon and silicon nitride. The CNT framework technique may enable high-aspect-ratio MEMS fabrication from a variety of materials with desired properties such as high-temperature stability or robustness. The elastic modulus of the silicon-nanotube and silicon nitride-nanotube composites is dominated by the filler material, but they remain electrically conductive, even when the filler (over 99% of the composite's mass) is insulating.}, bdsk-file-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QSkNhcmJvbiBOYW5vdHViZXMgYXMgYSBGcmFtZXdvcmsgZm9yIEhpZ2gtQXNwZWN0LVJhdGlvIE1FTVMgRmFicmljYXRpb24ucGRm0hcLGBlXTlMuZGF0YU8RAmoAAAAAAmoAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9DYXJib24gTmFub3R1YmVzIGFzIGEjRkIyQ0QucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7LNzl962gAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzl/POgAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AENhcmJvbiBOYW5vdHViZXMgYXMgYSNGQjJDRC5wZGYADgCWAEoAQwBhAHIAYgBvAG4AIABOAGEAbgBvAHQAdQBiAGUAcwAgAGEAcwAgAGEAIABGAHIAYQBtAGUAdwBvAHIAawAgAGYAbwByACAASABpAGcAaAAtAEEAcwBwAGUAYwB0AC0AUgBhAHQAaQBvACAATQBFAE0AUwAgAEYAYQBiAHIAaQBjAGEAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB2VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9DYXJib24gTmFub3R1YmVzIGFzIGEgRnJhbWV3b3JrIGZvciBIaWdoLUFzcGVjdC1SYXRpbyBNRU1TIEZhYnJpY2F0aW9uLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOANsA4ADoA1YDWANdA2gDcQN/A4MDigOTA5gDpQOoA7oDvQPCAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA8Q=}, date-added = {2015-08-04 17:58:23 +0000}, date-modified = {2015-08-04 20:32:57 +0000}, keywords = {cantilevers;carbon nanotubes;composite materials;elemental semiconductors;micromechanical devices;silicon;silicon compounds;CNT framework technique;bistable mechanisms;cantilevers;carbon nanotube composite materials;chemical vapor infiltration;chemical-vapor-depositable materials;elastic modulus;filler material;functional MEMS devices;high-aspect-ratio MEMS fabrication;high-temperature stability;nanotube forests;sacrificial layer;silicon nitride-nanotube composites;thermomechanical actuators;Carbon;fabrication;microelectromechanical devices;nanotechnology}, } @article{iijima:1991, Abstract = {The synthesis of molecular carbon structures in the form of C60 and other fullerenes has stimulated intense interest in the structures accessible to graphitic carbon sheets. The preparation of a new type of finite carbon structure consisting of needle-like tubes is presented.}, Author = {Iijima,Sumio}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:43:08 +0000}, Journal = {Nature}, Keywords = {Environmental Studies; Research; Molecules; Chemistry}, Month = {November}, Number = {6348}, Pages = {56}, Title = {Helical Microtubules of Graphitic Carbon}, Volume = {354}, Year = {1991}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QLEhlbGljYWwgTWljcm90dWJ1bGVzIG9mIEdyYXBoaXRpYyBDYXJib24ucGRm0hcLGBlXTlMuZGF0YU8RAhAAAAAAAhAAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9IZWxpY2FsIE1pY3JvdHVidWxlcyAjRkIyRjQucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7L0zu2hmQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzu4ECQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEhlbGljYWwgTWljcm90dWJ1bGVzICNGQjJGNC5wZGYADgBaACwASABlAGwAaQBjAGEAbAAgAE0AaQBjAHIAbwB0AHUAYgB1AGwAZQBzACAAbwBmACAARwByAGEAcABoAGkAdABpAGMAIABDAGEAcgBiAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBYVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9IZWxpY2FsIE1pY3JvdHVidWxlcyBvZiBHcmFwaGl0aWMgQ2FyYm9uLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAL0AwgDKAt4C4ALlAvAC+QMHAwsDEgMbAyADLQMwA0IDRQNKAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA0w=}} @article{jensen:2012, Abstract = {Some of us recently described the fabrication of thin layer chromatography (TLC) plates from patterned carbon nanotube (CNT) forests via direct infiltration/coating of the \{CNTs\} by low pressure chemical vapor deposition (LPCVD) of silicon from SiH4, followed by high temperature oxidation of the \{CNTs\} and Si. Herein we present an improved microfabrication process for the preparation of these \{TLC\} plates. First, a few nanometers of carbon and/or a thin film of Al2O3 is deposited on the CNTs. This method of priming the \{CNTs\} for subsequent depositions appears to be new. X-ray photoelectron spectroscopy confirms the presence of additional oxygen after carbon deposition. After priming, the plates are coated by rapid, conformal deposition of an inorganic material that does not require subsequent oxidation, i.e., by a fast pseudo atomic layer deposition (ψ-ALD) of SiO2 from trimethylaluminum and tris(tert-butoxy)silanol. Unlike devices described previously, faithful reproduction of the features in the masks is still observed after oxidation. A bonded, amino phase on the resulting plates shows fast, highly efficient separations of fluorescent dyes (plate heights in the range of 1.6--7.7 μm). Extensive characterization of the new materials by TEM, SEM, EDAX, DRIFT, and \{XPS\} is reported. A substantially lower process temperature for the removal of the \{CNT\} scaffold is possible as a result of the already oxidized materials used. }, Author = {David S. Jensen and Supriya S. Kanyal and Vipul Gupta and Michael A. Vail and Andrew E. Dadson and Mark Engelhard and Richard Vanfleet and Robert C. Davis and Matthew R. Linford}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 21:05:21 +0000}, Doi = {http://dx.doi.org/10.1016/j.chroma.2012.07.086}, Issn = {0021-9673}, Journal = {Journal of Chromatography A}, Keywords = {Carbon nanotubes}, Pages = {195-203}, Title = {Stable, microfabricated thin layer chromatography plates without volume distortion on patterned, carbon and {Al$_2$O$_3$}-primed carbon nanotube forests}, Url = {http://www.sciencedirect.com/science/article/pii/S0021967312011594}, Volume = {1257}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QlFN0YWJsZSwgbWljcm9mYWJyaWNhdGVkIHRoaW4gbGF5ZXIgY2hyb21hdG9ncmFwaHkgcGxhdGVzIHdpdGhvdXQgdm9sdW1lIGRpc3RvcnRpb24gb24gcGF0dGVybmVkLCBjYXJib24gYW5kIEFsMk8zLXByaW1lZCBjYXJib24gbmFub3R1YmUgZm9yZXN0cy5wZGbSFwsYGVdOUy5kYXRhTxEDSAAAAAADSAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1N0YWJsZSwgbWljcm9mYWJyaWNhdCNGQjMyQi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsyvO7i+ZAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADO7pIJAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAU3RhYmxlLCBtaWNyb2ZhYnJpY2F0I0ZCMzJCLnBkZgAOASoAlABTAHQAYQBiAGwAZQAsACAAbQBpAGMAcgBvAGYAYQBiAHIAaQBjAGEAdABlAGQAIAB0AGgAaQBuACAAbABhAHkAZQByACAAYwBoAHIAbwBtAGEAdABvAGcAcgBhAHAAaAB5ACAAcABsAGEAdABlAHMAIAB3AGkAdABoAG8AdQB0ACAAdgBvAGwAdQBtAGUAIABkAGkAcwB0AG8AcgB0AGkAbwBuACAAbwBuACAAcABhAHQAdABlAHIAbgBlAGQALAAgAGMAYQByAGIAbwBuACAAYQBuAGQAIABBAGwAMgBPADMALQBwAHIAaQBtAGUAZAAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlACAAZgBvAHIAZQBzAHQAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgDAVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TdGFibGUsIG1pY3JvZmFicmljYXRlZCB0aGluIGxheWVyIGNocm9tYXRvZ3JhcGh5IHBsYXRlcyB3aXRob3V0IHZvbHVtZSBkaXN0b3J0aW9uIG9uIHBhdHRlcm5lZCwgY2FyYm9uIGFuZCBBbDJPMy1wcmltZWQgY2FyYm9uIG5hbm90dWJlIGZvcmVzdHMucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BJQEqATIEfgSABIUEkASZBKcEqwSyBLsEwATNBNAE4gTlBOoAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAE7A==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0021967312011594}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.chroma.2012.07.086}} @article{kim:2011, Abstract = { A complete field-deployable microfabricated gas chromatograph (μGC) is described, and its adaptation to the analysis of low- and subparts-per-billion (ppb) concentrations of trichloroethylene (TCE) vapors in complex mixtures is demonstrated through laboratory testing. The specific application being addressed concerns the problem of indoor air contamination by TCE vapor intrusion. The μGC prototype employs a microfabricated focuser, dual microfabricated separation columns, and a microsensor array. These are interfaced to a nonmicrofabricated front-end pretrap and high-volume sampler module to reduce analysis time and limits of detection (LOD). Selective preconcentration and focusing are coupled with rapid chromatographic separation and multisensor detection for the determination of TCE in the presence of up to 45 interferences. Autonomous operation is possible via a laptop computer. Preconcentration factors as high as 500 000 are achieved. Sensitivities are constant over the range of captured TCE masses tested (i.e., 9--390 ng), and TCE is measured in a test atmosphere at 120 parts-per-trillion (ppt), with a projected LOD of 40 ppt (4.2 ng captured, 20 L sample) and a maximum sampling + analytical cycle time of 36 min. Short- and medium-term (1 month) variations in retention time, absolute responses, and response patterns are within acceptable limits. }, Author = {Kim, Sun Kyu and Chang, Hungwei and Zellers, Edward T.}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:48:21 +0000}, Doi = {10.1021/ac201788q}, Eprint = {http://pubs.acs.org/doi/pdf/10.1021/ac201788q}, Journal = {Analytical Chemistry}, Number = {18}, Pages = {7198-7206}, Title = {Microfabricated Gas Chromatograph for the Selective Determination of Trichloroethylene Vapor at Sub-Parts-Per-Billion Concentrations in Complex Mixtures}, Url = {http://pubs.acs.org/doi/abs/10.1021/ac201788q}, Volume = {83}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QnE1pY3JvZmFicmljYXRlZCBHYXMgQ2hyb21hdG9ncmFwaCBmb3IgdGhlIFNlbGVjdGl2ZSBEZXRlcm1pbmF0aW9uIG9mIFRyaWNobG9yb2V0aHlsZW5lIFZhcG9yIGF0IFN1Yi1QYXJ0cy1QZXItQmlsbGlvbiBDb25jZW50cmF0aW9ucyBpbiBDb21wbGV4IE1peHR1cmVzLnBkZtIXCxgZV05TLmRhdGFPEQNgAAAAAANgAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfTWljcm9mYWJyaWNhdGVkIEdhcyBDI0ZCMzBELnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+zDc+EmuoAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM+E70oAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBNaWNyb2ZhYnJpY2F0ZWQgR2FzIEMjRkIzMEQucGRmAA4BOgCcAE0AaQBjAHIAbwBmAGEAYgByAGkAYwBhAHQAZQBkACAARwBhAHMAIABDAGgAcgBvAG0AYQB0AG8AZwByAGEAcABoACAAZgBvAHIAIAB0AGgAZQAgAFMAZQBsAGUAYwB0AGkAdgBlACAARABlAHQAZQByAG0AaQBuAGEAdABpAG8AbgAgAG8AZgAgAFQAcgBpAGMAaABsAG8AcgBvAGUAdABoAHkAbABlAG4AZQAgAFYAYQBwAG8AcgAgAGEAdAAgAFMAdQBiAC0AUABhAHIAdABzAC0AUABlAHIALQBCAGkAbABsAGkAbwBuACAAQwBvAG4AYwBlAG4AdAByAGEAdABpAG8AbgBzACAAaQBuACAAQwBvAG0AcABsAGUAeAAgAE0AaQB4AHQAdQByAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgDIVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NaWNyb2ZhYnJpY2F0ZWQgR2FzIENocm9tYXRvZ3JhcGggZm9yIHRoZSBTZWxlY3RpdmUgRGV0ZXJtaW5hdGlvbiBvZiBUcmljaGxvcm9ldGh5bGVuZSBWYXBvciBhdCBTdWItUGFydHMtUGVyLUJpbGxpb24gQ29uY2VudHJhdGlvbnMgaW4gQ29tcGxleCBNaXh0dXJlcy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgEtATIBOgSeBKAEpQSwBLkExwTLBNIE2wTgBO0E8AUCBQUFCgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAUM}, Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/ac201788q}, Bdsk-Url-2 = {http://dx.doi.org/10.1021/ac201788q}} @article{koebel:2012, Abstract = {This review is focused on describing the intimate link which exists between aerogels and thermal superinsulation. For long, this applied field has been considered as the most promising potential market for these nanomaterials. Today, there are several indicators suggesting that this old vision is likely to become reality in the near future. Based on recent developments in the field, we are confident that aerogels still offer the greatest potential for non-evacuated superinsulation systems and consequently must be considered as an amazing opportunity for sustainable development. The practical realization of such products however is time-consuming and a significant amount of R&D activities are still necessary to yield improved aerogel-based insulation products for mass markets.}, Author = {Koebel, Matthias and Rigacci, Arnaud and Achard, Patrick}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:28:57 +0000}, Journal = {Journal of Sol-Gel Science and Technology}, Keywords = {Aerogel; Composite materials; Superinsulation; Thermal insulation; Insulation market; Energy efficient buildings; Commercialization; Sol--gel; Thermal conductivity; Structure dependence; Ambient pressure drying; Supercritical CO2; Hydrophobization}, Month = {May}, Number = {3}, Pages = {315-339}, Title = {Aerogel-based thermal superinsulation: an overview}, Volume = {63}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QNkFlcm9nZWwtYmFzZWQgdGhlcm1hbCBzdXBlcmluc3VsYXRpb24tIGFuIG92ZXJ2aWV3LnBkZtIXCxgZV05TLmRhdGFPEQIuAAAAAAIuAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfQWVyb2dlbC1iYXNlZCB0aGVybWFsI0ZCMkMwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+ywM7s1lkAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM7tOMkAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBBZXJvZ2VsLWJhc2VkIHRoZXJtYWwjRkIyQzAucGRmAA4AbgA2AEEAZQByAG8AZwBlAGwALQBiAGEAcwBlAGQAIAB0AGgAZQByAG0AYQBsACAAcwB1AHAAZQByAGkAbgBzAHUAbABhAHQAaQBvAG4ALQAgAGEAbgAgAG8AdgBlAHIAdgBpAGUAdwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBiVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BZXJvZ2VsLWJhc2VkIHRoZXJtYWwgc3VwZXJpbnN1bGF0aW9uLSBhbiBvdmVydmlldy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDHAMwA1AMGAwgDDQMYAyEDLwMzAzoDQwNIA1UDWANqA20DcgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAN0}} @article{kupsta:2011, Abstract = {Porous thin films deposited by glancing-angle deposition (GLAD) have found application as sensor, micro-electrical mechanical systems and microfluidic devices. However, conventional micro-fabrication techniques can damage the very properties which make \{GLAD\} films attractive for these applications. To facilitate integration of \{GLAD\} films with these processes, a capping layer may be used. Such capping layers must be as free of defects as possible to ensure that the \{GLAD\} film is well protected. Here, the cracking properties of evaporated TiO2 caps deposited on \{GLAD\} films have been investigated as a function of substrate temperature. Our films are a porous vertical post layer 2.7 μm thick capped with a solid 400 nm layer. This material system experiences tensile stress from two sources: thermal mismatch between the film and substrate, and intrinsic stress in the cap from Volmer--Weber coalescence. Crack properties such as crack length distribution, crack density and branch number were quantified. In general, higher substrate temperatures reduced crack density, branch number and preferentially eliminated longer cracks. The onset of crystallinity at substrate temperatures around 300 $\,^{\circ}$C briefly increases crack area and branch number, but a further reduction can be achieved by depositing above this temperature. Applications of films grown by \{GLAD\} requiring high-quality capping layers will benefit from this study. }, Author = {M.R. Kupsta and M.T. Taschuk and M.J. Brett and J.C. Sit}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:51:47 +0000}, Doi = {http://dx.doi.org/10.1016/j.tsf.2010.10.056}, Issn = {0040-6090}, Journal = {Thin Solid Films}, Keywords = {Capping layer}, Number = {6}, Pages = {1923 - 1929}, Title = {Overcoming cap layer cracking for glancing-angle deposited films}, Url = {http://www.sciencedirect.com/science/article/pii/S0040609010014896}, Volume = {519}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QRE92ZXJjb21pbmcgY2FwIGxheWVyIGNyYWNraW5nIGZvciBnbGFuY2luZy1hbmdsZSBkZXBvc2l0ZWQgZmlsbXMucGRm0hcLGBlXTlMuZGF0YU8RAlgAAAAAAlgAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9PdmVyY29taW5nIGNhcCBsYXllciAjRkIzMTgucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7MY0BENLQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA0BFhjQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AE92ZXJjb21pbmcgY2FwIGxheWVyICNGQjMxOC5wZGYADgCKAEQATwB2AGUAcgBjAG8AbQBpAG4AZwAgAGMAYQBwACAAbABhAHkAZQByACAAYwByAGEAYwBrAGkAbgBnACAAZgBvAHIAIABnAGwAYQBuAGMAaQBuAGcALQBhAG4AZwBsAGUAIABkAGUAcABvAHMAaQB0AGUAZAAgAGYAaQBsAG0AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBwVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9PdmVyY29taW5nIGNhcCBsYXllciBjcmFja2luZyBmb3IgZ2xhbmNpbmctYW5nbGUgZGVwb3NpdGVkIGZpbG1zLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOANUA2gDiAz4DQANFA1ADWQNnA2sDcgN7A4ADjQOQA6IDpQOqAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA6w=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0040609010014896}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.tsf.2010.10.056}} @article{liu:2011, Abstract = {The pull-out of a carbon nanotube (CNT) from an alumina (α-Al2O3) matrix was investigated using molecular mechanics simulations to study the interfacial properties due to van der Waals and electrostatic Coulombic interactions. The pull-out force of the \{CNT\} was found to be proportional to its diameter, but independent of its length and alumina grain boundary type. A theory was proposed to predict the force for an arbitrary pull-out of a \{CNT\} from the alumina matrix using the outermost wall diameter of CNT. }, Author = {Sen Liu and Ning Hu and Go Yamamoto and Yindi Cai and Yajun Zhang and Yaolu Liu and Yuan Li and Toshiyuki Hashida and Hisao Fukunaga}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:44:59 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2011.04.059}, Issn = {0008-6223}, Journal = {Carbon}, Number = {11}, Pages = {3701 - 3704}, Title = {Investigation on CNT/alumina interface properties using molecular mechanics simulations}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622311003319}, Volume = {49}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QW0ludmVzdGlnYXRpb24gb24gQ05UOmFsdW1pbmEgaW50ZXJmYWNlIHByb3BlcnRpZXMgdXNpbmcgbW9sZWN1bGFyIG1lY2hhbmljcyBzaW11bGF0aW9ucy5wZGbSFwsYGVdOUy5kYXRhTxECngAAAAACngACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0ludmVzdGlnYXRpb24gb24gQ05ULyNGQjMwMC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPswDP5GTLAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADP5LkrAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToASW52ZXN0aWdhdGlvbiBvbiBDTlQvI0ZCMzAwLnBkZgAOALgAWwBJAG4AdgBlAHMAdABpAGcAYQB0AGkAbwBuACAAbwBuACAAQwBOAFQALwBhAGwAdQBtAGkAbgBhACAAaQBuAHQAZQByAGYAYQBjAGUAIABwAHIAbwBwAGUAcgB0AGkAZQBzACAAdQBzAGkAbgBnACAAbQBvAGwAZQBjAHUAbABhAHIAIABtAGUAYwBoAGEAbgBpAGMAcwAgAHMAaQBtAHUAbABhAHQAaQBvAG4AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCHVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9JbnZlc3RpZ2F0aW9uIG9uIENOVDphbHVtaW5hIGludGVyZmFjZSBwcm9wZXJ0aWVzIHVzaW5nIG1vbGVjdWxhciBtZWNoYW5pY3Mgc2ltdWxhdGlvbnMucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOwA8QD5A5sDnQOiA60DtgPEA8gDzwPYA90D6gPtA/8EAgQHAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABAk=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622311003319}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2011.04.059}} @article{maschmann:2014, Abstract = {Abstract For the first time, carbon nanotube (CNT) forests are fully characterized as transversely isotropic continuum material. Each of the five independent elastic constants is experimentally obtained using a combination of nanoindenter-based uniaxial compression and shear testing, in situ \{SEM\} compression, and digital image correlation (DIC) of vertically and laterally oriented \{CNT\} microstructure columns. Material properties are highly anisotropic, with an axial modulus (165--275 MPa) that is nearly two orders of magnitude greater than the transverse modulus (2.5--2.7 MPa) and the out of plane shear modulus (0.8--1.6 MPa). The Poisson's ratios along three mutually orthogonal axes, measured directly by simultaneous in situ \{DIC\} evaluation of axial and transverse strain, are found to be similarly anisotropic (ν12 = 0.35, ν23 = 0.1, ν21 = 0.005). A Timoshenko beam model is then developed to accurately predict the critical buckling stress of the vertically oriented columns using a subset of these anisotropic properties and considering inelastic column buckling. These results show that the critical bucking stress of \{CNT\} microstructures vary predictably with geometry and that continuum models with appropriate material constants may be applied to analyze \{CNT\} microstructures and evaluate their stability for many applications. }, Author = {Matthew R. Maschmann and Gregory J. Ehlert and Sameh Tawfick and A. John Hart and Jeffery W. Baur}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:34:21 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2013.09.013}, Issn = {0008-6223}, Journal = {Carbon}, Number = {0}, Pages = {377 - 386}, Title = {Continuum analysis of carbon nanotube array buckling enabled by anisotropic elastic measurements and modeling}, Url = {http://www.sciencedirect.com/science/article/pii/S000862231300852X}, Volume = {66}, Year = {2014}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QcUNvbnRpbnV1bSBhbmFseXNpcyBvZiBjYXJib24gbmFub3R1YmUgYXJyYXkgYnVja2xpbmcgZW5hYmxlZCBieSBhbmlzb3Ryb3BpYyBlbGFzdGljIG1lYXN1cmVtZW50cyBhbmQgbW9kZWxpbmcucGRm0hcLGBlXTlMuZGF0YU8RAuAAAAAAAuAAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9Db250aW51dW0gYW5hbHlzaXMgb2YjRkIyRDIucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7LSzu29JAAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzu4flAAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AENvbnRpbnV1bSBhbmFseXNpcyBvZiNGQjJEMi5wZGYADgDkAHEAQwBvAG4AdABpAG4AdQB1AG0AIABhAG4AYQBsAHkAcwBpAHMAIABvAGYAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQAgAGEAcgByAGEAeQAgAGIAdQBjAGsAbABpAG4AZwAgAGUAbgBhAGIAbABlAGQAIABiAHkAIABhAG4AaQBzAG8AdAByAG8AcABpAGMAIABlAGwAYQBzAHQAaQBjACAAbQBlAGEAcwB1AHIAZQBtAGUAbgB0AHMAIABhAG4AZAAgAG0AbwBkAGUAbABpAG4AZwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCdVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Db250aW51dW0gYW5hbHlzaXMgb2YgY2FyYm9uIG5hbm90dWJlIGFycmF5IGJ1Y2tsaW5nIGVuYWJsZWQgYnkgYW5pc290cm9waWMgZWxhc3RpYyBtZWFzdXJlbWVudHMgYW5kIG1vZGVsaW5nLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgECAQcBDwPzA/UD+gQFBA4EHAQgBCcEMAQ1BEIERQRXBFoEXwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAARh}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S000862231300852X}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2013.09.013}} @inbook{ch6:BasicGasChromatography, Abstract = {* Types of OT Columns * OT Column Tubing * Advantages of OT Columns * Column Selection * Capillary Inlet Systems * Miscellaneous Topics * References}, Author = {McNair, Harold M. and Miller, James M.}, Chapter = {6}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 17:58:23 +0000}, Keywords = {capillary columns and inlets, column selection and capillary column critical parameters, capillary inlet systems}, Pages = {84--103}, Publisher = {John Wiley & Sons, Inc.}, Title = {Capillary Columns and Inlets}, Volume = {Basic Gas Chromatography}, Year = {2008}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QJGNoNi1DQVBJTExBUlkgQ09MVU1OUyBBTkQgSU5MRVRTLnBkZtIXCxgZV05TLmRhdGFPEQH4AAAAAAH4AAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfY2g2LUNBUElMTEFSWSBDT0xVTU5TI0ZCMzQzLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+zQ87vaKIAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM7vyxIAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBjaDYtQ0FQSUxMQVJZIENPTFVNTlMjRkIzNDMucGRmAA4ASgAkAGMAaAA2AC0AQwBBAFAASQBMAEwAQQBSAFkAIABDAE8ATABVAE0ATgBTACAAQQBOAEQAIABJAE4ATABFAFQAUwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBQVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9jaDYtQ0FQSUxMQVJZIENPTFVNTlMgQU5EIElOTEVUUy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgC1ALoAwgK+AsACxQLQAtkC5wLrAvIC+wMAAw0DEAMiAyUDKgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAMs}} @article{miller:2013, Abstract = {Vertically aligned silicon micropillar arrays have been created by deep reactive ion etching (DRIE) and used for a number of microfabricated devices including microfluidic devices, micropreconcentrators and photovoltaic cells. This paper delineates an experimental design performed on the Bosch process of DRIE of micropillar arrays. The arrays are fabricated with direct-write optical lithography without photomask, and the effects of DRIE process parameters, including etch cycle time, passivation cycle time, platen power and coil power on profile angle, scallop depth and scallop peak-to-peak distance are studied by statistical design of experiments. Scanning electron microscope images are used for measuring the resultant profile angles and characterizing the scalloping effect on the pillar sidewalls. The experimental results indicate the effects of the determining factors, etch cycle time, passivation cycle time and platen power, on the micropillar profile angles and scallop depths. An optimized DRIE process recipe for creating nearly 90$\,^{\circ}$ and smooth surface (invisible scalloping) has been obtained as a result of the statistical design of experiments.}, Author = {Kane Miller and Mingxiao Li and Kevin M Walsh and Xiao-An Fu}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 21:07:28 +0000}, Journal = {Journal of Micromechanics and Microengineering}, Number = {3}, Pages = {035039}, Title = {The effects of DRIE operational parameters on vertically aligned micropillar arrays}, Url = {http://stacks.iop.org/0960-1317/23/i=3/a=035039}, Volume = {23}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QV1RoZSBlZmZlY3RzIG9mIERSSUUgb3BlcmF0aW9uYWwgcGFyYW1ldGVycyBvbiB2ZXJ0aWNhbGx5IGFsaWduZWQgbWljcm9waWxsYXIgYXJyYXlzLnBkZtIXCxgZV05TLmRhdGFPEQKSAAAAAAKSAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfVGhlIGVmZmVjdHMgb2YgRFJJRSBvI0ZCMzM0LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+zNM7vRBgAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM7vpogAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBUaGUgZWZmZWN0cyBvZiBEUklFIG8jRkIzMzQucGRmAA4AsABXAFQAaABlACAAZQBmAGYAZQBjAHQAcwAgAG8AZgAgAEQAUgBJAEUAIABvAHAAZQByAGEAdABpAG8AbgBhAGwAIABwAGEAcgBhAG0AZQB0AGUAcgBzACAAbwBuACAAdgBlAHIAdABpAGMAYQBsAGwAeQAgAGEAbABpAGcAbgBlAGQAIABtAGkAYwByAG8AcABpAGwAbABhAHIAIABhAHIAcgBhAHkAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCDVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGUgZWZmZWN0cyBvZiBEUklFIG9wZXJhdGlvbmFsIHBhcmFtZXRlcnMgb24gdmVydGljYWxseSBhbGlnbmVkIG1pY3JvcGlsbGFyIGFycmF5cy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A6ADtAPUDiwONA5IDnQOmA7QDuAO/A8gDzQPaA90D7wPyA/cAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD+Q==}, Bdsk-Url-1 = {http://stacks.iop.org/0960-1317/23/i=3/a=035039}} @article{monthioux:2006, Author = {Marc Monthioux and Vladimir L. Kuznetsov}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 21:10:40 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2006.03.019}, Issn = {0008-6223}, Journal = {Carbon}, Number = {9}, Pages = {1621-1623}, Title = {Who should be given the credit for the discovery of carbon nanotubes?}, Url = {http://www.sciencedirect.com/science/article/pii/S000862230600162X}, Volume = {44}, Year = {2006}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QSVdobyBzaG91bGQgYmUgZ2l2ZW4gdGhlIGNyZWRpdCBmb3IgdGhlIGRpc2NvdmVyeSBvZiBjYXJib24gbmFub3R1YmVzPy5wZGbSFwsYGVdOUy5kYXRhTxECaAAAAAACaAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1dobyBzaG91bGQgYmUgZ2l2ZW4gdCNGQjM0MC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPs0DO7aBfAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADO7gLPAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAV2hvIHNob3VsZCBiZSBnaXZlbiB0I0ZCMzQwLnBkZgAOAJQASQBXAGgAbwAgAHMAaABvAHUAbABkACAAYgBlACAAZwBpAHYAZQBuACAAdABoAGUAIABjAHIAZQBkAGkAdAAgAGYAbwByACAAdABoAGUAIABkAGkAcwBjAG8AdgBlAHIAeQAgAG8AZgAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlAHMAPwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB1VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9XaG8gc2hvdWxkIGJlIGdpdmVuIHRoZSBjcmVkaXQgZm9yIHRoZSBkaXNjb3Zlcnkgb2YgY2FyYm9uIG5hbm90dWJlcz8ucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOANoA3wDnA1MDVQNaA2UDbgN8A4ADhwOQA5UDogOlA7cDugO/AAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA8E=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S000862230600162X}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2006.03.019}} @Article{moulton:2012, author = {Kellen Moulton and Nicholas B Morrill and Adam M Konneker and Brian D Jensen and Richard R Vanfleet and David D Allred and Robert C Davis}, title = {Effect of iron catalyst thickness on vertically aligned carbon nanotube forest straightness for CNT-MEMS}, journal = {Journal of Micromechanics and Microengineering}, year = {2012}, volume = {22}, number = {5}, pages = {055004}, abstract = {This paper examines the effect of iron catalyst thickness on the straightness of growth of carbon nanotubes (CNTs) for microelectromechanical systems fabricated using the CNT-templated-microfabrication (CNT-M) process. SEM images of samples grown using various iron catalyst thicknesses show that both straight sidewalls and good edge definition are achieved using an iron thickness between 7 and 8 nm. Below this thickness, individual CNTs are well aligned, but the sidewalls of CNT forests formed into posts and long walls are not always straight. Above this thickness, the CNT forest sidewalls are relatively straight, but edge definition is poor, with significantly increased sidewall roughness. The proximity of a device or feature to other regions of iron catalyst also affects CNT growth. By using an iron catalyst thickness appropriate for straight growth, and by adding borders of iron around features or devices, a designer can greatly improve straightness of growth for CNT-MEMS.}, bdsk-file-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QbEVmZmVjdCBvZiBpcm9uIGNhdGFseXN0IHRoaWNrbmVzcyBvbiB2ZXJ0aWNhbGx5IGFsaWduZWQgY2FyYm9uIG5hbm90dWJlIGZvcmVzdCBzdHJhaWdodG5lc3MgZm9yIENOVC1NRU1TLnBkZtIXCxgZV05TLmRhdGFPEQLQAAAAAALQAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfRWZmZWN0IG9mIGlyb24gY2F0YWx5I0ZCMkRCLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+y285fcW8AAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM5fxc8AAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBFZmZlY3Qgb2YgaXJvbiBjYXRhbHkjRkIyREIucGRmAA4A2gBsAEUAZgBmAGUAYwB0ACAAbwBmACAAaQByAG8AbgAgAGMAYQB0AGEAbAB5AHMAdAAgAHQAaABpAGMAawBuAGUAcwBzACAAbwBuACAAdgBlAHIAdABpAGMAYQBsAGwAeQAgAGEAbABpAGcAbgBlAGQAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQAgAGYAbwByAGUAcwB0ACAAcwB0AHIAYQBpAGcAaAB0AG4AZQBzAHMAIABmAG8AcgAgAEMATgBUAC0ATQBFAE0AUwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCYVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9FZmZlY3Qgb2YgaXJvbiBjYXRhbHlzdCB0aGlja25lc3Mgb24gdmVydGljYWxseSBhbGlnbmVkIGNhcmJvbiBuYW5vdHViZSBmb3Jlc3Qgc3RyYWlnaHRuZXNzIGZvciBDTlQtTUVNUy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgD9AQIBCgPeA+AD5QPwA/kEBwQLBBIEGwQgBC0EMARCBEUESgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAARM}, bdsk-url-1 = {http://stacks.iop.org/0960-1317/22/i=5/a=055004}, date-added = {2015-08-04 17:58:23 +0000}, date-modified = {2015-08-04 20:37:30 +0000}, url = {http://stacks.iop.org/0960-1317/22/i=5/a=055004}, } @article{parthangal:2007, Abstract = {Aligned carbon nanotube (CNT) arrays are integral towards the development of several applications such as field emission, interconnects in silicon technology, and chemical and biological sensing. Even though the synthesis of CNTs has been described extensively in the literature, there has not been significant success in growing uniform, well-aligned CNT arrays on pure metal surfaces other than metals that catalyse CNT growth themselves. In this paper, we describe a method of growing aligned CNT arrays on a variety of pure metals, metal alloys, and conductive ceramics using a bimetallic iron/alumina composite catalyst at low temperatures (550 to 700 $\,^{\circ}$C). We believe that the addition of alumina to the iron catalyst significantly reduces catalyst--metal underlayer interactions that have traditionally proven to be a barrier for the growth of CNTs on metals. The alumina also minimizes surface diffusion of iron and allows the formation of a high density of uniformly dispersed catalyst nanoparticles to act as nucleation sites for well-aligned CNT arrays. Despite the presence of non-conducting alumina from the catalyst, the contact resistance between the CNTs and the metal underlayer was observed to be quite low, emphasizing the usefulness of this approach to practical applications. Our process was successful in growing aligned CNTs even on commercial steel plates and may be applicable for substrates of any shape or size.}, Author = {Prahalad M Parthangal and Richard E Cavicchi and Michael R Zachariah}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:27:35 +0000}, Journal = {Nanotechnology}, Number = {18}, Pages = {185605}, Title = {A generic process of growing aligned carbon nanotube arrays on metals and metal alloys}, Url = {http://stacks.iop.org/0957-4484/18/i=18/a=185605}, Volume = {18}, Year = {2007}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QWkEgZ2VuZXJpYyBwcm9jZXNzIG9mIGdyb3dpbmcgYWxpZ25lZCBjYXJib24gbmFub3R1YmUgYXJyYXlzIG9uIG1ldGFscyBhbmQgbWV0YWwgYWxsb3lzLnBkZtIXCxgZV05TLmRhdGFPEQKaAAAAAAKaAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfQSBnZW5lcmljIHByb2Nlc3Mgb2YgI0ZCMkJBLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+yus/kbL4AAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM/kwR4AAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBBIGdlbmVyaWMgcHJvY2VzcyBvZiAjRkIyQkEucGRmAA4AtgBaAEEAIABnAGUAbgBlAHIAaQBjACAAcAByAG8AYwBlAHMAcwAgAG8AZgAgAGcAcgBvAHcAaQBuAGcAIABhAGwAaQBnAG4AZQBkACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAIABhAHIAcgBhAHkAcwAgAG8AbgAgAG0AZQB0AGEAbABzACAAYQBuAGQAIABtAGUAdABhAGwAIABhAGwAbABvAHkAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCGVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BIGdlbmVyaWMgcHJvY2VzcyBvZiBncm93aW5nIGFsaWduZWQgY2FyYm9uIG5hbm90dWJlIGFycmF5cyBvbiBtZXRhbHMgYW5kIG1ldGFsIGFsbG95cy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDrAPAA+AOWA5gDnQOoA7EDvwPDA8oD0wPYA+UD6AP6A/0EAgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQE}, Bdsk-Url-1 = {http://stacks.iop.org/0957-4484/18/i=18/a=185605}} @article{jiangying:2011, Abstract = {We present a general method for the construction of 3D carbon nanotube (CNT) architectures with structural integrity and stability by the combination of capillary action and catalytic vapor-phase deposition (CVD). Using this method{,} patterned CNTs undergo the transformation from a vertically aligned structure to a hierarchically dual porosity material in a controllable way{,} which can be tuned by sequential modulation of the water-wetting and the CVD re-growth. By controlling the predesign of the substrate patterns{,} the CNT height{,} and the sequence of water wetting-CVD runs{,} diverse shapes and hybrid structures have been fabricated. This simple and versatile method might be extendable to the organization of other filamentary nanostructures for the construction of complex architectures made of various 1D building blocks.}, Author = {Qu, Jiangying and Zhao, Zongbin and Wang, Xuzhen and Qiu, Jieshan}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 21:06:39 +0000}, Doi = {10.1039/C0JM03326J}, Issue = {16}, Journal = {J. Mater. Chem.}, Pages = {5967-5971}, Publisher = {The Royal Society of Chemistry}, Title = {Tailoring of three-dimensional carbon nanotube architectures by coupling capillarity-induced assembly with multiple CVD growth}, Url = {http://dx.doi.org/10.1039/C0JM03326J}, Volume = {21}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QglRhaWxvcmluZyBvZiB0aHJlZS1kaW1lbnNpb25hbCBjYXJib24gbmFub3R1YmUgYXJjaGl0ZWN0dXJlcyBieSBjb3VwbGluZyBjYXBpbGxhcml0eS1pbmR1Y2VkIGFzc2VtYmx5IHdpdGggbXVsdGlwbGUgQ1ZEIGdyb3d0aC5wZGbSFwsYGVdOUy5kYXRhTxEDEgAAAAADEgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1RhaWxvcmluZyBvZiB0aHJlZS1kaSNGQjMzMC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPszDP8zH2AAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADP84ZWAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVGFpbG9yaW5nIG9mIHRocmVlLWRpI0ZCMzMwLnBkZgAOAQYAggBUAGEAaQBsAG8AcgBpAG4AZwAgAG8AZgAgAHQAaAByAGUAZQAtAGQAaQBtAGUAbgBzAGkAbwBuAGEAbAAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlACAAYQByAGMAaABpAHQAZQBjAHQAdQByAGUAcwAgAGIAeQAgAGMAbwB1AHAAbABpAG4AZwAgAGMAYQBwAGkAbABsAGEAcgBpAHQAeQAtAGkAbgBkAHUAYwBlAGQAIABhAHMAcwBlAG0AYgBsAHkAIAB3AGkAdABoACAAbQB1AGwAdABpAHAAbABlACAAQwBWAEQAIABnAHIAbwB3AHQAaAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCuVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UYWlsb3Jpbmcgb2YgdGhyZWUtZGltZW5zaW9uYWwgY2FyYm9uIG5hbm90dWJlIGFyY2hpdGVjdHVyZXMgYnkgY291cGxpbmcgY2FwaWxsYXJpdHktaW5kdWNlZCBhc3NlbWJseSB3aXRoIG11bHRpcGxlIENWRCBncm93dGgucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BEwEYASAENgQ4BD0ESARRBF8EYwRqBHMEeASFBIgEmgSdBKIAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEpA==}, Bdsk-Url-1 = {http://dx.doi.org/10.1039/C0JM03326J}} @article{rubey:1994, Abstract = {Extensive laboratory experiments and measurements are required for the operational evaluation and optimization of thermal gradient programmed gas chromatography (TGPGC). To accommodate these numerous laboratory investigations, an instrumentation assembly has been designed and constructed which possesses the needed built‐in experimental flexibility or adaptability. This system has been configured to test a variety of column sheath assembly designs and their associated open tubular separation columns. It is also used for performance testing many other special TGPGC components, including devices needed for the different types of sample introduction. The major application area of TGPGC is the rapid analysis of complex organic mixtures which cover a broad volatility range. Consequently, this system has been designed to permit exploratory investigations over a temperature range of −100 to 500 $\,^{\circ}$C, while using programmed flows of a variety of inert transport gases. With the use of this instrumentation assembly, operational data and performance assessments can systematically provide the information needed to optimize and spatially compact this different analytical chromatographic procedure.}, Author = {Rubey, Wayne A.}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:29:56 +0000}, Journal = {Review of Scientific Instruments}, Number = {9}, Pages = {2802-2807}, Rss-Description = {Describes the development of a versatile laboratory tool used to explore gas chromatography (GC) mechanisms. The tool uses a thermal gradient unlike the two most common GC modes of operation. Isothermal and programmed-temperature. In both of these modes the entire column experiences the same temperature. Thermal gradient programmed gas chromatography uses a thermal gradient along the axis of the column.}, Title = {An instrumentation assembly for studying operational behavior of thermal gradient programmed gas chromatography}, Volume = {65}, Year = {1994}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qc0FuIGluc3RydW1lbnRhdGlvbiBhc3NlbWJseSBmb3Igc3R1ZHlpbmcgb3BlcmF0aW9uYWwgYmVoYXZpb3Igb2YgdGhlcm1hbCBncmFkaWVudCBwcm9ncmFtbWVkIGdhcyBjaHJvbWF0b2dyYXBoeS5wZGbSFwsYGVdOUy5kYXRhTxEC5gAAAAAC5gACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0FuIGluc3RydW1lbnRhdGlvbiBhcyNGQjJDNS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPssXO7HPLAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADO7NY7AAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAQW4gaW5zdHJ1bWVudGF0aW9uIGFzI0ZCMkM1LnBkZgAOAOgAcwBBAG4AIABpAG4AcwB0AHIAdQBtAGUAbgB0AGEAdABpAG8AbgAgAGEAcwBzAGUAbQBiAGwAeQAgAGYAbwByACAAcwB0AHUAZAB5AGkAbgBnACAAbwBwAGUAcgBhAHQAaQBvAG4AYQBsACAAYgBlAGgAYQB2AGkAbwByACAAbwBmACAAdABoAGUAcgBtAGEAbAAgAGcAcgBhAGQAaQBlAG4AdAAgAHAAcgBvAGcAcgBhAG0AbQBlAGQAIABnAGEAcwAgAGMAaAByAG8AbQBhAHQAbwBnAHIAYQBwAGgAeQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCfVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BbiBpbnN0cnVtZW50YXRpb24gYXNzZW1ibHkgZm9yIHN0dWR5aW5nIG9wZXJhdGlvbmFsIGJlaGF2aW9yIG9mIHRoZXJtYWwgZ3JhZGllbnQgcHJvZ3JhbW1lZCBnYXMgY2hyb21hdG9ncmFwaHkucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAQQBCQERA/sD/QQCBA0EFgQkBCgELwQ4BD0ESgRNBF8EYgRnAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABGk=}} @article{russell:1995, Abstract = {Ti and Cr as both interposed layers and alloying components were found to enhance copper adhesion to dielectrics. Films deposited on SiO2, phosphosilicate glass (PSG) and boronphosphosilicate glass (BPSG) were annealed in 95%Ar-5%H2 over the temperature range 400--600 $\,^{\circ}$C. The force required to separate films from substrates was measured by scratch testing. Optical and scanning electron microscopies provided detection of substrate exposure. In the CuTi and CuCr bilayer systems the force decreases with temperature on all substrates, generally exhibiting better adhesion on SiO2 than on \{PSG\} or BPSG. In the Cu(Ti) and Cu(Cr) alloy systems the force increases with temperature with less systematic difference among the three substrates. These results correlate well with tape testing. Ti and Cr segregate out of the Cu layer and react both with the dielectrics and with the ambient gases, as observed by Rutherford backscattering and secondary ion mass spectroscopy. These reactions appear to improve adhesion; however, only a small amount of this reaction is required for the enhancement to occur. We surmise that stress in the copper and/or voiding at the Cu-dielectric interface may play a role as well. We observe a correlation between adhesion and the degree of Cu texturing. }, Author = {S.W. Russell and S.A. Rafalski and R.L. Spreitzer and J. Li and M. Moinpour and F. Moghadam and T.L. Alford}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:39:26 +0000}, Doi = {http://dx.doi.org/10.1016/0040-6090(94)05812-1}, Issn = {0040-6090}, Journal = {Thin Solid Films}, Keywords = {Metallization}, Note = {Copper-based Metallization and Interconnects for Ultra-large-scale Integration Applications}, Number = {1--2}, Pages = {154-167}, Title = {Enhanced adhesion of copper to dielectrics via titanium and chromium additions and sacrificial reactions}, Url = {http://www.sciencedirect.com/science/article/pii/0040609094058121}, Volume = {262}, Year = {1995}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QbEVuaGFuY2VkIGFkaGVzaW9uIG9mIGNvcHBlciB0byBkaWVsZWN0cmljcyB2aWEgdGl0YW5pdW0gYW5kIGNocm9taXVtIGFkZGl0aW9ucyBhbmQgc2FjcmlmaWNpYWwgcmVhY3Rpb25zLnBkZtIXCxgZV05TLmRhdGFPEQLQAAAAAALQAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfRW5oYW5jZWQgYWRoZXNpb24gb2YgI0ZCMkUyLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+y4s5M9AQAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM5NSGQAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBFbmhhbmNlZCBhZGhlc2lvbiBvZiAjRkIyRTIucGRmAA4A2gBsAEUAbgBoAGEAbgBjAGUAZAAgAGEAZABoAGUAcwBpAG8AbgAgAG8AZgAgAGMAbwBwAHAAZQByACAAdABvACAAZABpAGUAbABlAGMAdAByAGkAYwBzACAAdgBpAGEAIAB0AGkAdABhAG4AaQB1AG0AIABhAG4AZAAgAGMAaAByAG8AbQBpAHUAbQAgAGEAZABkAGkAdABpAG8AbgBzACAAYQBuAGQAIABzAGEAYwByAGkAZgBpAGMAaQBhAGwAIAByAGUAYQBjAHQAaQBvAG4AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCYVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9FbmhhbmNlZCBhZGhlc2lvbiBvZiBjb3BwZXIgdG8gZGllbGVjdHJpY3MgdmlhIHRpdGFuaXVtIGFuZCBjaHJvbWl1bSBhZGRpdGlvbnMgYW5kIHNhY3JpZmljaWFsIHJlYWN0aW9ucy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgD9AQIBCgPeA+AD5QPwA/kEBwQLBBIEGwQgBC0EMARCBEUESgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAARM}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/0040609094058121}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/0040-6090(94)05812-1}} @article{sakurai:2012, Abstract = { Here we show that essentially any Fe compounds spanning Fe salts, nanoparticles, and buckyferrocene could serve as catalysts for single-walled carbon nanotube (SWNT) forest growth when supported on AlOx and annealed in hydrogen. This observation was explained by subsurface diffusion of Fe atoms into the AlOx support induced by hydrogen annealing where most of the deposited Fe left the surface and the remaining Fe atoms reconfigured into small nanoparticles suitable for SWNT growth. Interestingly, the average diameters of the SWNTs grown from all iron compounds studied were nearly identical (2.8--3.1 nm). We interpret that the offsetting effects of Ostwald ripening and subsurface diffusion resulted in the ability to grow SWNT forests with similar average diameters regardless of the initial Fe catalyst. }, Author = {Sakurai, Shunsuke and Nishino, Hidekazu and Futaba, Don N. and Yasuda, Satoshi and Yamada, Takeo and Maigne, Alan and Matsuo, Yutaka and Nakamura, Eiichi and Yumura, Motoo and Hata, Kenji}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 21:03:40 +0000}, Doi = {10.1021/ja208706c}, Eprint = {http://dx.doi.org/10.1021/ja208706c}, Journal = {Journal of the American Chemical Society}, Note = {PMID: 22233092}, Number = {4}, Pages = {2148-2153}, Title = {Role of Subsurface Diffusion and Ostwald Ripening in Catalyst Formation for Single-Walled Carbon Nanotube Forest Growth}, Url = {http://dx.doi.org/10.1021/ja208706c}, Volume = {134}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qe1JvbGUgb2YgU3Vic3VyZmFjZSBEaWZmdXNpb24gYW5kIE9zdHdhbGQgUmlwZW5pbmcgaW4gQ2F0YWx5c3QgRm9ybWF0aW9uIGZvciBTaW5nbGUtV2FsbGVkIENhcmJvbiBOYW5vdHViZSBGb3Jlc3QgR3Jvd3RoLnBkZtIXCxgZV05TLmRhdGFPEQL+AAAAAAL+AAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfUm9sZSBvZiBTdWJzdXJmYWNlIERpI0ZCMzIxLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+zIdGNZpUAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANGNuvUAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBSb2xlIG9mIFN1YnN1cmZhY2UgRGkjRkIzMjEucGRmAA4A+AB7AFIAbwBsAGUAIABvAGYAIABTAHUAYgBzAHUAcgBmAGEAYwBlACAARABpAGYAZgB1AHMAaQBvAG4AIABhAG4AZAAgAE8AcwB0AHcAYQBsAGQAIABSAGkAcABlAG4AaQBuAGcAIABpAG4AIABDAGEAdABhAGwAeQBzAHQAIABGAG8AcgBtAGEAdABpAG8AbgAgAGYAbwByACAAUwBpAG4AZwBsAGUALQBXAGEAbABsAGUAZAAgAEMAYQByAGIAbwBuACAATgBhAG4AbwB0AHUAYgBlACAARgBvAHIAZQBzAHQAIABHAHIAbwB3AHQAaAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCnVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Sb2xlIG9mIFN1YnN1cmZhY2UgRGlmZnVzaW9uIGFuZCBPc3R3YWxkIFJpcGVuaW5nIGluIENhdGFseXN0IEZvcm1hdGlvbiBmb3IgU2luZ2xlLVdhbGxlZCBDYXJib24gTmFub3R1YmUgRm9yZXN0IEdyb3d0aC5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BDAERARkEGwQdBCIELQQ2BEQESARPBFgEXQRqBG0EfwSCBIcAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEiQ==}, Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja208706c}} @article{seah:2011, Abstract = {Vertically aligned carbon nanotubes (ACNTs) are bundles of carbon nanotubes oriented perpendicular to a substrate, and horizontally aligned \{CNTs\} are parallel to the substrate. Their dense and orderly arrangement, along with outstanding physical and chemical properties, enables \{ACNTs\} to be used in various fields. The methods of synthesising \{ACNTs\} can be classified into single-step and double-step techniques. Thermal pyrolysis and flame synthesis are the common single-step methods, and both are relatively simple. The double-step methods, including catalyst coating and chemical vapour deposition, provide more control over the catalyst morphology. This review explores different methods used for ACNT growth, the process parameters that determine the morphology of \{ACNTs\} and the applications of structured ACNTs. }, Author = {Choon-Ming Seah and Siang-Piao Chai and Abdul Rahman Mohamed}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 21:06:25 +0000}, Doi = {http://dx.doi.org/10.1016/j.carbon.2011.06.090}, Issn = {0008-6223}, Journal = {Carbon}, Number = {14}, Pages = {4613 - 4635}, Title = {Synthesis of aligned carbon nanotubes}, Url = {http://www.sciencedirect.com/science/article/pii/S0008622311005379}, Volume = {49}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QKVN5bnRoZXNpcyBvZiBhbGlnbmVkIGNhcmJvbiBuYW5vdHViZXMucGRm0hcLGBlXTlMuZGF0YU8RAggAAAAAAggAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9TeW50aGVzaXMgb2YgYWxpZ25lZCAjRkIzMkYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7Mvzu2plQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzu4MBQAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFN5bnRoZXNpcyBvZiBhbGlnbmVkICNGQjMyRi5wZGYADgBUACkAUwB5AG4AdABoAGUAcwBpAHMAIABvAGYAIABhAGwAaQBnAG4AZQBkACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBVVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TeW50aGVzaXMgb2YgYWxpZ25lZCBjYXJib24gbmFub3R1YmVzLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgC6AL8AxwLTAtUC2gLlAu4C/AMAAwcDEAMVAyIDJQM3AzoDPwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAANB}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0008622311005379}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.carbon.2011.06.090}} @article{shih:2006_oct, Author = {Chi-Yuan Shih and Yang Chen and Jun Xie and Qing He and Yu-Chong Tai}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:52:35 +0000}, Doi = {http://dx.doi.org/10.1016/j.chroma.2005.08.075}, Issn = {0021-9673}, Journal = {Journal of Chromatography A}, Keywords = {Electrochemical sensing}, Note = {18th International Symposium on MicroScale Bioseparations 18th International Symposium on MicroScale Bioseparations}, Number = {2}, Pages = {272 - 278}, Title = {On-chip temperature gradient interaction chromatography}, Url = {http://www.sciencedirect.com/science/article/pii/S0021967305017243}, Volume = {1111}, Year = {2006}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QO09uLWNoaXAgdGVtcGVyYXR1cmUgZ3JhZGllbnQgaW50ZXJhY3Rpb24gY2hyb21hdG9ncmFwaHkucGRm0hcLGBlXTlMuZGF0YU8RAj4AAAAAAj4AAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9Pbi1jaGlwIHRlbXBlcmF0dXJlIGcjRkIzMTYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7MWz4SPVgAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAz4TjtgAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AE9uLWNoaXAgdGVtcGVyYXR1cmUgZyNGQjMxNi5wZGYADgB4ADsATwBuAC0AYwBoAGkAcAAgAHQAZQBtAHAAZQByAGEAdAB1AHIAZQAgAGcAcgBhAGQAaQBlAG4AdAAgAGkAbgB0AGUAcgBhAGMAdABpAG8AbgAgAGMAaAByAG8AbQBhAHQAbwBnAHIAYQBwAGgAeQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBnVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Pbi1jaGlwIHRlbXBlcmF0dXJlIGdyYWRpZW50IGludGVyYWN0aW9uIGNocm9tYXRvZ3JhcGh5LnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDMANEA2QMbAx0DIgMtAzYDRANIA08DWANdA2oDbQN/A4IDhwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAOJ}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0021967305017243}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.chroma.2005.08.075}} @article{shih:2006_pst, Abstract = {Here we reported a novel technology using parylene-cross-linking structure to achieve on-chip air-gap thermal isolation for microfluidic system-on-chip (SOC) applications. Two applications based on this technology, on-chip temperature gradient liquid chromatography (TGLC) and on-chip continuous-flow polymerase chain reaction (PCR) were successfully demonstrated. Device thermal performance in each example was characterized. Results showed that our technology not only provides excellent on-chip thermal isolation but also its simplicity of integration with other on-chip components makes versatile microfluidic \{SOC\} applications feasible. }, Author = {Chi-Yuan Shih and Yang Chen and Yu-Chong Tai}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:52:23 +0000}, Doi = {http://dx.doi.org/10.1016/j.sna.2005.09.024}, Issn = {0924-4247}, Journal = {Sensors and Actuators A: Physical}, Keywords = {\{PCR\}}, Number = {1}, Pages = {270-276}, Title = {Parylene-strengthened thermal isolation technology for microfluidic system-on-chip applications}, Url = {http://www.sciencedirect.com/science/article/pii/S0924424705005467}, Volume = {126}, Year = {2006}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YW8QYgBQAGEAcgB5AGwAZQBuAGUALQBzAHQAcgBlAG4AZwB0AGgAZQBuAGUAZAAgAHQAaABlAHIAbQBhAGwAIABpAHMAbwBsAGEAdABpAG8AbgAgAHQAZQBjAGgAbgBvAGwAbwBnAHkAIABmAG8AcgAgAG0AaQBjAHIAb/sCAHUAaQBkAGkAYwAgAHMAeQBzAHQAZQBtAC0AbwBuAC0AYwBoAGkAcAAgAGEAcABwAGwAaQBjAGEAdABpAG8AbgBzAC4AcABkAGbSFwsYGVdOUy5kYXRhTxECtAAAAAACtAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1BhcnlsZW5lLXN0cmVuZ3RoZW5lZCNGQjMxQi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsxvO7H/EAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADO7OI0AAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAUGFyeWxlbmUtc3RyZW5ndGhlbmVkI0ZCMzFCLnBkZgAOAMYAYgBQAGEAcgB5AGwAZQBuAGUALQBzAHQAcgBlAG4AZwB0AGgAZQBuAGUAZAAgAHQAaABlAHIAbQBhAGwAIABpAHMAbwBsAGEAdABpAG8AbgAgAHQAZQBjAGgAbgBvAGwAbwBnAHkAIABmAG8AcgAgAG0AaQBjAHIAb/sCAHUAaQBkAGkAYwAgAHMAeQBzAHQAZQBtAC0AbwBuAC0AYwBoAGkAcAAgAGEAcABwAGwAaQBjAGEAdABpAG8AbgBzAC4AcABkAGYADwAQAAcATAB1AG4AZABTAFMARAASAJBVc2Vycy9qYXNvbi9Eb2N1bWVudHMvUmVzZWFyY2gvQmlibGlvZ3JhcGh5L1BhcnlsZW5lLXN0cmVuZ3RoZW5lZCB0aGVybWFsIGlzb2xhdGlvbiB0ZWNobm9sb2d5IGZvciBtaWNyb++sgnVpZGljIHN5c3RlbS1vbi1jaGlwIGFwcGxpY2F0aW9ucy5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgFVAVoBYgQaBBwEIQQsBDUEQwRHBE4EVwRcBGkEbAR+BIEEhgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAASI}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0924424705005467}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.sna.2005.09.024}} @article{smith:2005, Abstract = {Gas chromatography--mass spectrometry (GC--MS) is already an important laboratory method, but new sampling techniques and column heating approaches will expand and improve its usefulness for detection and identification of unknown chemicals in field settings. In order to demonstrate commercially-available technical advances for both sampling and column heating, we used solid phase microextraction (SPME) sampling of both water and air systems, followed by immediate analysis with a resistively heated analytical column and mass spectrometric detection. High-concern compounds ranging from 140 to 466 amu were analyzed to show the applicability of these techniques to emergency situations impacting public health. A field portable (about 35 kg) GC--MS system was used for analysis of water samples with a resistively heated analytical column externally mounted as a retrofit using the air bath oven of the original instrument design to heat transfer lines. The system used to analyze air samples included a laboratory mass spectrometer with a dedicated resistive column heating arrangement (no legacy air bath column oven). The combined sampling and analysis time was less than 10 min for both air and water sample types. By combining dedicated resistive column heating with smaller mass spectrometry systems designed specifically for use in the field, substantially smaller high performance field-portable instrumentation will be possible. }, Author = {P.A. Smith and M.T. Sng and B.A. Eckenrode and S.Y. Leow and D. Koch and R.P. Erickson and C.R. Jackson Lepage and G.L. Hook}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 21:09:18 +0000}, Doi = {http://dx.doi.org/10.1016/j.chroma.2004.11.008}, Issn = {0021-9673}, Journal = {Journal of Chromatography A}, Keywords = {Resistive heating}, Note = {Mass Spectrometry: Innovation and Application. Part IV}, Number = {1--2}, Pages = {285 - 294}, Title = {Towards smaller and faster gas chromatography--mass spectrometry systems for field chemical detection}, Url = {http://www.sciencedirect.com/science/article/pii/S0021967304020163}, Volume = {1067}, Year = {2005}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YW8QZwBUAG8AdwBhAHIAZABzACAAcwBtAGEAbABsAGUAcgAgAGEAbgBkACAAZgBhAHMAdABlAHIAIABnAGEAcwAgAGMAaAByAG8AbQBhAHQAbwBnAHIAYQBwAGgAeSATAG0AYQBzAHMAIABzAHAAZQBjAHQAcgBvAG0AZQB0AHIAeQAgAHMAeQBzAHQAZQBtAHMAIABmAG8AcgAg+wEAZQBsAGQAIABjAGgAZQBtAGkAYwBhAGwAIABkAGUAdABlAGMAdABpAG8AbgAuAHAAZABm0hcLGBlXTlMuZGF0YU8RAsYAAAAAAsYAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9Ub3dhcmRzIHNtYWxsZXIgYW5kIGYjRkIzM0IucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7M7zu9qvgAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzu/NLgAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFRvd2FyZHMgc21hbGxlciBhbmQgZiNGQjMzQi5wZGYADgDQAGcAVABvAHcAYQByAGQAcwAgAHMAbQBhAGwAbABlAHIAIABhAG4AZAAgAGYAYQBzAHQAZQByACAAZwBhAHMAIABjAGgAcgBvAG0AYQB0AG8AZwByAGEAcABoAHkgEwBtAGEAcwBzACAAcwBwAGUAYwB0AHIAbwBtAGUAdAByAHkAIABzAHkAcwB0AGUAbQBzACAAZgBvAHIAIPsBAGUAbABkACAAYwBoAGUAbQBpAGMAYQBsACAAZABlAHQAZQBjAHQAaQBvAG4ALgBwAGQAZgAPABAABwBMAHUAbgBkAFMAUwBEABIAl1VzZXJzL2phc29uL0RvY3VtZW50cy9SZXNlYXJjaC9CaWJsaW9ncmFwaHkvVG93YXJkcyBzbWFsbGVyIGFuZCBmYXN0ZXIgZ2FzIGNocm9tYXRvZ3JhcGh54oCTbWFzcyBzcGVjdHJvbWV0cnkgc3lzdGVtcyBmb3Ig76yBZWxkIGNoZW1pY2FsIGRldGVjdGlvbi5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BXwFkAWwENgQ4BD0ESARRBF8EYwRqBHMEeASFBIgEmgSdBKIAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEpA==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0021967304020163}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.chroma.2004.11.008}} @article{song:2004, Abstract = {There are two growth modes, tip- and base-growth modes, in carbon nanotube (CNT) synthesis. We have shown that the determining factor for the growth mode is the adhesion force of the catalytic metal particles to the substrate through a systematic study of the synthesis in the plasma-enhanced chemical vapour deposition method (PECVD). The experiment was further expanded to a series of syntheses on various substrates having different surface morphologies while using thermal CVD to avoid the plasma bombardment effect on the adhesion force. Synthesis on substrates of sapphire, alumina deposited by atomic layer deposition (ALD), and an anodized aluminium oxide (AAO) membrane was carried out. They are similar in chemical stoichiometry, but the surface roughnesses are different. Only the CNTs grown on the backside of the AAO membrane revealed the tip-growth mode regardless of the coating method, kind of catalyst, and thickness of the catalytic metal films due to its high roughness.}, Annote = {Used Ferrous Oxide powder as catalyst by spin coating it. See reference 11. Ferrous Oxide was a magnetic fluid that gives some options in patterning or controlling catalyst shape.}, Author = {In Kwang Song and Wan Jun Yu and You Suk Cho and Gyu Seok Choi and Dojin Kim}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 21:07:10 +0000}, Journal = {Nanotechnology}, Number = {10}, Pages = {S590}, Title = {The determining factors for the growth mode of carbon nanotubes in the chemical vapour deposition process}, Url = {http://stacks.iop.org/0957-4484/15/i=10/a=016}, Volume = {15}, Year = {2004}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QbVRoZSBkZXRlcm1pbmluZyBmYWN0b3JzIGZvciB0aGUgZ3Jvd3RoIG1vZGUgb2YgY2FyYm9uIG5hbm90dWJlcyBpbiB0aGUgY2hlbWljYWwgdmFwb3VyIGRlcG9zaXRpb24gcHJvY2Vzcy5wZGbSFwsYGVdOUy5kYXRhTxEC1AAAAAAC1AACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH1RoZSBkZXRlcm1pbmluZyBmYWN0byNGQjMzMy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPszPP5G6PAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADP5MLvAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAVGhlIGRldGVybWluaW5nIGZhY3RvI0ZCMzMzLnBkZgAOANwAbQBUAGgAZQAgAGQAZQB0AGUAcgBtAGkAbgBpAG4AZwAgAGYAYQBjAHQAbwByAHMAIABmAG8AcgAgAHQAaABlACAAZwByAG8AdwB0AGgAIABtAG8AZABlACAAbwBmACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAgAGkAbgAgAHQAaABlACAAYwBoAGUAbQBpAGMAYQBsACAAdgBhAHAAbwB1AHIAIABkAGUAcABvAHMAaQB0AGkAbwBuACAAcAByAG8AYwBlAHMAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCZVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9UaGUgZGV0ZXJtaW5pbmcgZmFjdG9ycyBmb3IgdGhlIGdyb3d0aCBtb2RlIG9mIGNhcmJvbiBuYW5vdHViZXMgaW4gdGhlIGNoZW1pY2FsIHZhcG91ciBkZXBvc2l0aW9uIHByb2Nlc3MucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAP4BAwELA+MD5QPqA/UD/gQMBBAEFwQgBCUEMgQ1BEcESgRPAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABFE=}, Bdsk-Url-1 = {http://stacks.iop.org/0957-4484/15/i=10/a=016}} @article{song:2011, Abstract = {Carbon-nanotube-templated microfabrication (CNT-M) of porous materials is demonstrated. Partial chemical infiltration of 3D carbon-nanotube structures with silicon results in a mechanically robust material, structured from the 10 nm scale to the 100 μm scale. The nanoscale dimensions are determined by the diameter and spacing of the resulting silicon/carbon nanotubes, while the microscale dimensions are controlled by the lithographic patterning of the CNT growth catalyst. We demonstrate the utility of this hierarchical structuring approach by using CNT-M to fabricate thin-layer-chromatography (TLC) separations media with precise microscale channels for fluid-flow control and nanoscale porosity for high analyte capacity. Chemical separations done on the CNT-M-structured media outperform commercial high-performance TLC media.}, Author = {Song, Jun and Jensen, David S. and Hutchison, David N. and Turner, Brendan and Wood, Taylor and Dadson, Andrew and Vail, Michael A. and Linford, Matthew R. and Vanfleet, Richard R. and Davis, Robert C.}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:33:13 +0000}, Doi = {10.1002/adfm.201001851}, Issn = {1616-3028}, Journal = {Advanced Functional Materials}, Keywords = {Chemical vapor deposition (CVD), Carbon nanotubes, Electron energy-loss spectroscopy (EELS), Silicon nanowires, Thin-layer chromatography}, Number = {6}, Pages = {1132--1139}, Publisher = {WILEY-VCH Verlag}, Title = {Carbon-Nanotube-Templated Microfabrication of Porous Silicon-Carbon Materials with Application to Chemical Separations}, Url = {http://dx.doi.org/10.1002/adfm.201001851}, Volume = {21}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QekNhcmJvbi1OYW5vdHViZS1UZW1wbGF0ZWQgTWljcm9mYWJyaWNhdGlvbiBvZiBQb3JvdXMgU2lsaWNvbi1DYXJib24gTWF0ZXJpYWxzIHdpdGggQXBwbGljYXRpb24gdG8gQ2hlbWljYWwgU2VwYXJhdGlvbnMucGRm0hcLGBlXTlMuZGF0YU8RAvoAAAAAAvoAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9DYXJib24tTmFub3R1YmUtVGVtcGwjRkIyQ0YucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7LPzu4u3gAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzu6RTgAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AENhcmJvbi1OYW5vdHViZS1UZW1wbCNGQjJDRi5wZGYADgD2AHoAQwBhAHIAYgBvAG4ALQBOAGEAbgBvAHQAdQBiAGUALQBUAGUAbQBwAGwAYQB0AGUAZAAgAE0AaQBjAHIAbwBmAGEAYgByAGkAYwBhAHQAaQBvAG4AIABvAGYAIABQAG8AcgBvAHUAcwAgAFMAaQBsAGkAYwBvAG4ALQBDAGEAcgBiAG8AbgAgAE0AYQB0AGUAcgBpAGEAbABzACAAdwBpAHQAaAAgAEEAcABwAGwAaQBjAGEAdABpAG8AbgAgAHQAbwAgAEMAaABlAG0AaQBjAGEAbAAgAFMAZQBwAGEAcgBhAHQAaQBvAG4AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCmVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9DYXJib24tTmFub3R1YmUtVGVtcGxhdGVkIE1pY3JvZmFicmljYXRpb24gb2YgUG9yb3VzIFNpbGljb24tQ2FyYm9uIE1hdGVyaWFscyB3aXRoIEFwcGxpY2F0aW9uIHRvIENoZW1pY2FsIFNlcGFyYXRpb25zLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAQsBEAEYBBYEGAQdBCgEMQQ/BEMESgRTBFgEZQRoBHoEfQSCAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABIQ=}, Bdsk-Url-1 = {http://dx.doi.org/10.1002/adfm.201001851}} @article{sternberg:1999, Abstract = {The gas chromatography--mass spectrometry (GC--MS) experiment using capillary and micropacked columns is one of the main instruments of the Huygens probe of the Cassini--Huygens mission launched in October 1997 for the in situ analysis of Titan's atmosphere. Because of its composition and density the study of the atmosphere of Titan is of primary interest for understanding the prebiotic chemistry in the primitive Earth's environment. We describe here the \{GC\} subsystem of the GC--MS instrument with a particular emphasis on its exobiological implications. The \{GC\} subsystem includes three columns which operate in parallel: a carbon molecular sieve micropacked column is used for the separation of CO, \{N2\} and other permanent gases; a capillary column will separate the light hydrocarbons up to C3; a second capillary column with a cyanopropyl dimethyl polysiloxane stationary phase will analyze the C4--C8 hydrocarbons and the low-molecular mass nitriles up to C4. These heavier compounds will mainly result from the pyrolysis of the aerosols present in the atmosphere of Titan by using the aerosol collector pyrolyser instrument. }, Author = {R. Sternberg and C. Szopa and D. Coscia and S. Zubrzycki and F. Raulin and C. Vidal-Madjar and H. Niemann and G. Israel}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:41:32 +0000}, Doi = {http://dx.doi.org/10.1016/S0021-9673(99)00254-X}, Issn = {0021-9673}, Journal = {Journal of Chromatography A}, Keywords = {Nitriles}, Number = {1--2}, Pages = {307-315}, Title = {Gas chromatography in space exploration: Capillary and micropacked columns for in situ analysis of Titan's atmosphere}, Url = {http://www.sciencedirect.com/science/article/pii/S002196739900254X}, Volume = {846}, Year = {1999}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YW8QeABHAGEAcwAgAGMAaAByAG8AbQBhAHQAbwBnAHIAYQBwAGgAeQAgAGkAbgAgAHMAcABhAGMAZQAgAGUAeABwAGwAbwByAGEAdABpAG8AbgAgAEMAYQBwAGkAbABsAGEAcgB5ACAAYQBuAGQAIABtAGkAYwByAG8AcABhAGMAawBlAGQAIABjAG8AbAB1AG0AbgBzACAAZgBvAHIAIABpAG4AIABzAGkAdAB1ACAAYQBuAGEAbAB5AHMAaQBzACAAbwBmACAAVABpAHQAYQBuIBkAcwAgAGEAdABtAG8AcwBwAGgAZQByAGUALgBwAGQAZtIXCxgZV05TLmRhdGFPEQL2AAAAAAL2AAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfR2FzIGNocm9tYXRvZ3JhcGh5IGluI0ZCMkU5LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+y6c6m794AAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM6nUk4AAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBHYXMgY2hyb21hdG9ncmFwaHkgaW4jRkIyRTkucGRmAA4A8gB4AEcAYQBzACAAYwBoAHIAbwBtAGEAdABvAGcAcgBhAHAAaAB5ACAAaQBuACAAcwBwAGEAYwBlACAAZQB4AHAAbABvAHIAYQB0AGkAbwBuACAAQwBhAHAAaQBsAGwAYQByAHkAIABhAG4AZAAgAG0AaQBjAHIAbwBwAGEAYwBrAGUAZAAgAGMAbwBsAHUAbQBuAHMAIABmAG8AcgAgAGkAbgAgAHMAaQB0AHUAIABhAG4AYQBsAHkAcwBpAHMAIABvAGYAIABUAGkAdABhAG4gGQBzACAAYQB0AG0AbwBzAHAAaABlAHIAZQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCmVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9HYXMgY2hyb21hdG9ncmFwaHkgaW4gc3BhY2UgZXhwbG9yYXRpb24gQ2FwaWxsYXJ5IGFuZCBtaWNyb3BhY2tlZCBjb2x1bW5zIGZvciBpbiBzaXR1IGFuYWx5c2lzIG9mIFRpdGFu4oCZcyBhdG1vc3BoZXJlLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAYEBhgGOBIgEigSPBJoEowSxBLUEvATFBMoE1wTaBOwE7wT0AAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABPY=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S002196739900254X}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0021-9673(99)00254-X}} @article{sun:2013, Author = {Sun, J. H. and Cui, D. F. and Chen, X. and Zhang, L. L. and Cai, H. Y. and Li, H.}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:27:30 +0000}, Doi = {http://dx.doi.org/10.1063/1.4789526}, Eid = 025001, Journal = {Review of Scientific Instruments}, Number = {2}, Pages = {025001}, Title = {A micro gas chromatography column with a micro thermal conductivity detector for volatile organic compound analysis}, Url = {http://scitation.aip.org/content/aip/journal/rsi/84/2/10.1063/1.4789526}, Volume = {84}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qd0EgbWljcm8gZ2FzIGNocm9tYXRvZ3JhcGh5IGNvbHVtbiB3aXRoIGEgbWljcm8gdGhlcm1hbCBjb25kdWN0aXZpdHkgZGV0ZWN0b3IgZm9yIHZvbGF0aWxlIG9yZ2FuaWMgY29tcG91bmQgYW5hbHlzaXMucGRm0hcLGBlXTlMuZGF0YU8RAvIAAAAAAvIAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9BIG1pY3JvIGdhcyBjaHJvbWF0b2cjRkIyQkIucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7K7zu9XewAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzu+56wAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEEgbWljcm8gZ2FzIGNocm9tYXRvZyNGQjJCQi5wZGYADgDwAHcAQQAgAG0AaQBjAHIAbwAgAGcAYQBzACAAYwBoAHIAbwBtAGEAdABvAGcAcgBhAHAAaAB5ACAAYwBvAGwAdQBtAG4AIAB3AGkAdABoACAAYQAgAG0AaQBjAHIAbwAgAHQAaABlAHIAbQBhAGwAIABjAG8AbgBkAHUAYwB0AGkAdgBpAHQAeQAgAGQAZQB0AGUAYwB0AG8AcgAgAGYAbwByACAAdgBvAGwAYQB0AGkAbABlACAAbwByAGcAYQBuAGkAYwAgAGMAbwBtAHAAbwB1AG4AZAAgAGEAbgBhAGwAeQBzAGkAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCjVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BIG1pY3JvIGdhcyBjaHJvbWF0b2dyYXBoeSBjb2x1bW4gd2l0aCBhIG1pY3JvIHRoZXJtYWwgY29uZHVjdGl2aXR5IGRldGVjdG9yIGZvciB2b2xhdGlsZSBvcmdhbmljIGNvbXBvdW5kIGFuYWx5c2lzLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgEIAQ0BFQQLBA0EEgQdBCYENAQ4BD8ESARNBFoEXQRvBHIEdwAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAR5}, Bdsk-Url-1 = {http://scitation.aip.org/content/aip/journal/rsi/84/2/10.1063/1.4789526}, Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.4789526}} @article{szopa:2002, Abstract = {As part of the development of the European Space Agency Rosetta space mission to investigate a cometary nucleus, the selection of columns dedicated to the gas chromatographic subsystem of the Cometary Sampling and Composition (COSAC) experiment was achieved. Once the space probe launched, these columns will be exposed to the harsh environmental constraints of space missions: vibrations, radiation (by photons or energetic particles), space vacuum, and large temperature range. In order to test the resistance of the flight columns and their stationary phases, the columns were exposed to these rough conditions reproduced in the laboratory. The comparison of the analytical performances of the columns, evaluated prior and after the environmental tests, demonstrated that all the columns withstand space constraints, and that their analytical properties were preserved. Therefore, all the selected capillary columns, even having porous layer or chiral stationary phases, were qualified for space exploration. }, Author = {C Szopa and U.J Meierhenrich and D Coscia and L Janin and F Goesmann and R Sternberg and J.-F Brun and G Israel and M Cabane and R Roll and F Raulin and W Thiemann and C Vidal-Madjar and H Rosenbauer}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:41:13 +0000}, Doi = {http://dx.doi.org/10.1016/S0021-9673(02)01593-5}, Issn = {0021-9673}, Journal = {Journal of Chromatography A}, Number = {2}, Pages = {303-312}, Title = {Gas chromatography for in situ analysis of a cometary nucleus: {IV}. Study of capillary column robustness for space application}, Url = {http://www.sciencedirect.com/science/article/pii/S0021967302015935}, Volume = {982}, Year = {2002}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QgUdhcyBjaHJvbWF0b2dyYXBoeSBmb3IgaW4gc2l0dSBhbmFseXNpcyBvZiBhIGNvbWV0YXJ5IG51Y2xldXMtIElWLiBTdHVkeSBvZiBjYXBpbGxhcnkgY29sdW1uIHJvYnVzdG5lc3MgZm9yIHNwYWNlIGFwcGxpY2F0aW9uLnBkZtIXCxgZV05TLmRhdGFPEQMQAAAAAAMQAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfR2FzIGNocm9tYXRvZ3JhcGh5IGZvI0ZCMkU4LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+y6M6m8MoAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAAM6nUzoAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBHYXMgY2hyb21hdG9ncmFwaHkgZm8jRkIyRTgucGRmAA4BBACBAEcAYQBzACAAYwBoAHIAbwBtAGEAdABvAGcAcgBhAHAAaAB5ACAAZgBvAHIAIABpAG4AIABzAGkAdAB1ACAAYQBuAGEAbAB5AHMAaQBzACAAbwBmACAAYQAgAGMAbwBtAGUAdABhAHIAeQAgAG4AdQBjAGwAZQB1AHMALQAgAEkAVgAuACAAUwB0AHUAZAB5ACAAbwBmACAAYwBhAHAAaQBsAGwAYQByAHkAIABjAG8AbAB1AG0AbgAgAHIAbwBiAHUAcwB0AG4AZQBzAHMAIABmAG8AcgAgAHMAcABhAGMAZQAgAGEAcABwAGwAaQBjAGEAdABpAG8AbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCtVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9HYXMgY2hyb21hdG9ncmFwaHkgZm9yIGluIHNpdHUgYW5hbHlzaXMgb2YgYSBjb21ldGFyeSBudWNsZXVzLSBJVi4gU3R1ZHkgb2YgY2FwaWxsYXJ5IGNvbHVtbiByb2J1c3RuZXNzIGZvciBzcGFjZSBhcHBsaWNhdGlvbi5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BEgEXAR8EMwQ1BDoERQROBFwEYARnBHAEdQSCBIUElwSaBJ8AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAEoQ==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0021967302015935}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0021-9673(02)01593-5}} @mastersthesis{teichert:2012_msThesis, Abstract = {The ability to inject DNA and other foreign particles into cells, both germ cells (e.g. to produce transgenic animals) and somatic cells (e.g. for gene therapy), is a powerful tool in genetic research. Nanoinjection is a method of DNA delivery that combines mechanical and electrical methods. It has proven to have higher cell viability than traditional microinjection, resulting in higher integration per injected embryo. The nanoinjection process can be performed on thousands of cells simultaneously using an array of microneedles that is inserted into a monolayer of cells. This thesis describes the needle array design requirements and the fabrication process used to meet them. The process uses unpassivated and passivated deep reactive ion etching (DRIE) to create needles with a constant diameter shaft and a pointed tip. The needle diameter and height are about 1 µm and 8 µm, respectively. A buckling analysis and physical testing show that the needles can withstand the force required to penetrate the cells. The chip is attached to a plastic suspension with a counter electrode and electrical connections to a voltage source. The suspension's motion is defined by two compliant orthoplanar springs that have been vertically and rotationally offset for added stability. The base of the suspension is designed to exactly fit in the bottom of a cell culture dish, where the needle array can be pushed into the cell monolayer. Injection protocol was created and followed to perform tests with needle insertion only, voltage application only, and the full nanoinjection process. The average cell viability for the full injection process was 98.2% compared to an average control viability of 99.5%. Zero volt injections with a high concentration of propidium iodide, a cell impermeable dye with two positive charges, resulted in dye uptake from diffusion, proving that the needles are penetrating the cells. Tests comparing injections with and without voltage had high variability in dye uptake. Therefore, glass cover slips were placed in the culture dishes to provide more consistent injection conditions. This reduced variation in zero voltage tests. It is recommended that this procedure be followed for performing injections with voltage.}, Author = {Teichert, Gregory Herlin}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:35:38 +0000}, Keywords = {MEMS, microinjection, nanoinjection, microneedles, DRIE, cell culture}, School = {Brigham Young University}, Title = {Design and Testing of a Biological Microelectromechanical System for the Injection of Thousands of Cells Simultaneously}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qf0Rlc2lnbl9hbmRfVGVzdGluZ19vZl9hX0Jpb2xvZ2ljYWxfTWljcm9lbGVjdHJvbWVjaGFuaWNhbF9TeXN0ZW1fZm9yX3RoZV9JbmplY3Rpb25fb2ZfVGhvdXNhbmRzX29mX0NlbGxzX1NpbXVsdGFuZW91c2x5ICgxKS5wZGbSFwsYGVdOUy5kYXRhTxEDCgAAAAADCgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0Rlc2lnbl9hbmRfVGVzdGluZ19vZiNGQjJENS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPstXO7zCeAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADO75MOAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToARGVzaWduX2FuZF9UZXN0aW5nX29mI0ZCMkQ1LnBkZgAOAQAAfwBEAGUAcwBpAGcAbgBfAGEAbgBkAF8AVABlAHMAdABpAG4AZwBfAG8AZgBfAGEAXwBCAGkAbwBsAG8AZwBpAGMAYQBsAF8ATQBpAGMAcgBvAGUAbABlAGMAdAByAG8AbQBlAGMAaABhAG4AaQBjAGEAbABfAFMAeQBzAHQAZQBtAF8AZgBvAHIAXwB0AGgAZQBfAEkAbgBqAGUAYwB0AGkAbwBuAF8AbwBmAF8AVABoAG8AdQBzAGEAbgBkAHMAXwBvAGYAXwBDAGUAbABsAHMAXwBTAGkAbQB1AGwAdABhAG4AZQBvAHUAcwBsAHkAIAAoADEAKQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCrVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9EZXNpZ25fYW5kX1Rlc3Rpbmdfb2ZfYV9CaW9sb2dpY2FsX01pY3JvZWxlY3Ryb21lY2hhbmljYWxfU3lzdGVtX2Zvcl90aGVfSW5qZWN0aW9uX29mX1Rob3VzYW5kc19vZl9DZWxsc19TaW11bHRhbmVvdXNseSAoMSkucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOARABFQEdBCsELQQyBD0ERgRUBFgEXwRoBG0EegR9BI8EkgSXAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABJk=}} @article{toone:2014, Abstract = { Unique micromechanisms are required to grasp mouse egg cells while genetic material is inserted into the cell through micro or nanoinjection. To obtain the high aspect ratio needed to fully grasp the 100 μm-diameter cells, carbon-infiltrated vertically aligned carbon nanotube (CNT) forests are fabricated into various designs of compliant cell restraint mechanisms. Six preliminary designs are fabricated and tested, leading to a more effective design that meets the stated design requirements. This improved mechanism is discussed in detail. Finally, as a possible alternative to these more complicated mechanisms, a simple CNT passive cell restraint structure is also presented. }, Author = {Toone, Nathan C. and Fazio, Walter C. and Lund, Jason M. and Teichert, Gregory H. and Jensen, Brian D. and Burnett, Sandra H. and Howell, Larry L.}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:44:49 +0000}, Doi = {10.1080/15397734.2014.908298}, Eprint = {http://dx.doi.org/10.1080/15397734.2014.908298}, Journal = {Mechanics Based Design of Structures and Machines}, Number = {3}, Pages = {343-354}, Title = {Investigation of Unique Carbon Nanotube Cell Restraint Compliant Mechanisms}, Url = {http://dx.doi.org/10.1080/15397734.2014.908298}, Volume = {42}, Year = {2014}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QT0ludmVzdGlnYXRpb24gb2YgVW5pcXVlIENhcmJvbiBOYW5vdHViZSBDZWxsIFJlc3RyYWludCBDb21wbGlhbnQgTWVjaGFuaXNtcy5wZGbSFwsYGVdOUy5kYXRhTxECegAAAAACegACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0ludmVzdGlnYXRpb24gb2YgVW5pcSNGQjJGRS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsv7Pv0znAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADPv6FHAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToASW52ZXN0aWdhdGlvbiBvZiBVbmlxI0ZCMkZFLnBkZgAOAKAATwBJAG4AdgBlAHMAdABpAGcAYQB0AGkAbwBuACAAbwBmACAAVQBuAGkAcQB1AGUAIABDAGEAcgBiAG8AbgAgAE4AYQBuAG8AdAB1AGIAZQAgAEMAZQBsAGwAIABSAGUAcwB0AHIAYQBpAG4AdAAgAEMAbwBtAHAAbABpAGEAbgB0ACAATQBlAGMAaABhAG4AaQBzAG0AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB7VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9JbnZlc3RpZ2F0aW9uIG9mIFVuaXF1ZSBDYXJib24gTmFub3R1YmUgQ2VsbCBSZXN0cmFpbnQgQ29tcGxpYW50IE1lY2hhbmlzbXMucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOAA5QDtA2sDbQNyA30DhgOUA5gDnwOoA60DugO9A88D0gPXAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA9k=}, Bdsk-Url-1 = {http://dx.doi.org/10.1080/15397734.2014.908298}} @mastersthesis{toone:2012_msThesis, Abstract = {The Nanoinjector Lance Array has been developed to inject foreign material into thousands of cells at once using electrophoresis to attract and repel particles to and from the electrically-charged lances. A mathematical computer model simulating the motion of attracted or repelled proteins informs the design of the nanoinjection lance array system. The model is validated by accurately predicting protein velocity in electrophoresis experiments. A complete analysis of parameters is conducted via simulations and specific research questions regarding the counter electrode of the nanoinjector lance array system are explored using the model. A novel technique for fabricating lance arrays from collapsed carbon nanotube forests is explored and detailed. Experiments are conducted using the Nanoinjector Lance Array, attempting to inject three different kinds of protein molecules into a culture of HeLa cells. The experimental results are encouraging and suggest possibilities for future success. Other recommendations are made for future research regarding the model, carbon nanotube fabrication, and experimental testing.}, Author = {Toone, Nathan C.}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:46:20 +0000}, Keywords = {nanoinjection, lance array, simulation, model, electrophoresis, carbon nanotubes}, School = {Brigham Young University}, Title = {Mathematical Model and Experimental Exploration of the Nanoinjector Lance Array}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QU01hdGhlbWF0aWNhbCBNb2RlbCBhbmQgRXhwZXJpbWVudGFsIEV4cGxvcmF0aW9uIG9mIHRoZSBOYW5vaW5qZWN0b3IgTGFuY2UgQXJyYXkucGRm0hcLGBlXTlMuZGF0YU8RAoYAAAAAAoYAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9NYXRoZW1hdGljYWwgTW9kZWwgYW4jRkIzMDQucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7MEzu8zlwAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzu+WBwAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AE1hdGhlbWF0aWNhbCBNb2RlbCBhbiNGQjMwNC5wZGYADgCoAFMATQBhAHQAaABlAG0AYQB0AGkAYwBhAGwAIABNAG8AZABlAGwAIABhAG4AZAAgAEUAeABwAGUAcgBpAG0AZQBuAHQAYQBsACAARQB4AHAAbABvAHIAYQB0AGkAbwBuACAAbwBmACAAdABoAGUAIABOAGEAbgBvAGkAbgBqAGUAYwB0AG8AcgAgAEwAYQBuAGMAZQAgAEEAcgByAGEAeQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB/VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9NYXRoZW1hdGljYWwgTW9kZWwgYW5kIEV4cGVyaW1lbnRhbCBFeHBsb3JhdGlvbiBvZiB0aGUgTmFub2luamVjdG9yIExhbmNlIEFycmF5LnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDkAOkA8QN7A30DggONA5YDpAOoA68DuAO9A8oDzQPfA+ID5wAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAPp}} @article{weaver:1994, Abstract = {Reviews the books `The Fullerenes: New Horizons for the Chemistry, Physics and Astrophysics of Carbon,' edited by Harold W. Kroto and David R.M. Walton and `Buckminsterfullerenes,' edited by W. Edward Billups and Marco A. Ciufolini.}, Author = {Weaver, John H.}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:32:00 +0000}, Journal = {Physics Today}, Keywords = {BOOKS, FULLERENES: New Horizons for the Chemistry, Physics & Astrophysics of Carbon, The (Book), BUCKMINSTERFULLERENES (Book)}, Number = {7}, Pages = {64}, Title = {Buckminsterfullerenes}, Volume = {47}, Year = {1994}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QGWJ1Y2ttaW5zdGVyZnVsbGVyZW5lcy5wZGbSFwsYGVdOUy5kYXRhTxEB0gAAAAAB0gACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwGWJ1Y2ttaW5zdGVyZnVsbGVyZW5lcy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPs0LO7bfIAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADO7ho4AAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBSTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAYnVja21pbnN0ZXJmdWxsZXJlbmVzLnBkZgAOADQAGQBiAHUAYwBrAG0AaQBuAHMAdABlAHIAZgB1AGwAbABlAHIAZQBuAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBFVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9idWNrbWluc3RlcmZ1bGxlcmVuZXMucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAKoArwC3Ao0CjwKUAp8CqAK2AroCwQLKAs8C3ALfAvEC9AL5AAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAAvs=}} @article{youngsik:2006, Abstract = {Carbon nanotube roots and stems were simultaneously synthesized from a typical multilayer for complementary metal-oxide-semiconductor fabrication with a single buried nickel layer at 600 $\,^{\circ}$C. Layer structure-dependent carbon nanotube growth behavior was investigated in Ni/Ti and Ti/Ni structures on silicon and silicon oxide substrates. Miscible and reactive properties among layers show unique growth behavior and interface properties between carbon nanotube and support. A simultaneous growth mechanism of carbon nanotube roots and stems is also proposed.}, Annote = {This paper indicates the possibility of root growth of CNTs. A catalyst is buried and annealed properly. This creates a viable catalyst under the thin film that grows underneath the thin film structure. This could be useful in creating a thermal barrier with a smooth surface. }, Author = {Youngsik, Song and Jaewu, Choi}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 21:04:42 +0000}, Journal = {Applied Physics Letters}, Keywords = {NANOTUBES, CARBON, CATALYSTS, METAL oxide semiconductors, NICKEL, SILICON oxide}, Number = {17}, Pages = {173108}, Title = {Simultaneous carbon nanotube root and stem growth from a single buried catalyst layer}, Volume = {88}, Year = {2006}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QWVNpbXVsdGFuZW91cyBjYXJib24gbmFub3R1YmUgcm9vdCBhbmQgc3RlbSBncm93dGggZnJvbSBhIHNpbmdsZSBidXJpZWQgY2F0YWx5c3QgbGF5ZXIucGRm0hcLGBlXTlMuZGF0YU8RApgAAAAAApgAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9TaW11bHRhbmVvdXMgY2FyYm9uIG4jRkIzMjgucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7Mozl/OfQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzmAi3QAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFNpbXVsdGFuZW91cyBjYXJib24gbiNGQjMyOC5wZGYADgC0AFkAUwBpAG0AdQBsAHQAYQBuAGUAbwB1AHMAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQAgAHIAbwBvAHQAIABhAG4AZAAgAHMAdABlAG0AIABnAHIAbwB3AHQAaAAgAGYAcgBvAG0AIABhACAAcwBpAG4AZwBsAGUAIABiAHUAcgBpAGUAZAAgAGMAYQB0AGEAbAB5AHMAdAAgAGwAYQB5AGUAcgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCFVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TaW11bHRhbmVvdXMgY2FyYm9uIG5hbm90dWJlIHJvb3QgYW5kIHN0ZW0gZ3Jvd3RoIGZyb20gYSBzaW5nbGUgYnVyaWVkIGNhdGFseXN0IGxheWVyLnBkZgAAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDqAO8A9wOTA5UDmgOlA64DvAPAA8cD0APVA+ID5QP3A/oD/wAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAQB}} @article{zhong:2012, Abstract = { We have grown vertically aligned single-walled carbon nanotube forests with an area density of 1.5 × 1013 cm--2, the highest yet achieved, by reducing the average diameter of the nanotubes. We use a nanolaminate Fe--Al2O3 catalyst design consisting of three layers of Al2O3, Fe, and Al2O3, in which the lower Al2O3 layer is densified by an oxygen plasma treatment to increase its diffusion barrier properties, to allow a thinner catalyst layer to be used. This high nanotube density is desirable for using carbon nanotubes as interconnects in integrated circuits. }, Author = {Zhong, Guofang and Warner, Jamie H. and Fouquet, Martin and Robertson, Alex W. and Chen, Bingan and Robertson, John}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:42:44 +0000}, Doi = {10.1021/nn203035x}, Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nn203035x}, Journal = {ACS Nano}, Number = {4}, Pages = {2893-2903}, Title = {Growth of Ultrahigh Density Single-Walled Carbon Nanotube Forests by Improved Catalyst Design}, Url = {http://pubs.acs.org/doi/abs/10.1021/nn203035x}, Volume = {6}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QYUdyb3d0aCBvZiBVbHRyYWhpZ2ggRGVuc2l0eSBTaW5nbGUtV2FsbGVkIENhcmJvbiBOYW5vdHViZSBGb3Jlc3RzIGJ5IEltcHJvdmVkIENhdGFseXN0IERlc2lnbi5wZGbSFwsYGVdOUy5kYXRhTxECsAAAAAACsAACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0dyb3d0aCBvZiBVbHRyYWhpZ2ggRCNGQjJFRS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsu7O/gtaAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADO/m3KAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAR3Jvd3RoIG9mIFVsdHJhaGlnaCBEI0ZCMkVFLnBkZgAOAMQAYQBHAHIAbwB3AHQAaAAgAG8AZgAgAFUAbAB0AHIAYQBoAGkAZwBoACAARABlAG4AcwBpAHQAeQAgAFMAaQBuAGcAbABlAC0AVwBhAGwAbABlAGQAIABDAGEAcgBiAG8AbgAgAE4AYQBuAG8AdAB1AGIAZQAgAEYAbwByAGUAcwB0AHMAIABiAHkAIABJAG0AcAByAG8AdgBlAGQAIABDAGEAdABhAGwAeQBzAHQAIABEAGUAcwBpAGcAbgAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCNVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Hcm93dGggb2YgVWx0cmFoaWdoIERlbnNpdHkgU2luZ2xlLVdhbGxlZCBDYXJib24gTmFub3R1YmUgRm9yZXN0cyBieSBJbXByb3ZlZCBDYXRhbHlzdCBEZXNpZ24ucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAPIA9wD/A7MDtQO6A8UDzgPcA+AD5wPwA/UEAgQFBBcEGgQfAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABCE=}, Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nn203035x}, Bdsk-Url-2 = {http://dx.doi.org/10.1021/nn203035x}} @article{zong:2011, Author = {Zong, Zhao-Xiang and Qiu, Zhi-Jun and Zhang, Shi-Li and Streiter, Reinhard and Liu, Ran}, Date-Added = {2015-08-04 17:58:23 +0000}, Date-Modified = {2015-08-04 20:27:41 +0000}, Doi = {http://dx.doi.org/10.1063/1.3559299}, Eid = 063502, Journal = {Journal of Applied Physics}, Number = {6}, Pages = {063502}, Title = {A generalized 3-{$\Omega$} method for extraction of thermal conductivity in thin films}, Url = {http://scitation.aip.org/content/aip/journal/jap/109/6/10.1063/1.3559299}, Volume = {109}, Year = {2011}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUEEgZ2VuZXJhbGl6ZWQgMyBtZXRob2QgZm9yIGV4dHJhY3Rpb24gb2YgdGhlcm1hbCBjb25kdWN0aXZpdHkgaW4gdGhpbiBmaWxtcyAucGRm0hcLGBlXTlMuZGF0YU8RAnwAAAAAAnwAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9BIGdlbmVyYWxpemVkIDMgbWV0aG8jRkIyQjkucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7K5zuzc2AAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAAzu0/SAAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEEgZ2VuZXJhbGl6ZWQgMyBtZXRobyNGQjJCOS5wZGYADgCiAFAAQQAgAGcAZQBuAGUAcgBhAGwAaQB6AGUAZAAgADMAIABtAGUAdABoAG8AZAAgAGYAbwByACAAZQB4AHQAcgBhAGMAdABpAG8AbgAgAG8AZgAgAHQAaABlAHIAbQBhAGwAIABjAG8AbgBkAHUAYwB0AGkAdgBpAHQAeQAgAGkAbgAgAHQAaABpAG4AIABmAGkAbABtAHMAIAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB8VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BIGdlbmVyYWxpemVkIDMgbWV0aG9kIGZvciBleHRyYWN0aW9uIG9mIHRoZXJtYWwgY29uZHVjdGl2aXR5IGluIHRoaW4gZmlsbXMgLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOEA5gDuA24DcAN1A4ADiQOXA5sDogOrA7ADvQPAA9ID1QPaAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA9w=}, Bdsk-Url-1 = {http://scitation.aip.org/content/aip/journal/jap/109/6/10.1063/1.3559299}, Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3559299}} @article{behr:2010, Author = {Behr, Michael J. and Gaulding, E. Ashley and Mkhoyan, K. Andre and Aydil, Eray S.}, Date-Added = {2015-07-14 17:49:39 +0000}, Date-Modified = {2015-08-04 20:43:49 +0000}, Doi = {http://dx.doi.org/10.1116/1.3498737}, Journal = {Journal of Vacuum Science \& Technology B}, Number = {6}, Pages = {1187-1194}, Title = {Hydrogen etching and cutting of multiwall carbon nanotubes}, Url = {http://scitation.aip.org/content/avs/journal/jvstb/28/6/10.1116/1.3498737}, Volume = {28}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QPkh5ZHJvZ2VuIGV0Y2hpbmcgYW5kIGN1dHRpbmcgb2YgbXVsdGl3YWxsIGNhcmJvbiBuYW5vdHViZXMucGRm0hcLGBlXTlMuZGF0YU8RAkYAAAAAAkYAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9IeWRyb2dlbiBldGNoaW5nIGFuZCAjRkIyRjgucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7L40cqngQAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA0cr74QAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEh5ZHJvZ2VuIGV0Y2hpbmcgYW5kICNGQjJGOC5wZGYADgB+AD4ASAB5AGQAcgBvAGcAZQBuACAAZQB0AGMAaABpAG4AZwAgAGEAbgBkACAAYwB1AHQAdABpAG4AZwAgAG8AZgAgAG0AdQBsAHQAaQB3AGEAbABsACAAYwBhAHIAYgBvAG4AIABuAGEAbgBvAHQAdQBiAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgBqVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9IeWRyb2dlbiBldGNoaW5nIGFuZCBjdXR0aW5nIG9mIG11bHRpd2FsbCBjYXJib24gbmFub3R1YmVzLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAM8A1ADcAyYDKAMtAzgDQQNPA1MDWgNjA2gDdQN4A4oDjQOSAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA5Q=}, Bdsk-Url-1 = {http://scitation.aip.org/content/avs/journal/jvstb/28/6/10.1116/1.3498737}, Bdsk-Url-2 = {http://dx.doi.org/10.1116/1.3498737}} @article{velasquez:2010, Abstract = {We report the fabrication and experimental characterization of a carbon nanotube (CNT)-based MEMS/NEMS electron impact gas ionizer with an integrated extractor gate for portable mass spectrometry. The ionizer achieves low-voltage ionization using sparse forests of plasma-enhanced chemical-vapor-deposited CNTs as field emitters and a proximal extractor grid with apertures aligned to the CNT forests to facilitate electron transmission. The extractor gate is integrated to the ionizer using a high-voltage MEMS packaging technology based on Si springs defined by deep reactive ion etching. The ionizer also includes a high-aspect-ratio silicon structure (??foam) that facilitates sparse CNT growth and also enables uniform current emission. The devices were tested as field emitters in high vacuum (10-8 torr) and as electron impact ionizers using argon at pressures of up to 21 mtorr. The experimental data show that the MEMS extractor gate transmits up to 66% of the emitted current and that the ionizers are able to produce up to 0.139 mA of ion current with up to 19% ionization efficiency while consuming 0.39 W.}, Annote = {doi={10.1109/JMEMS.2010.2045639}, ISSN={1057-7157}}, Author = {Velasquez-Garcia, L.F. and Gassend, B.L.P. and Akinwande, A.I.}, Date-Added = {2015-07-14 17:44:12 +0000}, Date-Modified = {2015-08-04 20:33:55 +0000}, Journal = {Microelectromechanical Systems, Journal of}, Keywords = {carbon nanotubes;electron impact ionisation;mass spectroscopy;microfabrication;micromechanical devices;nanoelectromechanical devices;plasma CVD;CNT-based MEMS electron impact gas ionizer;CNT-based NEMS electron impact gas ionizer;MEMS extractor gate;argon;carbon nanotube;deep reactive ion etching;electron transmission;fabrication characterization;field emitters;high-aspect-ratio silicon structure;high-voltage MEMS packaging technology;integrated extractor gate;low-voltage ionization;plasma-enhanced chemical-vapor-deposited CNT;portable mass spectrometry applications;power 0.39 W;proximal extractor grid;sparse CNT growth;3-D MEMS packaging;Carbon nanotubes (CNTs);deep reactive ion etching (DRIE);electron impact ionization;field emission;gas ionizer;portable mass spectrometry (MS)}, Month = {June}, Number = {3}, Pages = {484-493}, Title = {CNT-Based MEMS/NEMS Gas Ionizers for Portable Mass Spectrometry Applications}, Volume = {19}, Year = {2010}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUENOVC1CYXNlZCBNRU1TOk5FTVMgR2FzIElvbml6ZXJzIGZvciBQb3J0YWJsZSBNYXNzIFNwZWN0cm9tZXRyeSBBcHBsaWNhdGlvbnMucGRm0hcLGBlXTlMuZGF0YU8RAnwAAAAAAnwAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9DTlQtQmFzZWQgTUVNUy9ORU1TIEcjRkIyQ0EucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7LK0cqmZAAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA0cr6xAAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AENOVC1CYXNlZCBNRU1TL05FTVMgRyNGQjJDQS5wZGYADgCiAFAAQwBOAFQALQBCAGEAcwBlAGQAIABNAEUATQBTAC8ATgBFAE0AUwAgAEcAYQBzACAASQBvAG4AaQB6AGUAcgBzACAAZgBvAHIAIABQAG8AcgB0AGEAYgBsAGUAIABNAGEAcwBzACAAUwBwAGUAYwB0AHIAbwBtAGUAdAByAHkAIABBAHAAcABsAGkAYwBhAHQAaQBvAG4AcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB8VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9DTlQtQmFzZWQgTUVNUzpORU1TIEdhcyBJb25pemVycyBmb3IgUG9ydGFibGUgTWFzcyBTcGVjdHJvbWV0cnkgQXBwbGljYXRpb25zLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOEA5gDuA24DcAN1A4ADiQOXA5sDogOrA7ADvQPAA9ID1QPaAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA9w=}} @article{liu:2004, Abstract = {We study the morphologies and the field emission properties of carbon nanotube (CNT) arrays grown on silicon substrate before and after Ar and \{O2\} plasmas etching. The \{CNT\} arrays are synthesized by chemical vapor deposition of ethylene and argon gases in the presence of iron catalysts. Plasma etching is carried out in a \{DC\} magnetron-sputtering apparatus. After the treatment, a novel structure of needle-shaped bundles on the surface of \{CNT\} arrays is obtained, whose morphologies will be quite different under varied conditions. Enhanced field emission properties are observed after proper treatment. }, Author = {Liu, Yuming and Liu, Liang and Liu, Peng and Sheng, Leimei and Fan, Shoushan}, Date-Added = {2015-07-14 17:39:48 +0000}, Date-Modified = {2015-08-04 21:01:20 +0000}, Doi = {http://dx.doi.org/10.1016/j.diamond.2004.01.014}, Issn = {0925-9635}, Journal = {Diamond and Related Materials}, Keywords = {Plasma etching}, Number = {9}, Pages = {1609 - 1613}, Title = {Plasma etching carbon nanotube arrays and the field emission properties}, Url = {http://www.sciencedirect.com/science/article/pii/S0925963504000196}, Volume = {13}, Year = {2004}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QS1BsYXNtYSBldGNoaW5nIGNhcmJvbiBuYW5vdHViZSBhcnJheXMgYW5kIHRoZSBmaWVsZCBlbWlzc2lvbiBwcm9wZXJ0aWVzLnBkZtIXCxgZV05TLmRhdGFPEQJuAAAAAAJuAAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfUGxhc21hIGV0Y2hpbmcgY2FyYm9uI0ZCMzFELnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+zHdHKpXIAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANHK+dIAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBQbGFzbWEgZXRjaGluZyBjYXJib24jRkIzMUQucGRmAA4AmABLAFAAbABhAHMAbQBhACAAZQB0AGMAaABpAG4AZwAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlACAAYQByAHIAYQB5AHMAIABhAG4AZAAgAHQAaABlACAAZgBpAGUAbABkACAAZQBtAGkAcwBzAGkAbwBuACAAcAByAG8AcABlAHIAdABpAGUAcwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB3VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9QbGFzbWEgZXRjaGluZyBjYXJib24gbmFub3R1YmUgYXJyYXlzIGFuZCB0aGUgZmllbGQgZW1pc3Npb24gcHJvcGVydGllcy5wZGYAABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A3ADhAOkDWwNdA2IDbQN2A4QDiAOPA5gDnQOqA60DvwPCA8cAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADyQ==}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0925963504000196}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.diamond.2004.01.014}} @article{lee:2012, Abstract = {We demonstrate microfabrication and characterization of suspended carbon nanotube (CNT) thin-film structures possessing a high degree of alignment. The alignment of \{CNT\} was achieved by the open microfluidic channel template and enhanced by heating the \{CNT\} dispersion, which was scalable and processable. The degree of alignment, as characterized by Raman spectroscopy, yielded a high G- to D-band intensity ratio of 22 along the fluid flow direction. The microfluidic alignment scheme was combined with microfabrication techniques for the fabrication of suspended thin-film structures. The sidewall of \{CNT\} film pattern, left in fluidic channel removal process, was successfully removed by oxygen plasma etching with a masking layer of photoresist, as shown by scanning electron microscopy and atomic force microscopy. The resistivity of the aligned \{CNT\} film was found to be 2.2 × 10−3 Ω cm, smaller than that of films aligned by other techniques. The aligned \{CNT\} film was released by etching a sacrificial layer. Mechanical characterization showed a nominal Young's modulus of 635 GPa and yield strength of 2.4 GPa on the assumption of a fixed--fixed Euler beam. The reliable, scalable and processable fabrication process, the resulting high conductivity and excellent mechanical properties may enable aligned \{CNT\} films to be a potent candidate for electromechanical device applications. }, Author = {Dongjin Lee and Zhijiang Ye and Stephen A. Campbell and Tianhong Cui}, Date-Added = {2015-07-14 17:37:08 +0000}, Date-Modified = {2015-08-04 21:06:11 +0000}, Doi = {http://dx.doi.org/10.1016/j.sna.2012.06.013}, Issn = {0924-4247}, Journal = {Sensors and Actuators A: Physical}, Keywords = {\{NEMS\} switch}, Note = {Selected papers from The 16th International Conference on Solid-State Sensors, Actuators and Microsystems}, Number = {0}, Pages = {434 - 441}, Title = {Suspended and highly aligned carbon nanotube thin-film structures using open microfluidic channel template}, Url = {http://www.sciencedirect.com/science/article/pii/S0924424712003846}, Volume = {188}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QblN1c3BlbmRlZCBhbmQgaGlnaGx5IGFsaWduZWQgY2FyYm9uIG5hbm90dWJlIHRoaW4tZmlsbSBzdHJ1Y3R1cmVzIHVzaW5nIG9wZW4gbWljcm9mbHVpZGljIGNoYW5uZWwgdGVtcGxhdGUucGRm0hcLGBlXTlMuZGF0YU8RAtYAAAAAAtYAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9TdXNwZW5kZWQgYW5kIGhpZ2hseSAjRkIzMkUucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7Mu0cqkvAAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA0cr5HAAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFN1c3BlbmRlZCBhbmQgaGlnaGx5ICNGQjMyRS5wZGYADgDeAG4AUwB1AHMAcABlAG4AZABlAGQAIABhAG4AZAAgAGgAaQBnAGgAbAB5ACAAYQBsAGkAZwBuAGUAZAAgAGMAYQByAGIAbwBuACAAbgBhAG4AbwB0AHUAYgBlACAAdABoAGkAbgAtAGYAaQBsAG0AIABzAHQAcgB1AGMAdAB1AHIAZQBzACAAdQBzAGkAbgBnACAAbwBwAGUAbgAgAG0AaQBjAHIAbwBmAGwAdQBpAGQAaQBjACAAYwBoAGEAbgBuAGUAbAAgAHQAZQBtAHAAbABhAHQAZQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCaVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9TdXNwZW5kZWQgYW5kIGhpZ2hseSBhbGlnbmVkIGNhcmJvbiBuYW5vdHViZSB0aGluLWZpbG0gc3RydWN0dXJlcyB1c2luZyBvcGVuIG1pY3JvZmx1aWRpYyBjaGFubmVsIHRlbXBsYXRlLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAP8BBAEMA+YD6APtA/gEAQQPBBMEGgQjBCgENQQ4BEoETQRSAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABFQ=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0924424712003846}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.sna.2012.06.013}} @article{jin:2012, Abstract = {A sprayed carbon nanotube (CNT)-modified working electrode was successfully integrated into an electrochemical three-electrode system based on a glass substrate. The integrated biosensing system was fabricated through a series of photolithographic patterning and plasma etching processes. A CNT-dispersed solution was sprayed on the three-electrode system, and the CNT-modified surface was treated with O 2 plasma to pattern, clean, and activate the CNT layer. The optimized plasma treatment conditions were verified in terms of plasma power and treatment time by scanning electron microscopy (SEM), cyclic voltammetry (CV), and X-ray photoelectron spectroscopy (XPS).}, Author = {Joon-Hyung Jin and Joon Hyub Kim and Jun-Yong Lee and Cheol Jin Lee and Nam Ki Min}, Date-Added = {2015-07-14 17:33:03 +0000}, Date-Modified = {2015-08-04 21:01:25 +0000}, Journal = {Japanese Journal of Applied Physics}, Number = {1S}, Pages = {01AJ08}, Title = {Plasma-Enhanced Surface Modification of Sprayed Carbon Nanotube Electrodes for Lithographically Integrated Biosensing System}, Url = {http://stacks.iop.org/1347-4065/51/i=1S/a=01AJ08}, Volume = {51}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QgFBsYXNtYS1FbmhhbmNlZCBTdXJmYWNlIE1vZGlmaWNhdGlvbiBvZiBTcHJheWVkIENhcmJvbiBOYW5vdHViZSBFbGVjdHJvZGVzIGZvciBMaXRob2dyYXBoaWNhbGx5IEludGVncmF0ZWQgQmlvc2Vuc2luZyBTeXN0ZW0ucGRm0hcLGBlXTlMuZGF0YU8RAwwAAAAAAwwAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9QbGFzbWEtRW5oYW5jZWQgU3VyZmEjRkIzMUUucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7Me0cqjoAAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA0cr4AAAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AFBsYXNtYS1FbmhhbmNlZCBTdXJmYSNGQjMxRS5wZGYADgECAIAAUABsAGEAcwBtAGEALQBFAG4AaABhAG4AYwBlAGQAIABTAHUAcgBmAGEAYwBlACAATQBvAGQAaQBmAGkAYwBhAHQAaQBvAG4AIABvAGYAIABTAHAAcgBhAHkAZQBkACAAQwBhAHIAYgBvAG4AIABOAGEAbgBvAHQAdQBiAGUAIABFAGwAZQBjAHQAcgBvAGQAZQBzACAAZgBvAHIAIABMAGkAdABoAG8AZwByAGEAcABoAGkAYwBhAGwAbAB5ACAASQBuAHQAZQBnAHIAYQB0AGUAZAAgAEIAaQBvAHMAZQBuAHMAaQBuAGcAIABTAHkAcwB0AGUAbQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCsVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9QbGFzbWEtRW5oYW5jZWQgU3VyZmFjZSBNb2RpZmljYXRpb24gb2YgU3ByYXllZCBDYXJib24gTmFub3R1YmUgRWxlY3Ryb2RlcyBmb3IgTGl0aG9ncmFwaGljYWxseSBJbnRlZ3JhdGVkIEJpb3NlbnNpbmcgU3lzdGVtLnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAREBFgEeBC4EMAQ1BEAESQRXBFsEYgRrBHAEfQSABJIElQSaAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABJw=}, Bdsk-Url-1 = {http://stacks.iop.org/1347-4065/51/i=1S/a=01AJ08}} @article{zhu:2005, Abstract = { Well-aligned, high-purity carbon nanotube (CNT) stacks of up to 10 layers fabricated in one batch process have been formed by water-assisted selective etching of carbon atoms. Etching takes place at the CNT caps as well as at the interface between CNTs and metal catalyst particles. This simple process generates high-purity CNTs and opens the CNT ends by removing the nanotube caps. High-resolution transmission electron microscopy indicates that the process does not damage CNT wall structures. A mechanism for stacked growth of CNT layers is proposed. }, Author = {Zhu, Lingbo and Xiu, Yonghao and Hess, Dennis W. and Wong, Ching-Ping}, Date-Added = {2015-07-14 17:29:15 +0000}, Date-Modified = {2015-08-04 20:29:03 +0000}, Doi = {10.1021/nl051906b}, Eprint = {http://dx.doi.org/10.1021/nl051906b}, Journal = {Nano Letters}, Note = {PMID: 16351229}, Number = {12}, Pages = {2641-2645}, Read = {0}, Title = {Aligned Carbon Nanotube Stacks by Water-Assisted Selective Etching}, Url = {http://dx.doi.org/10.1021/nl051906b}, Volume = {5}, Year = {2005}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QRkFsaWduZWQgQ2FyYm9uIE5hbm90dWJlIFN0YWNrcyBieSBXYXRlci1Bc3Npc3RlZCBTZWxlY3RpdmUgRXRjaGluZy5wZGbSFwsYGVdOUy5kYXRhTxECXgAAAAACXgACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH0FsaWduZWQgQ2FyYm9uIE5hbm90I0E1QzQ1QS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAClxFrRyqLpAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADRyvdJAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToAQWxpZ25lZCBDYXJib24gTmFub3QjQTVDNDVBLnBkZgAOAI4ARgBBAGwAaQBnAG4AZQBkACAAQwBhAHIAYgBvAG4AIABOAGEAbgBvAHQAdQBiAGUAIABTAHQAYQBjAGsAcwAgAGIAeQAgAFcAYQB0AGUAcgAtAEEAcwBzAGkAcwB0AGUAZAAgAFMAZQBsAGUAYwB0AGkAdgBlACAARQB0AGMAaABpAG4AZwAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgByVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BbGlnbmVkIENhcmJvbiBOYW5vdHViZSBTdGFja3MgYnkgV2F0ZXItQXNzaXN0ZWQgU2VsZWN0aXZlIEV0Y2hpbmcucGRmABMAAS8AABUAAgAM//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A1wDcAOQDRgNIA00DWANhA28DcwN6A4MDiAOVA5gDqgOtA7IAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADtA==}, Bdsk-Url-1 = {http://dx.doi.org/10.1021/nl051906b}} @article{teichert:2013, Abstract = {This paper presents a biological microelectromechanical system for injecting foreign particles into thousands of cells simultaneously. The system inserts an array of microneedles into a monolayer of cells, and the foreign particles enter the cells by diffusion. The needle array is fabricated using a series of deep reactive ion etches and produces about 4 million needles that average 1 μm in diameter and 8 μm in length with 10 μm spacing. The insertion of the needles is controlled through a compliant suspension. The compliant suspension was designed to provide for needle motion into the cells while restraining rotations or transverse motions that could result in tearing of the cell membranes. Testing was performed using propidium iodide, a membrane impermeable dye, injected into HeLa cells. Average cell survivability was found to be 97.7%, and up to 97.9% of the surviving cells received the propidium iodide.}, Author = {Teichert, Gregory H. and Burnett, Sandra and Jensen, Brian D}, Date-Added = {2015-07-14 16:01:13 +0000}, Date-Modified = {2015-08-25 19:14:22 +0000}, Journal = {Journal of Micromechanics and Microengineering}, Number = {9}, Pages = {095003}, Title = {A microneedle array able to inject tens of thousands of cells simultaneously}, Url = {http://stacks.iop.org/0960-1317/23/i=9/a=095003}, Volume = {23}, Year = {2013}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUEEgbWljcm9uZWVkbGUgYXJyYXkgYWJsZSB0byBpbmplY3QgdGVucyBvZiB0aG91c2FuZHMgb2YgY2VsbHMgc2ltdWx0YW5lb3VzbHkucGRm0hcLGBlXTlMuZGF0YU8RAnwAAAAAAnwAAgAAB0x1bmRTU0QAAAAAAAAAAAAAAAAAAAAAAAAAANGqeqhIKwAAAA+ysB9BIG1pY3JvbmVlZGxlIGFycmF5IGEjRkIyQkMucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7K80cqOhgAAAAAAAAAAAAEAAgAACSAAAAAAAAAAAAAAAAAAAAAMQmlibGlvZ3JhcGh5ABAACAAA0arPCAAAABEACAAA0cri5gAAAAEAFAAPsrAAD7KuAA+uXgAPocAAD6G8AAIAWEx1bmRTU0Q6VXNlcnM6AGphc29uOgBEb2N1bWVudHM6AFJlc2VhcmNoOgBCaWJsaW9ncmFwaHk6AEEgbWljcm9uZWVkbGUgYXJyYXkgYSNGQjJCQy5wZGYADgCiAFAAQQAgAG0AaQBjAHIAbwBuAGUAZQBkAGwAZQAgAGEAcgByAGEAeQAgAGEAYgBsAGUAIAB0AG8AIABpAG4AagBlAGMAdAAgAHQAZQBuAHMAIABvAGYAIAB0AGgAbwB1AHMAYQBuAGQAcwAgAG8AZgAgAGMAZQBsAGwAcwAgAHMAaQBtAHUAbAB0AGEAbgBlAG8AdQBzAGwAeQAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgB8VXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BIG1pY3JvbmVlZGxlIGFycmF5IGFibGUgdG8gaW5qZWN0IHRlbnMgb2YgdGhvdXNhbmRzIG9mIGNlbGxzIHNpbXVsdGFuZW91c2x5LnBkZgATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOEA5gDuA24DcAN1A4ADiQOXA5sDogOrA7ADvQPAA9ID1QPaAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA9w=}, Bdsk-Url-1 = {http://stacks.iop.org/0960-1317/23/i=9/a=095003}} @article{chen:2002, Abstract = {A three-step purification process of multi-walled carbon nanotubes (MWNTs) produced by catalytic \{CVD\} method with Ni--Mg--O as catalysts is described. In the former two-step process, 3 M \{HNO3\} and 5 M \{HCl\} treatment are effective to remove metal and metal oxide. With thermogravimetric analysis (TGA), the burning temperature of \{MWNTs\} in air was determined and 510 $\,^{\circ}$C was chosen to be optimum temperature to eliminate non-nanotube carbon materials for the third step purification of MWNTs. By this way, larger than 96 wt.% purity of \{MWNTs\} is obtained without damage. }, Author = {Chen, X.H and Chen, C.S and Chen, Q and Cheng, F.Q and Zhang, G and Chen, Z.Z}, Date-Added = {2015-07-07 23:09:05 +0000}, Date-Modified = {2015-08-04 20:50:33 +0000}, Doi = {http://dx.doi.org/10.1016/S0167-577X(02)00863-7}, Issn = {0167-577X}, Journal = {Materials Letters}, Keywords = {\{CVD\} method}, Number = {3}, Pages = {734 - 738}, Title = {Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed \{CVD\}}, Url = {http://www.sciencedirect.com/science/article/pii/S0167577X02008637}, Volume = {57}, Year = {2002}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QW05vbi1kZXN0cnVjdGl2ZSBwdXJpZmljYXRpb24gb2YgbXVsdGktd2FsbGVkIGNhcmJvbiBuYW5vdHViZXMgcHJvZHVjZWQgYnkgY2F0YWx5emVkIENWRC5wZGbSFwsYGVdOUy5kYXRhTxECngAAAAACngACAAAHTHVuZFNTRAAAAAAAAAAAAAAAAAAAAAAAAAAA0ap6qEgrAAAAD7KwH05vbi1kZXN0cnVjdGl2ZSBwdXJpZiNGQjMxNC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsxTRwbfJAAAAAAAAAAAAAQACAAAJIAAAAAAAAAAAAAAAAAAAAAxCaWJsaW9ncmFwaHkAEAAIAADRqs8IAAAAEQAIAADRwgwpAAAAAQAUAA+ysAAPsq4AD65eAA+hwAAPobwAAgBYTHVuZFNTRDpVc2VyczoAamFzb246AERvY3VtZW50czoAUmVzZWFyY2g6AEJpYmxpb2dyYXBoeToATm9uLWRlc3RydWN0aXZlIHB1cmlmI0ZCMzE0LnBkZgAOALgAWwBOAG8AbgAtAGQAZQBzAHQAcgB1AGMAdABpAHYAZQAgAHAAdQByAGkAZgBpAGMAYQB0AGkAbwBuACAAbwBmACAAbQB1AGwAdABpAC0AdwBhAGwAbABlAGQAIABjAGEAcgBiAG8AbgAgAG4AYQBuAG8AdAB1AGIAZQBzACAAcAByAG8AZAB1AGMAZQBkACAAYgB5ACAAYwBhAHQAYQBsAHkAegBlAGQAIABDAFYARAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCHVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9Ob24tZGVzdHJ1Y3RpdmUgcHVyaWZpY2F0aW9uIG9mIG11bHRpLXdhbGxlZCBjYXJib24gbmFub3R1YmVzIHByb2R1Y2VkIGJ5IGNhdGFseXplZCBDVkQucGRmAAATAAEvAAAVAAIADP//AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOwA8QD5A5sDnQOiA60DtgPEA8gDzwPYA90D6gPtA/8EAgQHAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABAk=}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0167577X02008637}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/S0167-577X(02)00863-7}} @article{xu:2012, Abstract = { Alignment represents an important structural parameter of carbon nanotubes (CNTs) owing to their exceptionally high aspect ratio, one-dimensional property. In this paper, we demonstrate a general approach to control the alignment of few-walled CNT forests from nearly random to nearly ideally aligned by tailoring the density of active catalysts at the catalyst formation stage, which can be experimentally achieved by controlling the CNT forest mass density. Experimentally, we found that the catalyst density and the degree of alignment were inseparably linked because of a crowding effect from neighboring CNTs, that is, the increasing confinement of CNTs with increased density. Therefore, the CNT density governed the degree of alignment, which increased monotonically with the density. This relationship, in turn, allowed the precise control of the alignment through control of the mass density. To understand this behavior further, we developed a simple, first-order model based on the flexural modulus of the CNTs that could quantitatively describe the relationship between the degree of alignment (HOF) and carbon nanotube spacing (crowding effect) of any type of CNTs. }, Author = {Xu, Ming and Futaba, Don N. and Yumura, Motoo and Hata, Kenji}, Date-Added = {2015-07-06 16:55:53 +0000}, Date-Modified = {2015-08-04 20:29:09 +0000}, Doi = {10.1021/nn300142j}, Eprint = {http://dx.doi.org/10.1021/nn300142j}, Journal = {ACS Nano}, Note = {PMID: 22703583}, Number = {7}, Pages = {5837-5844}, Title = {Alignment Control of Carbon Nanotube Forest from Random to Nearly Perfectly Aligned by Utilizing the Crowding Effect}, Url = {http://dx.doi.org/10.1021/nn300142j}, Volume = {6}, Year = {2012}, Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QeEFsaWdubWVudCBDb250cm9sIG9mIENhcmJvbiBOYW5vdHViZSBGb3Jlc3QgZnJvbSBSYW5kb20gdG8gTmVhcmx5IFBlcmZlY3RseSBBbGlnbmVkIGJ5IFV0aWxpemluZyB0aGUgQ3Jvd2RpbmcgRWZmZWN0LnBkZtIXCxgZV05TLmRhdGFPEQL0AAAAAAL0AAIAAAdMdW5kU1NEAAAAAAAAAAAAAAAAAAAAAAAAAADRqnqoSCsAAAAPsrAfQWxpZ25tZW50IENvbnRyb2wgb2YgI0ZCMkMyLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+ywtHADtoAAAAAAAAAAAABAAIAAAkgAAAAAAAAAAAAAAAAAAAADEJpYmxpb2dyYXBoeQAQAAgAANGqzwgAAAARAAgAANHAYzoAAAABABQAD7KwAA+yrgAPrl4AD6HAAA+hvAACAFhMdW5kU1NEOlVzZXJzOgBqYXNvbjoARG9jdW1lbnRzOgBSZXNlYXJjaDoAQmlibGlvZ3JhcGh5OgBBbGlnbm1lbnQgQ29udHJvbCBvZiAjRkIyQzIucGRmAA4A8gB4AEEAbABpAGcAbgBtAGUAbgB0ACAAQwBvAG4AdAByAG8AbAAgAG8AZgAgAEMAYQByAGIAbwBuACAATgBhAG4AbwB0AHUAYgBlACAARgBvAHIAZQBzAHQAIABmAHIAbwBtACAAUgBhAG4AZABvAG0AIAB0AG8AIABOAGUAYQByAGwAeQAgAFAAZQByAGYAZQBjAHQAbAB5ACAAQQBsAGkAZwBuAGUAZAAgAGIAeQAgAFUAdABpAGwAaQB6AGkAbgBnACAAdABoAGUAIABDAHIAbwB3AGQAaQBuAGcAIABFAGYAZgBlAGMAdAAuAHAAZABmAA8AEAAHAEwAdQBuAGQAUwBTAEQAEgCkVXNlcnMvamFzb24vRG9jdW1lbnRzL1Jlc2VhcmNoL0JpYmxpb2dyYXBoeS9BbGlnbm1lbnQgQ29udHJvbCBvZiBDYXJib24gTmFub3R1YmUgRm9yZXN0IGZyb20gUmFuZG9tIHRvIE5lYXJseSBQZXJmZWN0bHkgQWxpZ25lZCBieSBVdGlsaXppbmcgdGhlIENyb3dkaW5nIEVmZmVjdC5wZGYAEwABLwAAFQACAAz//wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgEJAQ4BFgQOBBAEFQQgBCkENwQ7BEIESwRQBF0EYARyBHUEegAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAR8}, Bdsk-Url-1 = {http://dx.doi.org/10.1021/nn300142j}} @Article{yang:2015, author = {Yang, Ren-Xuan and Chuang, Kui-Hao and Wey, Ming-Yen}, title = {Effects of Nickel Species on Ni/Al2O3 Catalysts in Carbon Nanotube and Hydrogen Production by Waste Plastic Gasification: Bench- and Pilot-Scale Tests}, journal = {Energy \& Fuels}, year = {2015}, volume = {29}, number = {12}, pages = {8178-8187}, abstract = { Upcycling waste plastics into carbon nanotubes (CNTs) and hydrogen is attractive for its efficient disposal. Although Ni-based catalysts are typically used in both hydrogen production and CNT synthesis, few studies have investigated the catalytic active site for the co-production of CNTs and hydrogen by waste plastic gasification. To evaluate the effect of nickel species distribution of the Ni/Al2O3 catalyst, it was prepared by an impregnation method using different calcination atmospheres to determine their feasibility for the co-production of CNTs and hydrogen. For comparison, various Ni/Al2O3 catalysts for CNT growth were examined by CH4 thermal chemical vapor deposition (CVD). Ni/Al2O3 calcined under a reductive H2 atmosphere (H–Ni/Al2O3) gave smaller nickel nanoparticles containing metallic nickel species, which showed optimal performance for CNT and hydrogen co-production by waste plastic gasification. In addition, the quality of the CNTs was higher using this process compared to the CNTs synthesized by CH4 thermal CVD. Further examination of the catalysis temperature found that the H–Ni/Al2O3 catalyst gave higher quality CNTs in a 24.3\% yield, along with a hydrogen production rate of 325.4 mmol h–1 g–1 of catalyst at 680 °C. The produced H–Ni/Al2O3 contained metallic nickel, demonstrating an improved catalytic activity for CNT and hydrogen production from waste plastics. }, doi = {10.1021/acs.energyfuels.5b01866}, eprint = { http://dx.doi.org/10.1021/acs.energyfuels.5b01866 }, file = {:Effects of Nickel Species on Ni_Al2O3 Catalysts in Carbon Nanotube and Hydrogen Production by Waste Plastic Gasification.pdf:PDF}, url = { http://dx.doi.org/10.1021/acs.energyfuels.5b01866 }, } @Article{DELASCASAS201274, author = {Charles de las Casas and Wenzhi Li}, title = {A review of application of carbon nanotubes for lithium ion battery anode material}, journal = {Journal of Power Sources}, year = {2012}, volume = {208}, pages = {74 - 85}, abstract = {With their unique structural, mechanical, and electrical properties, carbon nanotubes are promising candidates for use as anode material in lithium ion batteries. As an allotrope of graphite, carbon nanotubes have already been presented as a competitive lithium storage material. What is more, carbon nanotubes can be a critical component in nanostructured anode materials with greatly improved capacity and cyclability. Carbon nanotubes have demonstrated to be very effective buffering components, and can serve as the backbone in nanostructured anode materials since they can alleviate the degradation of the structural integrity that often results from the significant volume change associated with the charging and discharging process. In addition, the highly conductive carbon nanotubes offer enhanced electronic transport in these nanostructured anode materials. This paper reviews the recent progress of using carbon nanotubes as components of anode material to improve the performance of lithium ion batteries.}, doi = {http://dx.doi.org/10.1016/j.jpowsour.2012.02.013}, groups = {Energy}, issn = {0378-7753}, keywords = {Lithium ion battery, Anode materials, Carbon nanotubes, Nanostructured composite}, url = {http://www.sciencedirect.com/science/article/pii/S037877531200314X}, } @Article{CHEN2009291, author = {Haisheng Chen and Thang Ngoc Cong and Wei Yang and Chunqing Tan and Yongliang Li and Yulong Ding}, title = {Progress in electrical energy storage system: A critical review}, journal = {Progress in Natural Science}, year = {2009}, volume = {19}, number = {3}, pages = {291 - 312}, abstract = {Electrical energy storage technologies for stationary applications are reviewed. Particular attention is paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage, flywheel, capacitor/supercapacitor, and thermal energy storage. Comparison is made among these technologies in terms of technical characteristics, applications and deployment status.}, doi = {http://dx.doi.org/10.1016/j.pnsc.2008.07.014}, file = {:D\:\\users\\jason.lund\\Documents\\Energy\\Progress in electrical energy storage system_ A critical review.pdf:PDF}, groups = {Energy}, issn = {1002-0071}, keywords = {Progress, Electrical energy storage}, url = {http://www.sciencedirect.com/science/article/pii/S100200710800381X}, } @InProceedings{7731812, author = {Aoxia Chen and P. K. Sen}, title = {Advancement in battery technology: A state-of-the-art review}, booktitle = {2016 IEEE Industry Applications Society Annual Meeting}, year = {2016}, pages = {1-10}, month = {Oct}, abstract = {Environmental issues and greenhouse gas emissions, concerns of generating electricity by burning fossil fuel, and recent increase in energy price, the number of Plug-in Electric Vehicles (PEVs) has been rising in recent years and will continue to grow. Modern electric power system at the same time is gradually evolving into a smarter grid with two-way flow of information and electricity between demand and supply. Battery Energy Storage System (BESS) is considered to be an integral part and one of the most promising ideas to achieve this concept. It can provide a variety of applications for solving issues such as intermittency of wind and solar. The upward trends of PEVs and BESSs have made battery technology a key factor. Many research facilities and manufactures are working on developing the better battery for such applications. Lithium-ion type of battery is considered to be one of the most promising technology. Much has been written about the BESS, but there is not a comprehensive paper that deals with the application of battery. This paper hopes to close the gap between various technologies and application considerations.}, doi = {10.1109/IAS.2016.7731812}, groups = {Energy}, keywords = {air pollution;battery powered vehicles;battery storage plants;demand side management;power markets;pricing;secondary cells;smart power grids;supply and demand;BESS;PEV;battery energy storage system;battery technology;demand and supply;electric power system;electricity generation;energy price;environmental issues;fossil fuel burning;greenhouse gas emissions;plug-in electric vehicles;smart grid;Batteries;Battery charge measurement;Discharges (electric);Lead;State of charge;Uninterruptible power systems;Battery;Battery Energy Storage System (BESS);Lithium-ion;Plug-in Electric Vehicle (PEV)}, } @Article{PETERS2017491, author = {Jens F. Peters and Manuel Baumann and Benedikt Zimmermann and Jessica Braun and Marcel Weil}, title = {The environmental impact of Li-Ion batteries and the role of key parameters – A review}, journal = {Renewable and Sustainable Energy Reviews}, year = {2017}, volume = {67}, pages = {491 - 506}, abstract = {The increasing presence of Li-Ion batteries (LIB) in mobile and stationary energy storage applications has triggered a growing interest in the environmental impacts associated with their production. Numerous studies on the potential environmental impacts of LIB production and LIB-based electric mobility are available, but these are very heterogeneous and the results are therefore difficult to compare. Furthermore, the source of inventory data, which is key to the outcome of any study, is often difficult to trace back. This paper provides a review of LCA studies on Li-Ion batteries, with a focus on the battery production process. All available original studies that explicitly assess LIB production are summarized, the sources of inventory data are traced back and the main assumptions are extracted in order to provide a quick overview of the technical key parameters used in each study. These key parameters are then compared with actual battery data from industry and research institutions. Based on the results from the reviewed studies, average values for the environmental impacts of LIB production are calculated and the relevance of different assumptions for the outcomes of the different studies is pointed out. On average, producing 1Wh of storage capacity is associated with a cumulative energy demand of 328Wh and causes greenhouse gas (GHG) emissions of 110 gCO2eq. Although the majority of existing studies focus on GHG emissions or energy demand, it can be shown that impacts in other categories such as toxicity might be even more important. Taking into account the importance of key parameters for the environmental performance of Li-Ion batteries, research efforts should not only focus on energy density but also on maximizing cycle life and charge-discharge efficiency.}, doi = {http://dx.doi.org/10.1016/j.rser.2016.08.039}, groups = {Energy}, issn = {1364-0321}, keywords = {Life cycle assessment, Li-Ion battery, Battery production, Environmental impact, GHG emissions}, url = {http://www.sciencedirect.com/science/article/pii/S1364032116304713}, } @Article{GONZALEZ20161189, author = {Ander González and Eider Goikolea and Jon Andoni Barrena and Roman Mysyk}, title = {Review on supercapacitors: Technologies and materials}, journal = {Renewable and Sustainable Energy Reviews}, year = {2016}, volume = {58}, pages = {1189 - 1206}, abstract = {In this review, the technologies and working principles of different materials used in supercapacitors are explained. The most important supercapacitor active materials are discussed from both research and application perspectives, together with brief explanations of their properties, such as specific surface area and capacitance values. A review of different supercapacitor electrolytes is given and their positive and negative features are discussed. Finally, cell configurations are considered, pointing out the advantages and drawbacks of each configuration.}, doi = {http://dx.doi.org/10.1016/j.rser.2015.12.249}, groups = {Energy}, issn = {1364-0321}, keywords = {Supercapacitor, Electric double-layer, Pseudocapacitance, Electrode material, Electrolyte}, url = {http://www.sciencedirect.com/science/article/pii/S1364032115016329}, } @Article{doi:10.1021/acs.chemrev.7b00115, author = {Cheng, Xin-Bing and Zhang, Rui and Zhao, Chen-Zi and Zhang, Qiang}, title = {Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review}, journal = {Chemical Reviews}, year = {2017}, volume = {117}, number = {15}, pages = {10403-10473}, note = {PMID: 28753298}, abstract = { The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applications is included. A general conclusion and a perspective on the current limitations and recommended future research directions of lithium metal batteries are presented. The review concludes with an attempt at summarizing the theoretical and experimental achievements in lithium metal anodes and endeavors to realize the practical applications of lithium metal batteries. }, doi = {10.1021/acs.chemrev.7b00115}, eprint = { http://dx.doi.org/10.1021/acs.chemrev.7b00115 }, groups = {Energy}, url = { http://dx.doi.org/10.1021/acs.chemrev.7b00115 }, } @Article{SEHRAWAT201612, author = {Poonam Sehrawat and C. Julien and S.S. Islam}, title = {Carbon nanotubes in Li-ion batteries: A review}, journal = {Materials Science and Engineering: B}, year = {2016}, volume = {213}, pages = {12 - 40}, note = {Li-ion batteries}, abstract = {Portable-electronics epitomizing technological breakthrough in history of mankind, are universal reality thanks to rechargeable batteries. LIBs, lithium-ion batteries, owing to high-reversible capacity, high-power capability, good-safety, long-life and zero-memory effects are at the heart of this revolution. Nonetheless, longer-battery-life, higher-current- and power-density, better-safety, and flexibility, crucial for portables and hybrid-electric-vehicles further fuel the research to better their electrochemistry. Electrode materials are vital for performance of batteries. Recent developments in nanoscience and nanotechnology offer potential prospects to devise novel-nanostructured electrode materials for next-generation better-performing LIBs. Nanostructured materials are pivotal to these progresses due to their manageable surface-area, stunted mass and charge-diffusion span, and volume change acclimatization during charging/discharging. CNTs, carbon-nanotubes, with distinct 1D-tubular structure, excellent electrical and thermal conductivities, mechanical flexibility and significantly large surface-area, are considered ideal additives to enrich electrodes’ chemistry. Here, we observe contemporary developments in synthesis and characterization of CNTs and CNTs-based nanostructured composite-electrodes for utilization in LIBs.}, doi = {http://dx.doi.org/10.1016/j.mseb.2016.06.013}, groups = {Energy}, issn = {0921-5107}, keywords = {Carbon nanotubes, Lithium-ion batteries, Composite electrodes}, url = {http://www.sciencedirect.com/science/article/pii/S0921510716300873}, } @Article{doi:10.1021/acs.jpclett.7b01653, author = {Aravindan, Vanchiappan and Sennu, Palanichamy and Lee, Yun-Sung and Madhavi, Srinivasan}, title = {Practical Li-Ion Battery Assembly with One-Dimensional Active Materials}, journal = {The Journal of Physical Chemistry Letters}, year = {2017}, volume = {8}, number = {17}, pages = {4031-4037}, note = {PMID: 28809122}, abstract = { Research activities on the development of one-dimensional (1D) nanostructures and their successful implementation in the fabrication of high-performance practical Li-ion batteries (LIBs) are described. Although numerous 1D-structured materials have been explored for use in LIBs as anodes, cathodes, and separator-cum-electrolytes, only a very limited number of studies report the practical assembly of LIBs using these components. As a result, the salient features of using 1D materials in charge-storage devices have not been realized from an application perspective. Exceptional battery performance is reported when all-1D-based electro-active materials are used to fabricate LIBs. Using all-1D nanostructures not only provides high power capability, energy density, and durability, it also opens up new avenues for developing high-performance next-generation Li-ion power packs. }, doi = {10.1021/acs.jpclett.7b01653}, eprint = { http://dx.doi.org/10.1021/acs.jpclett.7b01653 }, url = { http://dx.doi.org/10.1021/acs.jpclett.7b01653 }, } @Article{C6TA08456G, author = {Keppeler, Miriam and Shen, Nan and Nageswaran, Shubha and Srinivasan, Madhavi}, title = {Synthesis of [small alpha]-Fe2O3/carbon nanocomposites as high capacity electrodes for next generation lithium ion batteries: a review}, journal = {J. Mater. Chem. A}, year = {2016}, volume = {4}, pages = {18223-18239}, abstract = {Graphite{,} widely employed as an anode in LIBs{,} is limited by a theoretical capacity of 372 mA h g-1. Progress in nanoscience and energy storage systems has brought attention to nano-sized [small alpha]-Fe2O3 as next-generation anodes{,} providing capacities up to three times higher than graphite. However{,} mass-market application remains challenging due to a long-term cycling capacity loss{,} the intrinsic low conductivity and safety concerns regarding the {"}nano-nature{"} of [small alpha]-Fe2O3 nanoparticles. Promising solution concepts include the embedding of [small alpha]-Fe2O3 into conductive sp2 derived carbons with volume-buffer capabilities. This review article presents the current status of [small alpha]-Fe2O3/carbon nanocomposites with superior electrochemical performance based on 2D graphene{,} 1D carbon nanofibers and 1D carbon nanotubes.}, doi = {10.1039/C6TA08456G}, groups = {Energy}, issue = {47}, publisher = {The Royal Society of Chemistry}, url = {http://dx.doi.org/10.1039/C6TA08456G}, } @Article{doi:10.1021/jp912056x, author = {Li-Pook-Than, Andrew and Lefebvre, Jacques and Finnie, Paul}, title = {Phases of Carbon Nanotube Growth and Population Evolution from in Situ Raman Spectroscopy during Chemical Vapor Deposition}, journal = {The Journal of Physical Chemistry C}, year = {2010}, volume = {114}, number = {25}, pages = {11018-11025}, abstract = { The dynamical evolution of nanotube chemical vapor deposition growth was investigated by in situ spectroscopy of three main Raman bands: G, D, and RBM. The evolution in diameter distribution is inferred from RBM and G bands, and the evolution in crystallinity is determined from D and G bands. A consistent sequence of the growth evolution is observed, with four discernible phases: incubation, acceleration, linear growth, and termination. The temperature dependence of each of these stages of growth is experimentally determined, and characteristic energy scales apparently associated with each phase are extracted. The growth becomes slower as the temperature increases, with activated, parasitic reactions suggested as a cause. We explore to what extent one diameter grows in comparison to another and thus gain some insight into how the nanotube population changes with time. }, doi = {10.1021/jp912056x}, eprint = { http://dx.doi.org/10.1021/jp912056x }, groups = {Energy}, url = { http://dx.doi.org/10.1021/jp912056x }, } @Article{Li-Pook-Than2010, author = {Li-Pook-Than, Andrew and Lefebvre, Jacques and Finnie, Paul}, title = {Phases of Carbon Nanotube Growth and Population Evolution from in Situ Raman Spectroscopy during Chemical Vapor Deposition}, journal = {The Journal of Physical Chemistry C}, year = {2010}, volume = {114}, number = {25}, pages = {11018-11025}, abstract = { The dynamical evolution of nanotube chemical vapor deposition growth was investigated by in situ spectroscopy of three main Raman bands: G, D, and RBM. The evolution in diameter distribution is inferred from RBM and G bands, and the evolution in crystallinity is determined from D and G bands. A consistent sequence of the growth evolution is observed, with four discernible phases: incubation, acceleration, linear growth, and termination. The temperature dependence of each of these stages of growth is experimentally determined, and characteristic energy scales apparently associated with each phase are extracted. The growth becomes slower as the temperature increases, with activated, parasitic reactions suggested as a cause. We explore to what extent one diameter grows in comparison to another and thus gain some insight into how the nanotube population changes with time. }, doi = {10.1021/jp912056x}, eprint = { http://dx.doi.org/10.1021/jp912056x }, url = { http://dx.doi.org/10.1021/jp912056x }, } @Article{SHAIKH20161041, author = {Faisal Karim Shaikh and Sherali Zeadally}, title = {Energy harvesting in wireless sensor networks: A comprehensive review}, journal = {Renewable and Sustainable Energy Reviews}, year = {2016}, volume = {55}, pages = {1041 - 1054}, abstract = {Recently, Wireless Sensor Networks (WSNs) have attracted lot of attention due to their pervasive nature and their wide deployment in Internet of Things, Cyber Physical Systems, and other emerging areas. The limited energy associated with WSNs is a major bottleneck of WSN technologies. To overcome this major limitation, the design and development of efficient and high performance energy harvesting systems for WSN environments are being explored. We present a comprehensive taxonomy of the various energy harvesting sources that can be used by WSNs. We also discuss various recently proposed energy prediction models that have the potential to maximize the energy harvested in WSNs. Finally, we identify some of the challenges that still need to be addressed to develop cost-effective, efficient, and reliable energy harvesting systems for the WSN environment.}, doi = {http://dx.doi.org/10.1016/j.rser.2015.11.010}, groups = {Energy}, issn = {1364-0321}, keywords = {Energy harvesting, Photovoltaic harvester, Piezoelectric harvester, Vibration harvester, Thermal harvester, Flow harvester, Wind harvester}, url = {http://www.sciencedirect.com/science/article/pii/S1364032115012629}, } @Article{GLASER200649, author = {A. Glaser and S.M. Rosiwal and R.F. Singer}, title = {Chemical vapor infiltration (CVI) — Part II: Infiltration of porous substrates with diamond by using a new designed hot-filament plant}, journal = {Diamond and Related Materials}, year = {2006}, volume = {15}, number = {1}, pages = {49 - 54}, abstract = {We designed a new hot-filament plant which features some new operating states for chemical vapor infiltration (CVI) with diamond. Most characteristic for the new hot-filament plant is the possibility of a forced flow of the activated gas species through a porous substrate. Separate feeding of hydrogen, methane and oxygen above or underneath the substrate ensures the production of pertinent carbon growth species like CH3 directly at or in the substrate or rather in the pore. We infiltrated porous substrates by using several operating states and compared the results with standard processes. For these first experiments we have set the addition of oxygen aside, which was viable for the infiltration experiments described in Part I of the paper. In order to achieve good infiltration results it was necessary to use very low methane concentrations between 0.2% and 0.3%. We were able to infiltrate at high growth rates (>0.5 μm/h) combined with a good diamond quality (>90%). Moreover it was possible to alleviate the “bottleneck” effect which we described in Part I of the paper. Raman spectroscopy and SEM were used to characterize the deposited or rather infiltrated diamond.}, doi = {https://doi.org/10.1016/j.diamond.2005.07.010}, issn = {0925-9635}, keywords = {Vapor growth, Hot-filament cvd, Silicon carbide, Composites}, url = {http://www.sciencedirect.com/science/article/pii/S0925963505002566}, } @Article{GLASER2004834, author = {A. Glaser and S.M. Rosiwal and B. Freels and R.F. Singer}, title = {Chemical vapor infiltration (CVI)—Part I: a new technique to achieve diamond composites}, journal = {Diamond and Related Materials}, year = {2004}, volume = {13}, number = {4}, pages = {834 - 838}, note = {14th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide}, abstract = {Diamond/metal or diamond/ceramics penetration structures have a high potential as, e.g. heat sinks in the microelectronic industry and for tribological applications. To learn more about the basic principles in fabricating these new composites, we infiltrated porous structures of silicon carbide with diamond by chemical vapor infiltration (CVI). As a result we get a 3D penetration structures of diamond and substrate. This requires substrates with an open pored structure. An acceptable growth rate, a high amount of sp3-bondings in the coating and the complete infiltration of the substrate are important requirements on the CVI-process. These requirements should be fulfilled with an effective variation of the process parameters gas pressure, gas flow, gas composition of the feed gas and the substrate temperature. The diffusion rate of the important gas species for diamond growth (H, CH3) should be high compared to their durability. With a forced convection the transport rate of the gas species should be improved. For this, we designed a new hot filament apparatus for CVI, which allows some new operating states. Furthermore, we have investigated the fabrication of diamond penetration structures by CVI using a standard microwave plasma deposition reactor (ASTeX AX 6350) and a standard industrial hot filament apparatus (CC800D). Raman spectroscopy and SEM were used to characterize the diamond films.}, doi = {https://doi.org/10.1016/j.diamond.2003.10.041}, issn = {0925-9635}, keywords = {Chemical vapor infiltration or interface structure, Hot filament CVD, Silicon carbide, Electronic device structures}, url = {http://www.sciencedirect.com/science/article/pii/S0925963503004394}, } @Article{cervantessodi:2010, author = {Cervantes-Sodi, Felipe and McNicholas, Thomas P. and Simmons, Jay G. and Liu, Jie and Csányi, Gabor and Ferrari, Andrea C. and Curtarolo, Stefano}, title = {Viscous State Effect on the Activity of Fe Nanocatalysts}, journal = {ACS Nano}, year = {2010}, volume = {4}, number = {11}, pages = {6950-6956}, note = {PMID: 20964288}, abstract = { Many applications of nanotubes and nanowires require controlled bottom-up engineering of these nanostructures. In catalytic chemical vapor deposition, the thermo-kinetic state of the nanocatalysts near the melting point is one of the factors ruling the morphology of the grown structures. We present theoretical and experimental evidence of a viscous state for nanoparticles near their melting point. The state exists over a temperature range scaling inversely with the catalyst size, resulting in enhanced self-diffusion and fluidity across the solid−liquid transformation. The overall effect of this phenomenon on the growth of nanotubes is that, for a given temperature, smaller nanoparticles have a larger reaction rate than larger catalysts. }, doi = {10.1021/nn101883s}, eprint = {https://doi.org/10.1021/nn101883s}, url = { https://doi.org/10.1021/nn101883s }, } @Article{yang:2018, author = {Yang, N., Youn, S., Frouzakis, C., and Park, H.}, title = {An effect of gas-phase reactions on the vertically aligned CNT growth by temperature gradient chemical vapor deposition}, journal = {Carbon}, year = {2018}, volume = {130}, pages = {607-613}, } @Article{CLARKE200367, author = {David R. Clarke}, title = {Materials selection guidelines for low thermal conductivity thermal barrier coatings}, journal = {Surface and Coatings Technology}, year = {2003}, volume = {163-164}, pages = {67 - 74}, issn = {0257-8972}, note = {Proceedings of the 29th International conference on Metallurgical Coatings and Thin Films}, abstract = {Materials selection guidelines are desirable in identifying and developing alternative materials for higher-temperature capability thermal barrier coatings. Some relate to identifying candidate materials that exhibit particularly low values of thermal conductivity at high temperatures and others relate to thermodynamic stability in contact with the thermally grown oxides formed on bond-coat alloys and superalloys. By using existing theories of the minimum thermal conductivity, a materials parameter is developed that can be used to identify candidate alternatives to yttria-stabilized zirconia for high-temperature applications.}, doi = {https://doi.org/10.1016/S0257-8972(02)00593-5}, keywords = {Thermal barrier coatings, Thermodynamic stability, Materials parameter}, url = {http://www.sciencedirect.com/science/article/pii/S0257897202005935}, } @Article{DERVISHI2013307, author = {Enkeleda Dervishi and Alexandru R. Biris and Joshua A. Driver and Fumiya Watanabe and Shawn Bourdo and Alexandru S. Biris}, title = {Low-temperature (150°C) carbon nanotube growth on a catalytically active iron oxide–graphene nano-structural system}, journal = {Journal of Catalysis}, year = {2013}, volume = {299}, pages = {307 - 315}, issn = {0021-9517}, abstract = {In this work, we report the growth of carbon nanotubes (CNTs) at temperatures as low as 150°C on an iron oxide–graphene, multicomponent, nano-structural system. A radio-frequency generator and an electrical furnace are separately used to heat the decorated graphene samples in an argon/hydrogen environment without adding any external hydrocarbon source. Few-layer graphene sheets are decorated with iron oxide nanoparticles using a simple one-step process and thoroughly characterized by electron microscopy. The synthesis temperature is varied between 150 and 500°C, and nanotube’s presence is confirmed by transmission and scanning electron microscopy. We find that, while the graphene decorated with 5nm iron oxide nanoparticles forms nanotubes at the lowest temperature (150°C), the decorated samples with larger nanoparticles (15nm) only initiate nanotube growth at 400°C or higher, indicating a strong size-dependence on the catalytic activity of these nanoparticles. This low-temperature, facile technique opens the door to a wide range of applications for these novel nanoparticle/graphene-nanotube systems in areas varying from nano-electronics and energy harvesting to bio-nano.}, doi = {https://doi.org/10.1016/j.jcat.2012.12.013}, keywords = {Graphene, Iron oxide catalyst, Low-temperature growth, Carbon nanotube, Chemical vapor deposition}, url = {http://www.sciencedirect.com/science/article/pii/S002195171200406X}, } @Article{doi:10.1002/pssr.201105388, author = {Murphy, J. D. and Falster, R. J.}, title = {Contamination of silicon by iron at temperatures below 800 °C}, journal = {physica status solidi (RRL) – Rapid Research Letters}, year = {2011}, volume = {5}, number = {10‐11}, pages = {370-372}, abstract = {Abstract Iron-related defects are deleterious in silicon-based integrated circuits and photovoltaics, ruining devices and acting as strong recombination centres. Unless great care is taken, iron contamination will result from high temperature processing and so it is essential to understand the degree to which this can occur. Iron solubility data above ∼800 °C have been summarised by Istratov et al. (Appl. Phys. A 69, 13 (1999)), but many processes are performed at lower temperatures for which solubility data are scarce. We have studied iron contamination below ∼800 °C. Iron concentrations in intention- ally contaminated air-annealed Czochralski silicon samples were determined from the change in minority carrier lifetime due to photodissociation of FeB pairs measured by quasi-steady-state photoconductance. In the ∼600 to 800 °C temperature range the iron concentration was found to vary according to \$ 1.3 \times 10^{21} \; {\rm exp} \;\left (- { {1.8\;{\rm eV} } \over {kT} } \right)\;{\rm cm}^{-3}. It is therefore the case that significantly more iron can dissolve in silicon at these temperatures than extrapolation of higher temperature data suggests, with the enhancement being by a factor of >20 at 600 °C. (© 2011 WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim)}, doi = {10.1002/pssr.201105388}, eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1002/pssr.201105388}, keywords = {silicon, iron, solubility, lifetime}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/pssr.201105388}, } @Article{opencv_library, author = {Bradski, G.}, title = {{The OpenCV Library}}, journal = {Dr. Dobb's Journal of Software Tools}, year = {2000}, citeulike-article-id = {2236121}, keywords = {bibtex-import}, posted-at = {2008-01-15 19:21:54}, } @InProceedings{pandas, author = {McKinney, Wes and others}, title = {Data structures for statistical computing in python}, booktitle = {Proceedings of the 9th Python in Science Conference}, year = {2010}, volume = {445}, pages = {51--56}, organization = {Austin, TX}, } @Article{pan_phillpot_wan_chernatynskiy_qu_2012, author = {Pan, Wei and Phillpot, Simon R. and Wan, Chunlei and Chernatynskiy, Aleksandr and Qu, Zhixue}, title = {Low thermal conductivity oxides}, journal = {MRS Bulletin}, year = {2012}, volume = {37}, number = {10}, pages = {917–922}, doi = {10.1557/mrs.2012.234}, publisher = {Cambridge University Press}, } @Article{HAJILOUNEZHAD2019100371, author = {Taher Hajilounezhad and Damola M. Ajiboye and Matthew R. Maschmann}, title = {Evaluating the forces generated during carbon nanotube forest growth and self-assembly}, journal = {Materialia}, year = {2019}, volume = {7}, pages = {100371}, issn = {2589-1529}, abstract = {The time-resolved reaction forces generated by actively growing and interacting carbon nanotube (CNT) forests are investigated using a mechanical finite element model. The CNT–CNT interaction forces are transmitted to the CNT catalyst particle residing at the base of each CNT, which may alter catalyst kinetics and modulate CNT growth rate. The simulation shows that CNTs growing at a rate greater than the population average transmit compressive force to the catalyst particle, while those growing at a slower rate transmitted tensile force. The magnitude of force for CNTs growing at a rate that was +/− 10% of the population average was on the order of 100′s of nanonewtons, corresponding to stress on the order of GPa. When using an Arrhenius-like kinetic model to modulate CNT growth rates, the growth rate of slower CNTs was enhanced by tensile forces, while the growth rate of faster growing CNTs was decreased by compressive forces. The net result of the force-modulation kinetics was a reaction force reduction of approximately an order of magnitude. Understanding how the growth parameters of an individual CNT are related to the mechanical forces it experiences during CNT forest assembly and the overall CNT morphology is expected to improve the control of CNT forest morphology and ensemble forest properties.}, doi = {https://doi.org/10.1016/j.mtla.2019.100371}, keywords = {Carbon nanotubes, Mechanics, Mechanochemistry, Self-assembly, Finite element, Simulation}, url = {http://www.sciencedirect.com/science/article/pii/S258915291930167X}, } @Article{rui:2009, author = {Yao, Rui and Blanchard, James}, title = {{A Micro-Insulation Concept for MEMS Applications}}, journal = {Journal of Heat Transfer}, year = {2009}, volume = {131}, number = {5}, month = {03}, issn = {0022-1481}, note = {052401}, abstract = {{Small scale, thermally driven power sources will require appropriate insulation to achieve sufficiently high thermal conversion efficiencies. This paper presents a micro-insulation design, which was developed for a thermionic microbattery, which converts the decay heat from radioactive isotopes directly to electricity using a vacuum thermionic diode. The insulation concept, which is suitable for any small scale application, separates two planar surfaces with thin, semicircular posts, thus reducing conduction heat transfer and increasing the relative radiation heat transfer. In this case, the surfaces are silicon wafers and the columns are SU-8, a photoresist material. The experimental results indicate that this design is adequate for a practical power source concept, and they are supported by a numerical model for the effective thermal conductivity of the structure. The results show that a typical design of 20 columns/cm2 with a 200 μm diameter and a 10 μm wall thickness has an apparent thermal conductivity on the order of 10−4 W/m K at a pressure of 1 Pa. System models of a thermionic power source indicate that this is sufficiently low to provide practical efficiency.}}, doi = {10.1115/1.3084121}, eprint = {https://asmedigitalcollection.asme.org/heattransfer/article-pdf/131/5/052401/5916931/052401\_1.pdf}, url = {https://doi.org/10.1115/1.3084121}, } @Misc{Lund:2019, author = {Jason M. Lund}, title = {Lund Dissertation Data}, year = {2019}, note = {Mendeley Data, V1}, doi = {http://dx.doi.org/10.17632/hjkpp8zvzj.1}, } @Article{LI2007847, author = {Xuesong Li and Lijie Ci and Swastik Kar and Caterina Soldano and Stephen J. Kilpatrick and Pulickel M. Ajayan}, title = {Densified aligned carbon nanotube films via vapor phase infiltration of carbon}, journal = {Carbon}, year = {2007}, volume = {45}, number = {4}, pages = {847 - 851}, issn = {0008-6223}, abstract = {We report a simple way to produce fully densified aligned carbon nanotube (ACNT) films. The simultaneous growth of nanotubes and densification of the ACNT films by carbon infiltration in the interstitial spaces between nanotubes are accomplished in a single step by the combination of the chemical vapor deposition and chemical vapor infiltration processes. Scanning electron microscope analysis and microbalance measurements showed that after infiltration, the diameters of nanotubes and bulk density of the ACNT films are increased by an order of magnitude (and hence the porosity of the ACNT films is decreased). Transmission electron microscope and Raman scattering analysis showed that after densification, the nanotubes are conformally coated by partially graphitized pyrolytic carbon. The compressive modulus of the densified ACNT films could be increased by three orders of magnitude compared to the pristine ACNT films. Electrical properties are also measured for the densified films showing marked differences with the ACNT films. The property enhanced densified ACNT films constitute a new form of carbon–carbon nanocomposites and could find applications as multifunctional nanocomposites.}, doi = {https://doi.org/10.1016/j.carbon.2006.11.010}, url = {http://www.sciencedirect.com/science/article/pii/S0008622306005604}, } @Article{MIYAJI2018196, author = {Hiroki Miyaji and Adam Pander and Keisuke Takano and Hideo Kohno and Akimitsu Hatta and Makoto Nakajima and Hiroshi Furuta}, title = {Optical reflectance of patterned frost column-like CNT forest for metamaterial applications}, journal = {Diamond and Related Materials}, year = {2018}, volume = {83}, pages = {196 - 203}, issn = {0925-9635}, abstract = {In this paper, the optical properties of a frost column-like carbon nanotube (CNT) forest, a hybrid structure of carbon film and a CNT forest, in which carbon films are supported by low-density, vertically-aligned CNT forests, are reported for the first time. The frost column-like CNT forest exhibits a significant interference reflectance, which is not typically observed in conventional CNT forests. Oscillating spectra in the visible (VIS) reflectance were analyzed by simple optical interference between the substrate and carbon films. Fishnet type metamaterial patterns of catalyst films were successfully fabricated by focused ion beam (FIB) pattern processing, followed by CNT growth using a thermal catalytic chemical vapor deposition (CVD) method. Optical properties of fishnet-type frost column-like CNT forest were also investigated. We also found that within the infrared region, optical absorption increased with fishnet type metamaterial CNT, frost column-like CNT forest, compared with non-patterned one. These results suggested that a metamaterial effect of fishnet patterns was observed.}, doi = {https://doi.org/10.1016/j.diamond.2018.02.004}, keywords = {Carbon nanotubes, Optical reflectance, Frost column-like CNT forest, Metamaterial, Fishnet}, url = {http://www.sciencedirect.com/science/article/pii/S092596351730359X}, } @Article{doi:10.1021/acsbiomaterials.8b00038, author = {Chen, Guohai and Dodson, Berg and Hedges, David M. and Steffensen, Scott C. and Harb, John N. and Puleo, Chris and Galligan, Craig and Ashe, Jeffrey and Vanfleet, Richard R. and Davis, Robert C.}, title = {Fabrication of High Aspect Ratio Millimeter-Tall Free-Standing Carbon Nanotube-Based Microelectrode Arrays}, journal = {ACS Biomaterials Science \& Engineering}, year = {2018}, volume = {4}, number = {5}, pages = {1900-1907}, abstract = { Microelectrode arrays of carbon nanotube (CNT)/carbon composite posts with high aspect ratio and millimeter-length were fabricated using carbon-nanotube-templated microfabrication with a sacrificial “hedge”. The high aspect ratio, mechanical robustness, and electrical conductivity of these electrodes make them a potential candidate for next-generation neural interfacing. Electrochemical measurements were also demonstrated using an individual CNT post microelectrode with a diameter of 25 μm and a length of 1 mm to perform cyclic voltammetry on both methyl viologen and dopamine in a phosphate-buffered saline solution. In addition to detection of the characteristic peaks, the CNT post microelectrodes show a fast electrochemical response, which may be enabling for in vivo and/or in vitro measurements. The CNT post electrode fabrication process was also integrated with other microfabrication techniques, resulting in individually addressable electrodes. }, doi = {10.1021/acsbiomaterials.8b00038}, eprint = {https://doi.org/10.1021/acsbiomaterials.8b00038}, url = { https://doi.org/10.1021/acsbiomaterials.8b00038 }, } @InProceedings{Fowler2012InvestigationOC, author = {Robert McIntyre Fowler}, title = {Investigation of Compliant Space Mechanisms with Application to the Design of a Large-Displacement Monolithic Compliant Rotational Hinge}, year = {2012}, series = {Harold B. Lee Library}, organization = {Provo}, } @Proceedings{tolou:2011, title = {Constant Force Micro Mechanism out of Carbon Nanotube Forest}, year = {2011}, series = {12th euspen International Conference}, month = jun, organization = {euspen}, author = {Nima Tolou and Peter Pluimers and Brian D. Jensen and Spencer Magleby and Larry L. Howell}, booktitle = {12th euspen International Conference - Stockholm - Jun 2011}, keywords = {Constant force, carbon nanotube, carbon nanotube forest, CNT}, } @Article{SATO2018143, author = {Toshihiro Sato and Hisashi Sugime and Suguru Noda}, title = {CO2-assisted growth of millimeter-tall single-wall carbon nanotube arrays and its advantage against H2O for large-scale and uniform synthesis}, journal = {Carbon}, year = {2018}, volume = {136}, pages = {143 - 149}, issn = {0008-6223}, abstract = {The CO2-assisted chemical vapor deposition (CVD) is reported as a versatile method for millimeter-tall vertically-aligned single-wall carbon nanotube (VA-SWCNT) arrays when compared with the famous H2O-assisted one. The mild oxidant CO2 enabled the VA-SWCNT growth with mostly equivalent structures and yield when it was added at a much higher concentration (0.3–1 vol%) than H2O (50 ppmv). Furthermore, CO2 showed a clear advantage for the uniform growth when 18 substrates (10 × 10 mm2) were loaded in one batch. The areal yield of VA-SWCNTs decreased drastically from 1.6 to 0.4 mg cm−2 for the first 4 substrates with 50 ppmv H2O because of its depletion whereas it decreased more mildly from 1.6 to 0.8 mg cm−2 for the whole 18 substrates with 1.0 vol% CO2. The gradual decrease in the SWCNT yield with 1.0 vol% CO2 was caused by the change in the carbon source depending on its position. The mixed feed of 0.30 vol% C2H2 (being converted to SWCNTs gradually) and 3.0 vol% C2H4 (yielding C2H2 gradually) realizes the uniform growth of VA-SWCNTs for the whole 18 substrates. The CO2-assisted CVD with optimized carbon feed is promising for the uniform growth of millimeter-tall SWCNTs in large areas.}, doi = {https://doi.org/10.1016/j.carbon.2018.04.060}, url = {http://www.sciencedirect.com/science/article/pii/S0008622318304214}, } @Article{hasegawa:2011, author = {Hasegawa, Kei and Noda, Suguru}, title = {Millimeter-Tall Single-Walled Carbon Nanotubes Rapidly Grown with and without Water}, journal = {ACS Nano}, year = {2011}, volume = {5}, pages = {975-84}, month = {02}, doi = {10.1021/nn102380j}, } @Article{zhong:2007, author = {Zhong and Iwasaki, Takayuki and Robertson, John and Kawarada, Hiroshi}, title = {Growth Kinetics of 0.5 cm Vertically Aligned Single-Walled Carbon Nanotubes}, journal = {The Journal of Physical Chemistry B}, year = {2007}, volume = {111}, number = {8}, pages = {1907-1910}, note = {PMID: 17279793}, abstract = { Half-centimeter-high mats of vertically aligned single-walled carbon nanotubes were grown at 600 °C by point-arc microwave plasma chemical vapor deposition. The mats were produced from 0.5 nm of an Fe catalyst layer, thus showing one of the highest catalytic yields of ∼105 times. The growth process shows a lack of poisoning of the catalyst, in contrast to other reports. The experimental results confirm that the growth rate is ultimately limited by the gas phase diffusion of hydrocarbon radicals. }, doi = {10.1021/jp067776s}, eprint = {https://doi.org/10.1021/jp067776s}, url = { https://doi.org/10.1021/jp067776s }, } @Article{poelma:2014, author = {Poelma, René H. and Morana, Bruno and Vollebregt, Sten and Schlangen, Erik and van Zeijl, Henk W. and Fan, Xuejun and Zhang, Guo Qi}, title = {Tailoring the Mechanical Properties of High-Aspect-Ratio Carbon Nanotube Arrays using Amorphous Silicon Carbide Coatings}, journal = {Advanced Functional Materials}, year = {2014}, volume = {24}, number = {36}, pages = {5737-5744}, abstract = {The porous nature of carbon nanotube (CNT) arrays allows for the unique opportunity to tailor their mechanical response by the infiltration and deposition of nanoscale conformal coatings. Here, we fabricate novel photo-lithographically defined CNT pillars that are conformally coated with amorphous silicon carbide (a-SiC) to strengthen the interlocking of individual CNTs at junctions using low pressure chemical vapor deposition (LPCVD). We further quantify the mechanical response by performing flat-punch nanoindentation measurements on coated CNT pillars with various high-aspect-ratios. We discovered new mechanical failure modes of coated CNT pillars, such as “bamboo” and brittle-like composite rupture as coating thickness increases. Furthermore, a significant increase in strength and modulus is achieved. For CNT pillars with high aspect ratio (1:10) and coating thickness of 21.4 nm, the compressive strength increases by an order of magnitude of 3, towards 1.8 GPa (from below 1 MPa for uncoated CNT pillars) and the elastic modulus increases towards 125 GPa. These results show that our coated CNT pillars, which can serve as vertical interconnects and 3D super-capacitors, can be transformed into robust high-aspect-ratio 3D-micro architectures with semiconductor device compatible processes.}, doi = {10.1002/adfm.201400693}, eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201400693}, keywords = {carbon nanotubes, conformal coating, silicon carbide, mechanical testing, material properties}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201400693}, } @Article{Barrett:2015, author = {L. K. {Barrett} and D. J. {Barton} and S. G. {Noyce} and D. D. {Allred} and R. R. {Vanfleet} and R. C. {Davis}}, title = {High-Aspect-Ratio Metal Microfabrication by Nickel Electroplating of Patterned Carbon Nanotube Forests}, journal = {Journal of Microelectromechanical Systems}, year = {2015}, volume = {24}, number = {5}, pages = {1331-1337}, month = {Oct}, abstract = {High-aspect-ratio metallic microstructures have a variety of potential applications in sensing and actuation. However, fabrication remains a challenge. We have fabricated nickel microstructures with over 20:1 aspect ratios by electroplating patterned carbon-coated carbon-nanotube forests using a nickel chloride bath. Pulse plating allows nickel ions to diffuse into the interior of the forest during off portions of the cycle. Done properly, this solves the problem of the formation of an external crust, which otherwise blocks nickel deposition in the interior of the structures. Thus, densities of 86 ± 3% of bulk Ni for the composite structures are achieved. Cantilever structures do not yield under load, but break. Measurements of the material properties of this composite material indicate an elastic modulus of ~ 42 GPa and a strength of 400 MPa. We demonstrate the utility of this method with an external field magnetic actuator consisting of a proof mass and two flexures. We achieved 1-mN actuation forces.}, doi = {10.1109/JMEMS.2015.2395954}, keywords = {carbon nanotubes;composite materials;electroplating;microfabrication;nickel;high-aspect-ratio metal microfabrication;nickel electroplating;patterned carbon nanotube forests;nickel chloride bath;pulse plating;composite structures;cantilever structures;composite material;elastic modulus;external field magnetic actuator;Ni;Nickel;Actuators;Magnetomechanical effects;Force;Materials;Carbon;Magnetic;carbon;microelectromechanical;nickel;aspect ratio.;Magnetic;carbon;microelectromechanical;nickel;aspect ratio}, } @InProceedings{kao:2015, author = {E. {Kao} and C. {Yang} and R. {Warren} and A. {Kozinda} and L. {Lin}}, title = {ALD titanium nitride coated carbon nanotube electrodes for electrochemical supercapacitors}, booktitle = {2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)}, year = {2015}, pages = {498-501}, month = {June}, abstract = {We present titanium nitride (TiN) coated carbon nanotube (CNT) forest electrodes by means of atomic layer deposition (ALD) to store charges in the electrochemical supercapacitors for the first time. The specific achievements as compared with the state-of-art supercapacitor electrodes include: (1) 400 times higher capacitance than a flat-shape electrode; (2) conformal and uniform coating of TiN; and (3) greater than 500% enhancement of electrochemical capacitance at 81mF/cm2 than CNT electrodes without TiN at 14mF/cm2 due to increased oxygen vacancies on the TiN surfaces. As such, this work presents a new path to increase energy density of supercapacitors using TiN-based porous materials.}, doi = {10.1109/TRANSDUCERS.2015.7180969}, keywords = {atomic layer deposition;carbon nanotubes;electrochemical electrodes;porous materials;supercapacitors;titanium compounds;ALD titanium nitride coated carbon nanotube electrodes;electrochemical supercapacitors;titanium nitride;carbon nanotube;CNT forest electrodes;atomic layer deposition;ALD;supercapacitor electrodes;flat-shape electrode;uniform coating;energy density;porous materials;Electrodes;Tin;Supercapacitors;Surface treatment;Capacitance;Titanium;Surface discharges;Titanium nitride;supercapacitor;atomic layer deposition;electrochemistry}, } @Article{IIJIMA20021, author = {Sumio Iijima}, title = {Carbon nanotubes: past, present, and future}, journal = {Physica B: Condensed Matter}, year = {2002}, volume = {323}, number = {1}, pages = {1 - 5}, issn = {0921-4526}, note = {Proceedings of the Tsukuba Symposium on Carbon Nanotube in Commemoration of the 10th Anniversary of its Discovery}, abstract = {Carbon nanotubes have drawn tremendous interest from fields ranging from condensed-matter physics to chemistry, and from both academia and industry, because of the unique properties enabled by their nanoscale structure. In this paper, I briefly outline the earlier studies concerning carbon nanotubes, and then discuss recent studies done in our laboratories.}, doi = {https://doi.org/10.1016/S0921-4526(02)00869-4}, keywords = {Nanotubes, Peapod, C, Nanohorn}, url = {http://www.sciencedirect.com/science/article/pii/S0921452602008694}, } @Article{JASTI20101, author = {Ramesh Jasti and Carolyn R. Bertozzi}, title = {Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality}, journal = {Chemical Physics Letters}, year = {2010}, volume = {494}, number = {1}, pages = {1 - 7}, issn = {0009-2614}, abstract = {Carbon nanotubes (CNTs) have emerged as some of the most promising materials for the technologies of the future. One of the most significant limitations to furthering the understanding and application of these fascinating systems is the lack of atomic-level structural control in their syntheses. Current synthetic methods produce mixtures of structures with varying physical properties. In this Letter, we describe the potential advantages, recent advances, and challenges that lie ahead for the bottom-up organic synthesis of homogeneous carbon nanotubes with well-defined structures.}, doi = {https://doi.org/10.1016/j.cplett.2010.04.067}, url = {http://www.sciencedirect.com/science/article/pii/S0009261410006202}, } @Article{Artyukhov2014, author = {Vasilii I. Artyukhov and Evgeni S. Penev and Boris I. Yakobson}, title = {Why nanotubes grow chiral}, journal = {Nature Communications}, year = {2014}, volume = {5}, pages = {4892}, abstract = {Carbon nanotubes hold enormous technological promise. It can only be harnessed if one controls their chirality, the feature of the tubular carbon topology that governs all the properties of nanotubes—electronic, optical, mechanical. Experiments in catalytic growth over the last decade have repeatedly revealed a puzzling strong preference towards minimally chiral (near-armchair) tubes, challenging any existing hypotheses and making chirality control ever more tantalizing, yet leaving its understanding elusive. Here we combine the nanotube/catalyst interface thermodynamics with the kinetic growth theory to show that the unusual near-armchair peaks emerge from the two antagonistic trends at the interface: energetic preference towards achiral versus the faster growth kinetics of chiral nanotubes. This narrow distribution is inherently related to the peaked behaviour of a simple function.}, doi = {https://doi.org/10.1038/ncomms5892}, } @Article{LEE1999461, author = {Cheol Jin Lee and Dae Woon Kim and Tae Jae Lee and Young Chul Choi and Young Soo Park and Young Hee Lee and Won Bong Choi and Nae Sung Lee and Gyeong-Su Park and Jong Min Kim}, title = {Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition}, journal = {Chemical Physics Letters}, year = {1999}, volume = {312}, number = {5}, pages = {461 - 468}, issn = {0009-2614}, abstract = {Aligned carbon nanotubes have been synthesized on transition metal-coated silicon substrates with C2H2 using thermal chemical vapor deposition. It was found that nanotubes can be mostly vertically aligned on a large area of plain Si substrates when the density of metal domains reaches a certain value. Pretreatment of Co–Ni alloy by HF dipping and etching with NH3 gas prior to the synthesis is crucial for vertical alignment. Steric hindrance between nanotubes at an initial stage of growth forces nanotubes to align vertically. Nanotubes are grown by a catalyst-cap growth mechanism. Applications to field emission displays are demonstrated with emission patterns.}, doi = {https://doi.org/10.1016/S0009-2614(99)01074-X}, url = {http://www.sciencedirect.com/science/article/pii/S000926149901074X}, } @Article{Mizuno6044, author = {Mizuno, Kohei and Ishii, Juntaro and Kishida, Hideo and Hayamizu, Yuhei and Yasuda, Satoshi and Futaba, Don N. and Yumura, Motoo and Hata, Kenji}, title = {A black body absorber from vertically aligned single-walled carbon nanotubes}, journal = {Proceedings of the National Academy of Sciences}, year = {2009}, volume = {106}, number = {15}, pages = {6044--6047}, issn = {0027-8424}, abstract = {Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2{\textendash}200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes.}, doi = {10.1073/pnas.0900155106}, eprint = {https://www.pnas.org/content/106/15/6044.full.pdf}, publisher = {National Academy of Sciences}, url = {https://www.pnas.org/content/106/15/6044}, } @Article{doi:10.1002/sca.21002, author = {Webb, Hayden K. and Truong, Vi Khanh and Hasan, Jafar and Fluke, Christopher and Crawford, Russell J. and Ivanova, Elena P.}, title = {Roughness Parameters for Standard Description of Surface Nanoarchitecture}, journal = {Scanning}, year = {2012}, volume = {34}, number = {4}, pages = {257-263}, abstract = {Summary The nanoarchitecture and surface roughness of metallic thin films prepared by magnetron sputtering were analyzed to determine the topographical statistics that give the optimum description of their nanoarchitechture. Nanoscale topographical profiles were generated by performing atomic force microscopy (AFM) scans of 1 μm × 1 μm areas of titanium and silver films of three different thicknesses (3 nm, 12 nm, and 150 nm). Of the titanium films, the 150-nm film had the highest average roughness (Ra = 2.63 nm), more than four times that of the 3-nm and 12-nm titanium films. When silver films were coated on top of 150-nm titanium films, the average roughness increased further; the 3-nm (Ra = 4.96 nm) and 150-nm (Ra = 4.65 nm) silver films average roughnesses were approximately twice that of the 150-nm titanium film. For topographical analysis, seven statistical parameters were calculated. These parameters included commonly used roughness measurements, as well as some less commonly used measurements, in order to determine which combination of parameters gave the best overall description of the nanoarchitecture of the films presented. Skewness (Rskw), surface area increase (Rsa), and peak counts (Rpc) provided the best description of horizontal surface dimensions, and in conjunction with vertical descriptors Ra and Rq gave the best characterization of surface architecture. The five roughness parameters Ra, Rq, Rskw, Rsa, and Rpc are proposed as a new standard for describing surface nanoarchitecture. SCANNING 34: 257-263, 2012. © 2012 Wiley Periodicals, Inc.}, doi = {10.1002/sca.21002}, eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1002/sca.21002}, keywords = {nanoarchitecture, thin films, roughness, topography, metal coating}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/sca.21002}, } @Article{gui:1999, author = {Gui,C. and Elwenspoek,M. and Tas,N. and Gardeniers,J. G. E.}, title = {The effect of surface roughness on direct wafer bonding}, journal = {Journal of Applied Physics}, year = {1999}, volume = {85}, number = {10}, pages = {7448-7454}, doi = {10.1063/1.369377}, eprint = {https://doi.org/10.1063/1.369377}, url = { https://doi.org/10.1063/1.369377 }, } @Article{Lin2015, author = {Lin, Zhiqiang and Gui, Xuchun and Gan, Qiming and Chen, Wenjun and Cheng, Xiaoping and Liu, Ming and Zhu, Yuan and Yang, Yanbing and Cao, Anyuan and Tang, Zikang}, title = {In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance}, journal = {Scientific Reports}, year = {2015}, volume = {5}, pages = {11336 EP -}, month = {Jun}, note = {Article}, day = {11}, publisher = {The Author(s) SN -}, url = {https://doi.org/10.1038/srep11336}, } @Software{gimp, author = {{The GIMP Development Team}}, title = {GIMP}, date = {2019-06-12}, url = {https://www.gimp.org}, version = {2.10.12}, } @Article{BECKER20001573, author = {A. Becker and Z. Hu and K.J. Hüttinger}, title = {A hydrogen inhibition model of carbon deposition from light hydrocarbons}, journal = {Fuel}, year = {2000}, volume = {79}, number = {13}, pages = {1573 - 1580}, issn = {0016-2361}, abstract = {Carbon depositions from ethene, ethine, propene, butadiene and benzene were studied in a flow reactor at a temperature of 1000°C, constant hydrocarbon partial pressures and increasing hydrogen partial pressures. Analogous studies with methane were performed at 1100°C. Carbon deposition rates and corresponding compositions of the gas phase were determined. In the case of the C2- to C6-hydrocarbons the deposition rates are decreased by hydrogen addition, but the influence on the gas phase compositions is less significant. Hydrogen inhibition of carbon deposition is very sensitive as to the carbon/hydrogen ratio in the case of light, linear hydrocarbons, and the molecular structure if light, linear hydrocarbons are compared with aromatic hydrocarbons. It can be described by a strongly simplified heterogeneous inhibition model. The model exhibits a physico-chemical meaning in the case of ethene, propene and butadiene. In the case of methane the gas phase composition changes by hydrogen addition; nevertheless, hydrogen inhibition of carbon deposition from this hydrocarbon as well as that from ethine and benzene is perfectly described by the model in a formal manner.}, doi = {https://doi.org/10.1016/S0016-2361(00)00030-2}, keywords = {Carbon deposition, Light hydrocarbons, Hydrogen inhibition, Model}, url = {http://www.sciencedirect.com/science/article/pii/S0016236100000302}, } @Article{BECKER1998177, author = {A. Becker and K.J. Hüttinger}, title = {Chemistry and kinetics of chemical vapor deposition of pyrocarbon—II pyrocarbon deposition from ethylene, acetylene and 1,3-butadiene in the low temperature regime}, journal = {Carbon}, year = {1998}, volume = {36}, number = {3}, pages = {177 - 199}, issn = {0008-6223}, abstract = {Pyrocarbon deposition from ethylene, acetylene and 1,3-butadiene was studied with a vertical hot-wall reactor at ambient pressure and 1000 °C; initial partial pressures of the hydrocarbons and residence time were varied. Steady-state pyrocarbon deposition rates and corresponding compositions of the gas-phase were determined. Reaction models describing homogeneous gas-phase and heterogeneous pyrocarbon deposition reactions were derived and applied for simulation of pyrocarbon deposition rates and the inhibiting effect of hydrogen. This latter effect is ascribed to a blocking of active sites at the growing pyrocarbon surface.}, doi = {https://doi.org/10.1016/S0008-6223(97)00175-9}, keywords = {A. Pyrolytic carbon, B. chemical vapor deposition}, url = {http://www.sciencedirect.com/science/article/pii/S0008622397001759}, } @Article{harner:1997, author = {Leslie L. Harner}, title = {Invar at 100 years}, journal = {Advanced Materials \& Processes}, year = {1997}, volume = {151}, number = {5}, pages = {31+}, abstract = {Invar-Effect alloys are nickel-iron or nickel-iron-cobalt alloys with a thermal expansion curve consisting of both a low and high expansivity portions. These alloys, which won a Nobel prize for its inventor, Charles-Edouard Guillaume, have a face-centered cubic crystal structure. They are readily machinable but their processing requires a rigidly supported tooling because of their soft nature. Invar-Effect alloys have a wide range of applications. They are used as structural components in precision laser equipment and for containers of liquid natural gas.}, } @Article{elinvar:1934, title = {Elinvar Hairsprings in Watches}, journal = {Nature}, year = {1934}, volume = {134}, number = {3383}, pages = {318-318}, issn = {1476-4687}, abstract = {R. E. GOULD has recently published a paper on the comparative performance of watches with the usual cut bimetallic balance wheels and steel hairsprings, and those of the new form having uncut monometallic balance wheels and elinvar hairsprings (Bureau of Standards J. Res., 12, April 1934). Elinvar is a nickel-steel alloy having a temperature coefficient of elasticity which is practically zero from 5 {\textdegree} to 35 {\textdegree} C. (41 {\textdegree} to 95 {\textdegree} F.). In the new watches the balance wheel is non-magnetic. The experiments show that the temperature-rate errors of the watches having the new vibrating assembly were smaller than the errors with ordinary watches. Instead of the usual parabolic curve of errors a curve approaching a straight line was obtained. The use of the new assembly ensures a very marked improvement in the performance of the watches. The new arrangement almost entirely overcomes the effects of magnetism, so that after a watch has been subjected to a strong magnetic field the rate is not affected. Very few watches maintain an absolutely uniform rate as the mainspring unwinds. If the number of seconds lost or gained since winding be plotted against time after winding, true 'isochronism' is represented by a straight line. So far as 'isochronism' goes, the new assembly does not give any material advantage over the old. Also various small changes, caused by altering the positions of the watches, are practically the same in both types.}, doi = {10.1038/134318a0}, url = {https://doi.org/10.1038/134318a0}, } @Article{fagergren:2019, author = {Fred Fagergren and Shane Sypherd and Dan Snow and Andrew Cunningham and Brian Jensen}, title = {Using non-destructive testing to predict bending modulus of carbon infiltrated-carbon nanotubes}, journal = {Journal of Micromechanics and Microengineering}, year = {2019}, volume = {29}, number = {11}, pages = {115015}, month = {sep}, abstract = {Carbon infiltrated carbon nanotubes (CI-CNT) are an important emerging material in several micro-electro-mechanical systems (MEMS) because of their unique mechanical and chemical properties. While CI-CNTs are only roughly conductive they work well in micro springs, levers, and meshes. However, fabrication of CI-CNTs can result in large mechanical property variation, and methods to characterize properties usually involve destructive testing. Destructive testing also assumes the tested specimens are representative of the entire batch which is not always true in the case of CI-CNT production. Finding a non-destructive way to test for stiffness of this material reduces the number of parts that have to be made and increases confidence in the integrity of device being used. It also simplifies testing of complex parts. The stiffness of CI-CNT beams is related to the molecular structure of the carbon material infiltrated between the carbon nanotubes (CNTs), how it interacts with the CNTs, and how much of it there is. The amount of material can be approximated with the density of the beam, and both the type of material and its interaction with the CNTs can be approximated through analysis of the Raman spectra taken at the surface. A combination of these two observations can be related to the effective material stiffness. The relationship can be fitted with a power function, with a variance of 1.41 GPa, which is about 11% of the maximum stiffness of the samples tested.}, doi = {10.1088/1361-6439/ab3fd2}, publisher = {{IOP} Publishing}, url = {https://doi.org/10.1088%2F1361-6439%2Fab3fd2}, } @Article{XOMERITAKIS199727, author = {G. Xomeritakis and J. Han and Y.S. Lin}, title = {Evolution of pore size distribution and average pore size of porous ceramic membranes during modification by counter-diffusion chemical vapor deposition}, journal = {Journal of Membrane Science}, year = {1997}, volume = {124}, number = {1}, pages = {27 - 42}, issn = {0376-7388}, abstract = {The modification of porous ceramic membranes by counter-diffusion chemical vapor deposition (CVD) is studied theoretically and experimentally. Numerical simulations of the evolution of the membrane permeance, average pore size and pore size distribution as a function of extent of modification are presented and compared with experimetal data. It is found that the change of the average pore size of the membranes after modification strongly depends on the initial pore size distribution of the membrane, CVD reaction kinetics and characterization method. Experimental data suggest that CVD of zirconia (and yttria) inside porous ceramic membranes by reaction of zirconium (and yttrium) chlorides with steam/air at elevated temperatures proceeds by quasi-zero reaction kinetics with respect to the oxidant, typical of non-stoichiometric supply of the reactants from opposite sides of the membrane. Under such conditions, CVD modification may result in a modest increase of the average pore size of coarse-pore ceramic membranes as suggested by numerical calculations and experimental data.}, doi = {https://doi.org/10.1016/S0376-7388(96)00200-1}, keywords = {Ceramic membrane, Chemical vapor deposition, Pore size distribution, Yttria stabilized zirconia, Pure gas permeation, Permporometry}, url = {http://www.sciencedirect.com/science/article/pii/S0376738896002001}, } @Article{kaniyoor:raman:2012, author = {Kaniyoor,Adarsh and Ramaprabhu,Sundara}, title = {A Raman spectroscopic investigation of graphite oxide derived graphene}, journal = {AIP Advances}, year = {2012}, volume = {2}, number = {3}, pages = {032183}, doi = {10.1063/1.4756995}, eprint = {https://doi.org/10.1063/1.4756995}, url = { https://doi.org/10.1063/1.4756995 }, } @InProceedings{yeh:2018, author = {Yeh, Yin-Ting and Lu, Huaguang and Zheng, Siyang and Terrones, and}, title = {A Portable Device Integrated with Aligned Carbon Nanotubes for Sensitive Virus Capture and Detection}, year = {2018}, volume = {2018}, pages = {6072-6075}, month = {07}, doi = {10.1109/EMBC.2018.8513515}, journal = {Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference}, } @Article{Trivedi2016, author = {Trivedi, Samarth and Alameh, Kamal}, title = {Effect of vertically aligned carbon nanotube density on the water flux and salt rejection in desalination membranes}, journal = {SpringerPlus}, year = {2016}, volume = {5}, number = {1}, pages = {1158-1158}, month = {Jul}, issn = {2193-1801}, note = {27504256[pmid]}, abstract = {In this paper, vertically aligned carbon nanotube (VACNT) membranes of different densities are developed and their performances are investigated. VACNT arrays of densities 5?{\texttimes}?10(9), 10(10), 5?{\texttimes}?10(10) and 10(11)?tubes?cm(-2), are initially grown on 1?cm?{\texttimes}?1?cm silicon substrates using chemical vapour deposition. A VACNT membrane is realised by attaching a 300?mm-thick 1?cm?{\texttimes}?1?cm VACNT array on silicon to a 4'' glass substrate, applying polydimethylsiloxane (PDMS) through spin coating to fill the gaps between the VACNTs, and using a microtome to slice the VACNT-PDMS composite into 25-mm-thick membranes. Experimental results show that the permeability of the developed VACNT membranes increases with the density of the VACNTs, while the salt rejection is almost independent of the VACNT density. The best measured permeance is attained with a VACNT membrane having a CNT density of 10(11)?tubes?cm(-2) is 1203 LMH at 1?bar.}, day = {22}, doi = {10.1186/s40064-016-2783-3}, keywords = {Nano-membranes, Vertically aligned carbon nanotubes, Water desalination}, publisher = {Springer International Publishing}, url = {https://www.ncbi.nlm.nih.gov/pubmed/27504256}, } @Article{GINGA201457, author = {Nicholas J. Ginga and Wei Chen and Suresh K. Sitaraman}, title = {Waviness reduces effective modulus of carbon nanotube forests by several orders of magnitude}, journal = {Carbon}, year = {2014}, volume = {66}, pages = {57 - 66}, issn = {0008-6223}, abstract = {Waviness is invariably present in vertically-aligned Carbon Nanotubes (CNTs) regardless of how controlled the fabrication process is. This study, using experiments and models, shows that such inherent waviness is the main mechanism by which the effective modulus of CNTs is reduced by several orders of magnitude. At this time, most studies have shown that the compliant mechanical response of the CNT forests under compressive loading is due to bending and buckling of CNTs as well as the variation of CNT density throughout the forest height. Subjecting CNT forests to tensile loads as well as to compressive loads, it is shown here that the high compliance of CNT forests is due to the inherent waviness of individual CNTs, and not necessarily due to bending and buckling of CNTs. The experimental findings are also supported through analytical models and numerical models that show that the CNT wavy geometry causes the CNTs to have 4–5 orders of magnitude greater compliance than a straight CNT.}, doi = {https://doi.org/10.1016/j.carbon.2013.08.042}, url = {http://www.sciencedirect.com/science/article/pii/S0008622313008154}, } @PhdThesis{Parisa:2013, author = {Pour Shahid Saeed Abadi, Parisa}, title = {Mechanical behavior of carbon nanotube forests under compressive loading}, school = {Georgia Institute of Technology}, year = {2013}, } @Article{merriam:2016, author = {Merriam, Ezekiel and Lund, Jason and Howell, Larry}, title = {Compound Joints: Behavior and Benefits of Flexure Arrays}, journal = {Precision Engineering}, year = {2016}, volume = {45}, month = {02}, doi = {10.1016/j.precisioneng.2016.01.011}, } @Proceedings{Fazio2011, title = {Material Properties of Carbon-Infiltrated Carbon Nanotube-Templated Structures for Microfabrication of Compliant Mechanisms}, year = {2011}, volume = {Volume 11: Nano and Micro Materials, Devices and Systems; Microsystems Integration}, series = {ASME International Mechanical Engineering Congress and Exposition}, month = {11}, abstract = {{Carbon nanotubes can be grown vertically from a substrate to form dense forests hundreds of microns tall. The space between the nanotubes can then be filled with carbon using chemical vapor deposition to create solid structures. These infiltrated structures can be detached from the substrate and operated as single-piece MEMS. To facilitate the design of compliant microdevices using this process, we explored the influence of two fabrication parameters—iron layer thickness and infiltration time—on the material’s mechanical properties, using the fracture strain to judge suitability for compliance. We prepared samples of a simple meso-scale cantilever beam pattern at various levels of these parameters, applied vertical loads to the tips of the beams, and recorded the forces and deflections at brittle failure. These data were then used in conjunction with a nonlinear FEA model of the beams to determine Young’s modulus and fracture stress for each experimental setting. From these data the fracture strains were obtained. The highest fracture strain observed was 2.48\\%, which is approximately 3.5 times that of polycrystalline silicon. This was obtained using an iron layer thickness of 10 nm and an infiltration time of 30 minutes. We used a test device—a compliant gripper mechanism for holding mammalian egg cells—to demonstrate the use of this material in compliant MEMS design.}}, author = {Fazio, Walter C. and Lund, Jason M. and Wood, Taylor S. and Jensen, Brian D. and Davis, Robert C. and Vanfleet, Richard R.}, doi = {10.1115/IMECE2011-64168}, eprint = {https://asmedigitalcollection.asme.org/IMECE/proceedings-pdf/IMECE2011/54976/481/2779736/481\_1.pdf}, pages = {481-490}, url = {https://doi.org/10.1115/IMECE2011-64168}, } @Article{article, author = {Liddiard, Steven and Coffin, M. and Zappe, M. and Abbott, Jonathan and Hustedt, C. and Zufelt, K. and Pei, Lei and Lund, Jason and Vanfleet, R. and Davis, Robert}, title = {An Improved Low Energy X-ray Transmission Window}, journal = {Microscopy and Microanalysis}, year = {2013}, volume = {19}, pages = {1316-1317}, month = {08}, doi = {10.1017/S143192761300857X}, } @Article{Hanna_2014, author = {Brandon H Hanna and Jason M Lund and Robert J Lang and Spencer P Magleby and Larry L Howell}, title = {Waterbomb base: a symmetric single-vertex bistable origami mechanism}, journal = {Smart Materials and Structures}, year = {2014}, volume = {23}, number = {9}, pages = {094009}, month = {aug}, abstract = {The origami waterbomb base is a single-vertex bistable origami mechanism that has unique properties which may prove useful in a variety of applications. It also shows promise as a test bed for smart materials and actuation because of its straightforward geometry and multiple phases of motion, ranging from simple to more complex. This study develops a quantitative understanding of the symmetric waterbomb baseʼs kinetic behavior. This is done by completing kinematic and potential energy analyses to understand and predict bistable behavior. A physical prototype is constructed and tested to validate the results of the analyses. Finite element and virtual work analyses based on the prototype are used to explore the locations of the stable equilibrium positions and the force–deflection response. The model results are verified through comparisons to measurements on a physical prototype. The resulting models describe waterbomb base behavior and provide an engineering tool for application development.}, doi = {10.1088/0964-1726/23/9/094009}, publisher = {{IOP} Publishing}, url = {https://doi.org/10.1088%2F0964-1726%2F23%2F9%2F094009}, } @Article{robbie:1995, author = {Robbie,K. and Friedrich,L. J. and Dew,S. K. and Smy,T. and Brett,M. J.}, title = {Fabrication of thin films with highly porous microstructures}, journal = {Journal of Vacuum Science \& Technology A}, year = {1995}, volume = {13}, number = {3}, pages = {1032-1035}, doi = {10.1116/1.579579}, eprint = {https://doi.org/10.1116/1.579579}, url = { https://doi.org/10.1116/1.579579 }, } @Article{KUMAR2018120, author = {Pawan Kumar and Ki-Hyun Kim and Kowsalya Vellingiri and Pallabi Samaddar and Parveen Kumar and Akash Deep and Naresh Kumar}, title = {Hybrid porous thin films: Opportunities and challenges for sensing applications}, journal = {Biosensors and Bioelectronics}, year = {2018}, volume = {104}, pages = {120 - 137}, issn = {0956-5663}, abstract = {In this paper, the scientific progress in the field of thin film materials and their associated sensing technologies are described comprehensively to address the directions for future research and developments as per the need of modern-day technologies. To begin with, we briefly discussed the fundamental synthesis approaches for advanced thin films with an emphasis on the properties necessary for controlled fabrication (e.g., the elemental ratio and spatial arrangement). Subsequently, we explored the control, characterization, and optimization of hybrid porous thin films with respect to diverse sensing applications. The application of hybrid porous thin film materials has also been discussed in relation to the mechanisms used for biological, optical, electrical, acoustic, and other advanced sensing techniques (e.g., surface-enhanced Raman scattering (SERS)). Finally, conclusions are drawn to highlight the current status of thin film-based sensing technology along with its opportunities and challenges.}, doi = {https://doi.org/10.1016/j.bios.2018.01.006}, keywords = {Hybrid porous thin films, Biological, Electrical, Optical, Acoustic, Sensor}, url = {http://www.sciencedirect.com/science/article/pii/S0956566318300101}, } @Patent{crosscylinder:2015, nationality = {United States}, number = {EP3171787A1}, year = {2015}, yearfiled = {2015}, author = {B.D. Jensen and L.L. Howel and S.P. Magleby and B. Edmondson and J. Tanner and C. Grames and J.L. Lund}, title = {Crossed-cylinder wrist mechanism with two degrees of freedom}, language = {English, German, and French}, assignee = {Intuitive Surgical Operations Inc}, type = {patenteu}, note = {Granted}, } @Patent{cellrestraint:2011, nationality = {United States}, number = {US20130177977A1}, year = {2012}, yearfiled = {2011}, author = {A.T. Quentin and W. Fazio and J.M. Lund and G.H. Teichert and S.H. Burnett and B.D. Jensen and L.L. Howell}, title = {Systems and devices for restraining a cell and associated methods}, language = {English and French}, type = {patent}, note = {A}, } @Patent{ccsupport:2011, nationality = {United States}, number = {US8989354B2}, year = {2012}, yearfiled = {2011}, author = {R.C. Davis and J.M. Lund and A.L. Davis and S.D. Liddiard and M. Zappe and C.R. Jensen}, title = {Carbon composite support structure}, language = {English}, assignee = {Brigham Young University and Moxtek Inc}, type = {patentus}, note = {Granted}, } @Patent{thermalbarrier:2013, nationality = {United States}, number = {US20140314998A1}, year = {2014}, yearfiled = {2013}, author = {R.C. Davis and R.R. Vanfleet and J.M. Lund and B.D. Jensen}, title = {Porous material for thermal and/or electrical isolation and methods of manufacture}, language = {English}, assignee = {Brigham Young University}, type = {patrequs}, } @Patent{cchairspring:2016, nationality = {France}, number = {FR3052881A1}, year = {2016}, yearfiled = {2016}, author = {G. Semon and J.M. Lund and B.D. Jensen}, title = {Piece for movement watchmaker, watchmaker movement, watchpiece part and method of manufacturing such a piece for watchmaking movement}, language = {French}, assignee = {LVMH SWISS MFT SA, LVMH Swiss Manufactures SA}, type = {patreqfr}, } @Article{Lindstrom2014, author = {Lindstrom, Zachary K. and Brewer, Steven J. and Ferguson, Melanie A. and Burnett, Sandra H. and Jensen, Brian D.}, title = {{Injection of Propidium Iodide into HeLa Cells Using a Silicon Nanoinjection Lance Array}}, journal = {Journal of Nanotechnology in Engineering and Medicine}, year = {2014}, volume = {5}, number = {2}, month = {10}, issn = {1949-2944}, note = {021008}, __markedentry = {[Jason.Lund:]}, doi = {10.1115/1.4028603}, eprint = {https://asmedigitalcollection.asme.org/nanoengineeringmedical/article-pdf/5/2/021008/6281249/nano\_005\_02\_021008.pdf}, url = {https://doi.org/10.1115/1.4028603}, } @Article{gould:1934, author = {Ralph E. Gould}, title = {Comparative performance of watches with elinvar and with steel hairsprings}, journal = {Bureau of Standards Journal of Research}, year = {1934}, volume = {12}, number = {4}, pages = {451}, month = apr, } @Article{IWAKI2002377, author = {Masaya Iwaki}, title = {Estimation of the atomic density of amorphous carbon using ion implantation, SIMS and RBS}, journal = {Surface and Coatings Technology}, year = {2002}, volume = {158-159}, pages = {377 - 381}, issn = {0257-8972}, note = {Proceedings of the 12th International Conference on SMMIB}, abstract = {The atomic density of amorphous carbon thin films, called diamond-like carbon (DLC), has been estimated using the depth distribution of implanted ions as a marker. Ne- or Na-ion implantation was carried out with doses ranging from 5×1014 to 1×1017 ions cm−2 at 50, 100 and 150 keV at ambient temperature. The depth distributions of implanted atoms were measured by means of secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectrometry (RBS). The atomic density of amorphous carbon was estimated from the peak position in the depth distribution of implanted ions using three methods. The first is the difference in the peak positions of implanted ions for the amorphous carbon and glassy carbon with the atomic density of 1.5 g cm−3. The second is comparison of the peak positions obtained by SIMS and RBS measurements. The third is comparison between the empirical depth distribution and the theoretical distribution calculated by the trim code. We conclude that the atomic density of amorphous carbon is 2.0–2.3 g cm−3, and that the combination of ion implantation with a low dose, SIMS measurements and trim calculation is useful in determining the atomic density of amorphous carbon.}, doi = {https://doi.org/10.1016/S0257-8972(02)00247-5}, keywords = {Amorphous carbon (a-C), Atomic density, Ion implantation, Secondary ion mass spectrometry (SIMS), Rutherford backscattering spectrometry (RBS), }, url = {http://www.sciencedirect.com/science/article/pii/S0257897202002475}, } @Article{URAKAWA2013S15, author = {Tatsuya Urakawa and Hidehumi Matsuzaki and Daisuke Yamashita and Giichiro Uchida and Kazunori Koga and Masaharu Shiratani and Yuichi Setsuhara and Makoto Sekine and Masaru Hori}, title = {Mass density control of carbon films deposited by H-assisted plasma CVD method}, journal = {Surface and Coatings Technology}, year = {2013}, volume = {228}, pages = {S15 - S18}, issn = {0257-8972}, note = {Proceedings of the 8th Asian-European International Conference on Plasma Surface Engineering (AEPSE 2011)}, abstract = {In order to obtain high density carbon films with keeping anisotropic deposition profile on trench substrates, we control mass density of carbon films deposited by a H-assisted plasma chemical vapor deposition (CVD) method by ion kinetic energy of ions irradiating on film surface during deposition. The highest mass density of 2.14g/cm3 is obtained for deposition under the ion energy of 75eV and it is 1.4 times as high as that for the ion energy of 32eV. We also have studied etching rate of these films using H2+N2 discharge plasmas. The lowest etch rate of 1.8nm/min is obtained for the ion energy of 75eV and it is 2.8 times as low as that for the ion energy of 32eV. Etching rate of carbon films decreases exponentially with increasing the mass density of carbon films. Control of ion energy is the key to obtain high mass density carbon films with keeping anisotropic deposition profile on trench substrates.}, doi = {https://doi.org/10.1016/j.surfcoat.2012.10.002}, keywords = {Carbon film, Deposition profile, Plasma CVD, Trench, Mass density}, url = {http://www.sciencedirect.com/science/article/pii/S025789721200936X}, } @Article{bhushan_li_1997, author = {Bhushan, Bharat and Li, Xiaodong}, title = {Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices}, journal = {Journal of Materials Research}, year = {1997}, volume = {12}, number = {1}, pages = {54–63}, doi = {10.1557/JMR.1997.0010}, publisher = {Cambridge University Press}, } @MastersThesis{syme:2019, author = {Derric Benjamin Syme}, title = {Microfabrication and Characterization of Freestanding and Integrated Carbon Nanotube Thin Films}, school = {Brigham Young University}, year = {2019}, address = {https://scholarsarchive.byu.edu/etd/7376}, abstract = {This work chronicles the fabrication of two unique thin films using carbon nanotubes. The first is a carbon film made primarily from vertically grown carbon nanotubes (CNTs) and rolled into lateral alignment. The second is an insulating film created by CNTs as a scaffolding to create a porous silica layer. Each topic represents a different method of utilizing CNTs for thin-film fabrication.Investigation of an entirely carbon thin film, comprised of aligned and laterally oriented carbon nanotubes was performed. The thin film was strengthened by deposition of amorphous carbon for a total thickness of <<> 5 µm. This thickness is thinner than many previous films fabricated entirely out of carbon. Vertically aligned CNT arrays were manually rolled into a thin sheet and released from the growth substrate. Infiltration with amorphous carbon (as carbon coating) on the rolled CNTs was used to improve adhesion between neighboring CNTs after lateral alignment and to improve the mechanical integrity of the film. Mechanical property characterization indicated the ability to sustain a pressure differential across the film of up to 82.7 kPa for a suspended film of 4 mm in diameter. Peak stress, Young<'>s modulus and biaxial modulus were obtained as a characterization of the strength of the thin film.Fabrication and examination of a porous silica thin film, potentially for use as an insulating thermal barrier, was investigated. A vertically aligned CNT forest, created by chemical vapor deposition (CVD), was used as a scaffolding for the porous film. Silicon was deposited on the CNT forest using low pressure CVD (LPCVD), then oxidized to remove the CNTs and convert the silicon to silica <&hyphen>“ a material often used for electrical or thermal passivation. This fabrication method introduces hollow pores where the CNTs once occupied, further increasing the material<'>s insulating properties. Thermal testing was performed by equating radiative and conductive heat transfer in a vacuum chamber and comparing the temperature difference between the film and a reference sample of comparable thermal resistance. For films approximately 50 µm thick, the thermal conductivity was found to be 0.054 - 0.071 W/mK.}, } @InProceedings{huang:2016, author = {Huang, Shirong and Wang, Ning and Bao, Jie and Ye, Hui and Zhang, Dongsheng and Yue, Wang and Fu, Yifeng and Ye, Lilei and Jeppson, Kjell and Liu, Johan}, title = {Infrared emissivity measurement for vertically aligned multiwall carbon nanotubes (CNTs) based heat spreader applied in high power electronics packaging}, year = {2016}, pages = {1-4}, month = {09}, doi = {10.1109/ESTC.2016.7764696}, } @Article{lehman:2018, author = {Lehman,J. and Yung,C. and Tomlin,N. and Conklin,D. and Stephens,M.}, title = {Carbon nanotube-based black coatings}, journal = {Applied Physics Reviews}, year = {2018}, volume = {5}, number = {1}, pages = {011103}, doi = {10.1063/1.5009190}, eprint = {https://doi.org/10.1063/1.5009190}, url = { https://doi.org/10.1063/1.5009190 }, } @Article{yang:2010:cnt, author = {Yang, Xin-She}, title = {Modelling Heat Transfer of Carbon Nanotubes}, journal = {Modelling and Simulation in Materials Science and Engineering}, year = {2010}, volume = {13}, month = {03}, doi = {10.1088/0965-0393/13/6/008}, } @Article{Manocha2009, author = {Manocha, L. M. and Patel, Harshad and Manocha, S. and Roy, Ajit K. and Singh, J. P.}, title = {Development of carbon/carbon composites with carbon nanotubes as reinforcement and chemical vapor infiltration carbon as matrix.}, journal = {Journal of nanoscience and nanotechnology}, year = {2009}, volume = {9}, pages = {3119-24}, month = {May}, __markedentry = {[Jason.Lund:6]}, abstract = {Carbon nanotubes based carbon/carbon composites were prepared by infiltration of purified ACNTs film with pyrolytic carbon. Densification was performed by filling the space between the CNTs through by deposition of the pyrocarbon on the nanotubes surface. It comprised of (i) Synthesis and purification of aligned carbon nanotubes films by CCVD process and (ii) Infiltration of CNTs film by pyrocarbon using CVI method at 950 degrees C. SEM studies showed that the film was well infiltrated using methane. The density of film increased to 1.4 gm/cm3 from 0.4 gm/cm3 of as purified ACNTs film. The I(D)/I(G) ratio for CNTs film is 0.67 and 0.80 for the CVI deposited pyrocarbon. The lower I(D)/I(G) ratio from Raman microscopy shows fine graphitic nature of carbon nanotubes and nanocomposites films.}, address = {United States}, article-doi = {10.1166/jnn.2009.034}, completed = {20090623}, history = {2009/05/21 09:01 [medline]}, issue = {5}, language = {eng}, linking-issn = {1533-4880}, nlm-unique-id = {101088195}, owner = {NLM}, print-issn = {1533-4880}, publication-status = {ppublish}, revised = {20190715}, source = {J Nanosci Nanotechnol. 2009 May;9(5):3119-24. doi: 10.1166/jnn.2009.034.}, status = {PubMed-not-MEDLINE}, title-abbreviation = {J Nanosci Nanotechnol}, } @InProceedings{kilpatrick:2005, author = {S. J. {Kilpatrick} and {Anyuan Cao} and {Xuesong Li} and N. J. {Renna} and P. M. {Ajayan}}, title = {Densified Vertically-Aligned Carbon Nanotube Arrays by Chemical Vapor Infiltration}, booktitle = {2005 International Semiconductor Device Research Symposium}, year = {2005}, pages = {352-353}, month = {Dec}, abstract = {The densification of vertically-aligned carbon nanotube arrays into solid-like coatings is highly desirable for certain applications, including those requiring increased robustness or hardness, protection from oxygen at high temperatures and other damaging ambients, or increased effective thermal conductance. Chemical vapor infiltration (CVI) is a technique that essentially extends the commonly-used chemical vapor deposition process to the filling of networks of pores within a fibrous preform by altering the deposition kinetics toward a mass-transfer limited process. In this study, the CVI technique was utilized for filling the space around carbon nanotubes in vertically-aligned arrays on SiO2 substrates with a novel but simple approach. Nanotube growth was conducted using a vapor phase catalyst delivery method in a chemical vapor deposition chamber at 770 degC with a mixture of xylene and ferrocene vapors. Once the nanotube growth had ended, the conditions were altered to initiate the infiltration of carbon-containing species into the nanotube array, resulting in carbon deposition on the nanotubes. The extent of infiltration and location of the remaining porosity was determined using SEM analysis and microbalance measurements, for infiltration times up to 10 hours. The type of C-C bonding within the densified films was elucidated using Raman scattering. Vickers microhardness measurements were made to determine the hardness of carbon-densified nanotube arrays. These studies were largely motivated by the anticipated use of carbon nanotubes for on-chip thermal management on wide bandgap high-power semiconductor devices, optical devices, MEMS structures, and nanoscaled electronics}, doi = {10.1109/ISDRS.2005.1596131}, issn = {null}, keywords = {carbon nanotubes;chemical vapour deposition;chemical vapour infiltration;oxygen;Raman spectra;scanning electron microscopy;Vickers hardness;carbon nanotube arrays;chemical vapor infiltration;thermal conductance;CVI;chemical vapor deposition;nanotube growth;vapor phase catalyst delivery;xylene vapors;ferrocene vapors;carbon-containing species;SEM analysis;microbalance measurements;C-C bonding;Raman scattering;Vickers microhardness measurements;on-chip thermal management;wide bandgap semiconductor devices;high-power semiconductor devices;optical devices;MEMS structures;nanoscaled electronics;770 C;10 hours;SiO2;Carbon nanotubes;Chemical vapor deposition;Filling;Thermal management of electronics;Coatings;Robustness;Protection;Temperature;Thermal conductivity;Chemical processes}, } @Article{LI2007847, author = {Xuesong Li and Lijie Ci and Swastik Kar and Caterina Soldano and Stephen J. Kilpatrick and Pulickel M. Ajayan}, title = {Densified aligned carbon nanotube films via vapor phase infiltration of carbon}, journal = {Carbon}, year = {2007}, volume = {45}, number = {4}, pages = {847 - 851}, issn = {0008-6223}, abstract = {We report a simple way to produce fully densified aligned carbon nanotube (ACNT) films. The simultaneous growth of nanotubes and densification of the ACNT films by carbon infiltration in the interstitial spaces between nanotubes are accomplished in a single step by the combination of the chemical vapor deposition and chemical vapor infiltration processes. Scanning electron microscope analysis and microbalance measurements showed that after infiltration, the diameters of nanotubes and bulk density of the ACNT films are increased by an order of magnitude (and hence the porosity of the ACNT films is decreased). Transmission electron microscope and Raman scattering analysis showed that after densification, the nanotubes are conformally coated by partially graphitized pyrolytic carbon. The compressive modulus of the densified ACNT films could be increased by three orders of magnitude compared to the pristine ACNT films. Electrical properties are also measured for the densified films showing marked differences with the ACNT films. The property enhanced densified ACNT films constitute a new form of carbon–carbon nanocomposites and could find applications as multifunctional nanocomposites.}, doi = {https://doi.org/10.1016/j.carbon.2006.11.010}, url = {http://www.sciencedirect.com/science/article/pii/S0008622306005604}, } @Comment{jabref-meta: databaseType:bibtex;} @Comment{jabref-meta: grouping: 0 AllEntriesGroup:; 1 StaticGroup:Energy\;0\;1\;\;\;\;; } @comment{BibDesk Static Groups{ group name Capping keys bedewy:2009 group name Nanoinjection keys aten:2011,zang:2015,teichert:2013,lindstrom:2014,aten:2012,toone:2012_msThesis,teichert:2012_msThesis,volder:2010,park:2009,aten:2011_phdThesis group name Ni Catalyst keys du:2005,makris:2005,xu:2006,zhu:2010,saghafi:2014252,rizzoli:2006,atthipalli:20115371,Acomb:2016497,CHANG:20081572,LI:20063220,FAZLEKIBRIA:20021241,MOSHKALYOV:2004147,Shahi:2015,Hermann:2010438,HERMANN:20081979,LEE:20041232,LEE:2000554,VERONESE:200721,JUNG:2001150,Esconjauregui:2011,Esconjauregui:2010,Sugime:2013,Esconjauregui:20112 group name Thermal Barrier keys }}