2 results for qubit oscillator frequency
Contributors: Wu, Chuan, Yan, Bo, Huang, Guizao, Zhang, Bo, Lv, Zhongbin, Li, Qing
Date: 2018-04-18
wake-induced oscillation...A numerical method to simulate air flow around a bundle conductor line by means of FLUENT software is presented and verified by a wind tunnel test for aerodynamic characteristics of a twin bundle conductor line. The lift and drag coefficients of the leeward sub-conductor of a twin bundle conductor varying with its relative position in the wake zone to the windward one under different wind velocities are numerically determined by the presented method. A user-defined subroutine of ABAQUS software is developed to apply the aerodynamic loads on each sub-conductor and the electromagnetic force between sub-conductors. The numerical simulation method for wake-induced oscillation of a bundle conductor line is proposed. By means of the numerical method, wake-induced oscillation processes of twin bundle conductor transmission lines under different parameters, including current intensity, spacer layout, span length and wind velocity, are numerically simulated. Moreover, the effects of those parameters on the oscillation characteristics of the lines, such as vibration mode, frequency, amplitude and motion trace, are discussed. The obtained results provide a fundamental for the understanding of wake-induced oscillation behavior of twin bundle conductor transmission lines and the development of control technique for wake-induced oscillation. ... A numerical method to simulate air flow around a bundle conductor line by means of FLUENT software is presented and verified by a wind tunnel test for aerodynamic characteristics of a twin bundle conductor line. The lift and drag coefficients of the leeward sub-conductor of a twin bundle conductor varying with its relative position in the wake zone to the windward one under different wind velocities are numerically determined by the presented method. A user-defined subroutine of ABAQUS software is developed to apply the aerodynamic loads on each sub-conductor and the electromagnetic force between sub-conductors. The numerical simulation method for wake-induced oscillation of a bundle conductor line is proposed. By means of the numerical method, wake-induced oscillation processes of twin bundle conductor transmission lines under different parameters, including current intensity, spacer layout, span length and wind velocity, are numerically simulated. Moreover, the effects of those parameters on the oscillation characteristics of the lines, such as vibration mode, frequency, amplitude and motion trace, are discussed. The obtained results provide a fundamental for the understanding of wake-induced oscillation behavior of twin bundle conductor transmission lines and the development of control technique for wake-induced oscillation.
Files:
Contributors: Erlykin, Anatoly D., Harper, David A. T., Sloan, Terry, Wolfendale, Arnold W.
Date: 2017-02-14
A Fourier analysis of the magnitudes and timing of the Phanerozoic mass extinctions (MEs) demonstrates that many of the periodicities claimed in other analyses are not statistically significant. Moreover we show that the periodicities associated with oscillations of the Solar System about the galactic plane are too irregular to give narrow peaks in the Fourier periodograms. This leads us to conclude that, apart from possibly a small number of major events, astronomical causes for MEs can largely be ruled out....Frequency of crater occurrence, basis of analysis of impact periodicity ... A Fourier analysis of the magnitudes and timing of the Phanerozoic mass extinctions (MEs) demonstrates that many of the periodicities claimed in other analyses are not statistically significant. Moreover we show that the periodicities associated with oscillations of the Solar System about the galactic plane are too irregular to give narrow peaks in the Fourier periodograms. This leads us to conclude that, apart from possibly a small number of major events, astronomical causes for MEs can largely be ruled out.
Files:
Top results from Data Repository sources. Show only results like these.