Skip to main content
Mendeley Data
Sign in Create account Download
  • Reference Management
    • Reference Manager
    • Web Importer
    • Citation Plugin
    • Premium
    • Institutional Edition
  • Research Network
    • Community
    • Groups
    • Discover
  • Datasets
    • Find Research Data
    • My Datasets
    • New Dataset
    • FAQ
  • Careers
  • Funding
Find Research Data My Datasets New Dataset FAQ
Reset

Filter Results

    • Geospatial Data (4178)
    • Image (3576)
    • Tabular Data (3434)
    • Software/Code (1334)
    • File Set (1215)
    • Text (1208)
    • Document (826)
    • Sequencing Data (41)
    • Video (25)
    • Slides (12)
    • Audio (7)
    • Article Repositories (2458)
    • Data Repositories (1720)
    • ScienceDirect (2458)
    • ArrayExpress (1082)
    • Zenodo (313)
    • Mendeley Data (127)
    • Harvard Dataverse (108)
    • Dryad (89)
    • University Of Virginia (1)

4178 results

A two-dimensional structural-acoustic radiation benchmark

Contributors: Rupert Ullmann, Stefan Sicklinger

Date: 2019-07-09

... A two-dimensional finite element (FE) model is presented, which can be used to validate methods and design criterions for vibroacoustics. A simple beam-like structure, providing different transmission paths for some structure-borne point excitation, is connected to a beam. The latter is acting as a radiator. The acoustic fluid is modeled by means of acoustic elements, and two different boundary conditions are implemented. This results in one model providing free-field conditions (halfspace) and one with a reverberant setting. The model, therefore, enables one to analyze a full acoustic chain of effects (transmission of vibration through the structure and radiation) in a sufficiently complex setting with moderate model size. For an application and a more detailed description of the model see: Sicklinger S. and Ullmann, R.: "Structural power as an acoustic design criterion for the early phase of product design", International Conference on Noise and Vibration Engineering, Leuven, 2018.

Files:

  • Geospatial Data(2)
  • Unknown File Type(2)

Data for: Validation of a Uniaxial Structure-Borne Sound Benchmark With Emphasis on Power and Phase Accuracy

Contributors: Rupert Ullmann

Date: 2019-07-08

... Data in order to reproduce the benchmark of the associated publication "Validation of a Uniaxial Structure-Borne Sound Benchmark with Emphasis on Power and Phase Accuracy". The dataset contains: 1. Geometry data The geometry of the single parts of the benchmark structure provided as STEP-files. 2. FE data ASCII FE representation for the benchmark (SIMULIA Abaqus input file syntax) 3. Measurement data Data files containing the results of the measurements, which were used for generating the Figures contained in the publication

Files:

  • Geospatial Data
  • Unknown File Type(4)
  • File Set

Exposure Index for Maize yield vulnerability Modelling for Nigeria

Contributors: Olanrewaju Lawal

Date: 2019-07-08

... Exposure capture factors which could be manifested in the magnitude and intensity of long-term changes in climate (Intergovernmental Panel on Climate Change, 2007) and in this context factors with impact on agricultural production. Temperature and rainfall were used to capture the extent to which Maize is exposed to climate change. Data was sourced from the Centre for Environmental Data Analysis (CRU TS release 4), with data extracted for 1941 - 2015. The data were processed within R (Version 3.4.2), within this environment the mean (temperature and rainfall) for northern and southern parts of the country were computed. The growing season for Maize in the north spans from May to September while in the south it starts from March and ends in August (FAO, 2018). Furthermore, long (1941 – 2015) and short (1961 – 2015) term averages for the respective growing season were computed for each of the regions. Following the computation of the long and short-term averages, exposure was computed as the ratio of the long-term to the short-term averages. With exposure index for rainfall and temperature computed separately, the two were added to get the combined exposure index. A high value indicates high exposure to climate variability. In this dataset, the exposure index is presented in raster format (Geotiff) to allow for easy processing across GIS software. In addition, the boundaries of the northern and the southern regions were also included as shapefiles.

Files:

  • Software/Code(12)
  • Geospatial Data(4)
  • Document(6)
  • Image(2)
  • File Set(2)

mapa

Contributors: janeth guangorena

Date: 2019-07-05

... mapa facsa

Files:

  • Geospatial Data

MIMIC model individual differences

Contributors: Jacqueline Zadelaar

Date: 2019-06-22

... Are Individual Differences Quantitative Or Qualitative? An Integrated Behavioral And Fmri Mimic Approach. Authors: Jacqueline N. Zadelaar, Wouter D. Weeda, Lourens J. Waldorp, Anna C. K. Van Duijvenvoordee, N. E. Blankenstein, Hilde M. Huizenga In cognitive neuroscience there is a growing interest in individual differences. We propose the Multiple Indicators Multiple Causes (MIMIC) model of combined behavioral and fMRI data to determine whether such differences are quantitative or qualitative in nature. A simulation study revealed the MIMIC model to have adequate power for this goal, and parameter recovery to be satisfactory. The MIMIC model was illustrated with a re-analysis of Van Duijvenvoorde et al. (2016) and Blankenstein et al. (2018) decision making data. This showed individual differences in Van Duijvenvoorde et al. (2016) to originate in qualitative differences in decision strategies. Parameters indicated some individuals to use an expected value decision strategy, while others used a loss minimizing strategy, distinguished by individual differences in vmPFC activity. Individual differences in Blankenstein et al. (2018) were explained by quantitative differences in risk aversion. Parameters showed that more risk averse individuals preferred safe over risky choices, as predicted by heightened vmPFC activity. We advocate using the MIMIC model to empirically determine, rather than assume, the nature of individual differences in combined behavioral and fMRI datasets.

Files:

  • Tabular Data(215)
  • Geospatial Data(29)
  • Document(21)
  • Unknown File Type(20)
  • Text(56)
  • Software/Code(15)

OBIA4RTM Demonstration Data

Contributors: Lukas Graf, Levente Papp

Date: 2019-06-17

... This dataset provides sample data demonstrating the capacities of the OBIA4RTM tool. OBIA4RTM combines radiative transfer modelling (RTM) of vegetation with object-based image analysis (OBIA). Its main purpose is to provide vegetation parameters such as Leaf Area Index (LAI) or leaf Chlorophyll a+b content (CAB) on a per-object rather than per pixel base. In this dataset, the OBIA4RTM tool was applied to two Sentinel-2 scenes covering an agricultural area in Southern Germany. Field parcels were used as image objects that were delineated from high-resolution ortho-photography and classified into vegetated and non-vegetated parcels using a Support Vector Machine trained on manually selected samples. For each of the two scenes - dating back on the 6th and 18th of July 2017 - the canopy RTM ProSAIL was run in forward mode and the synthetic spectra stored in a Lookup-Table (LUT). For parameter retrieval, the 5 closest matches between spectra in the LUT and a given observed satellite spectrum averaged per parcel were used. Matches were found in terms of the lowest Root Mean Squared Error (RMSE). The utilized vegetation parameterisation is provided additionally. The results include the Leaf Area Index (LAI), the Chlorophyll a+b content (CAB) of leaves and the fraction of brown leaves (Cbrown). In addition, the retrieval error in terms of RMSE is provided together with the average of the 5 best matching synthetic spectra in the LUT to a given object-based spectrum. This allows for evaluating the quality of the inversion results and enables user to further improve the results by applying a more appropiate vegetation parameterisation. The structure of the dataset (see below) is straightforward: - The "Field Parcels" folder contains an ESRI shapefile with the field parcels as well as the classification results for the two image acquisition dates - The "ProSAIL Parametersisation" directory provides the vegetation parameters used to run the ProSAIL model. - The actual results are stored as ESRI-shapefiles in "Retrieved Vegetation Parameters" folder containing the LAI, CAB, Fraction of brown leaves and the RMSE as well as inverted Sentinel-2 spectra - "Sentinel-2 data" contains the utilized Sentinel-2 data as GeoTiff clipped to the study area in Level-2A This information should allow for reproducing the results using the freely available base version of OBIA4RTM (for research and education) or within other software packages. All geodata is projected in UTM-Zone 32N, WGS-84.

Files:

  • Text(5)
  • Software/Code(14)
  • Image(2)
  • Geospatial Data(3)
  • Tabular Data

Common genetic variations associated with the persistence of immunity following childhood immunisation

Contributors: Daniel O'Connor

Date: 2019-06-12

... Genotyping data of common genetic variations associated with the persistence of immunity following childhood immunisation

Files:

  • Text(9)
  • Sequencing Data
  • Unknown File Type
  • Geospatial Data

Data for: Legacy of a Pleistocene bacterial community: Patterns in community dynamics through changing ecosystems.

Contributors: Senthil Kumar Sadasivam, Anbarasu Kumaresan, Sivakumar Krishnan, Bhavatharini Shanmuganathan, Manoj Kumar Jaiswal, SHAN P THOMAS

Date: 2019-06-12

... The dataset contains supplementary data files for the manuscript titled "Legacy of a Pleistocene bacterial community: Patterns in community dynamics through changing ecosystems."

Files:

  • Software/Code(3)
  • Tabular Data
  • Image(3)
  • Text(3)
  • Geospatial Data

Dataset for landscape pattern analysis: relationships of climatic variables and NDVI

Contributors: Szilárd Szabó, Boglárka Balázs, Zoltán Kovács, Balázs Deák, Ádám Kertész

Date: 2019-06-08

... The dataset is derived from the Hungarian part of the CarpatClim database (https://doi.org/10.1002/joc.4059) and the MODIS MOD13Q1 16 days 250 m (https://doi.org/10.5067/MODIS/MOD13Q1.006) between 2000-2010, using bivariate linear regression on monthly data. The 1038 points represent 1038 R-squared (R2) values of the regressions. R2 values reflect the strength of relationship between aridity, precipitation, potential evapotranspiration, maximum temperature and the normalized vegetation index (NDVI). For spatial analysis, we provided the codes of Hungarian macro regions, land cover and topography data (terrain height, slope and aspect). Column name Description CC_ID: CarpatClim identifier Country: Country code of CarpatClim /1=Hungary/ UTM_X: X UTM Coordinate UTM_Y: Y UTM Coordinate ARIvsNDVI_R2: R2 of Aridification Index and NDVI 2000–2010 PRECvsNDVI_R2: R2 of Precipitation and NDVI 2000–2010 PETvsNDVI_R2: R2 of Potential Evapotranspiration and NDVI 2000–2010 TMAXvsNDVI_R2: R2 of Maximum Temperature and NDVI 2000–2010 DEM_slope: SRTM slope value (degree) DEM_aspect: SRTM aspect value (azimuth) DEM: SRTM elevation (m) CLC_code: CORINE Land Cover code /arable lands (211, 213,221,222, 242,243), grasslands (231, 321), forests (311, 312, 313, 324), wetlands (411, 412), water bodies (511, 512) and artificial surfaces (112, 121, 122, 131, 142) Macro_reg_code: Hunrarian Macro Region code /Great Hungarian Plain=1, Kisalföld=2, Alpokalja=3, Transdanubian Hills=4, Transdanubian Mountains=5, North-Hungarian Mountains=6/ Microregion_code: Hungarian Micro Region code (Dövényi, Z. 2010) Dövényi, Z. ed. 2010. Inventory of Natural Micro-regions of Hungary, Hungarian Academy of Sciences Geographical Institute, Budapest

Files:

  • Document
  • Software/Code(3)
  • File Set
  • Geospatial Data(2)
  • Tabular Data
  • Text

Abaqus input file and processed results

Contributors: Yansheng Deng

Date: 2019-06-06

... Abaqus input file of a thermal-mechanical-metallurgical directly coupling finite element model of grinding under grinding parameters, vw=10mm/s, ap=0.2mm (model_of_grinding.inp). The temperature history and evolution history of each phase of several elements IP:3( SDV1_IP3.xlsx for temperature, SDV4_IP3.xlsx for austenite, SDV24_IP3.xlsx for martensite, SDV25_IP3.xlsx for ferrite+pearlite, SDV42_IP3.xlsx for J2, SDV43_IP3.xlsx for A1, SDV66_IP3.xlsx for Hydrostatic Stress, SDV67_IP3.xlsx for Ms).

Files:

  • Tabular Data(8)
  • Geospatial Data
Previous123456789Next
We care about your feedback Help us to improve Mendeley Data by telling us what we can do better. Send feedback
Mission Archive Policy Suggested file formats Facebook Twitter LinkedIn

Elsevier
  • Copyright
  • Terms of Use
  • Privacy Policy

Copyright © 2019 Mendeley Ltd. All rights reserved. Cookies are set by this site. To decline them or learn more, visit our cookies page.

RELX GroupTM