Icarus

ISSN: 0019--1035
Visit Journal website
Datasets associated with articles published in Icarus
Filter Results
70 results
  • These are the ArcMap files created and reported on in Noviello et al. (submitted here)
    Data Types:
    • Software/Code
    • Geospatial Data
    • Dataset
    • Document
    • File Set
  • These files provide the associated images (HiRISE, CTX, and MSL) and the clastic pipe and/or mud volcano size (i.e., diameter) measurements.
    Data Types:
    • Tabular Data
    • Dataset
  • Supplementary materials for Karman et al "Update of the HITRAN collision-induced absorption section" Icarus (2018) 1. This readme file 1. The tar file containing the Main and Aletrnate folders. Only data that is updated or new with respect to original Richard et al (2012) are provided. The most current data of the CIA section in HITRAN can be found at https://hitran.org/cia/ 2. The reference mapping file to be used with the data files. Note that the reference numbering is different from that in the article.
    Data Types:
    • Dataset
    • File Set
  • Force, torque, pressure, and temperature data for all experiments. Files labeled "FT_T....txt" contain force, torque, and temperature data, "MP_T....txt" contains pressure and vertical stage motion data. All .csv files contain the average curves for tests as described in Table 1 of the manuscript. SampleOverview.xlsx contains an overview of sample compaction information. CurveDisplay.m is a simple Matlab code designed to enable quick visualization of the force/torque data.
    Data Types:
    • Software/Code
    • Tabular Data
    • Dataset
    • Text
  • HITRAN2016 line file with hydrogen as the broadening gas. The line file uses the new temperature dependence of the half-width and line shift by Gamache and Vispoel. Please see the read_me.txt file for details.
    Data Types:
    • Dataset
    • Text
  • These files list the neutral and ion reactions used for the calculations. They have the form: X: R1 + R2 -> P1 + P2 rate (as a Fortran statement) ; source where X = P, C or 0,I,F for photodissociation, chemical reaction or 3-body reaction
    Data Types:
    • Dataset
    • Text
  • These are the spectra of the irradiated and unirradiated salts that were used in the manuscript's figures
    Data Types:
    • Tabular Data
    • Dataset
  • This file Figures.zip contains the scripts and data used to generate all figures in the manuscript. The file Movies.zip contains animations of the simulations presented in the manuscript. Description of movie files Movie S01 (proximal) is the output of the simulation in which only the degradation arising from the slope-dependent mass redistribution of proximal ejecta of the primary production function is modeled. Movie S1 corresponds to Figure 9 of the main text. Movies S02-S03 (micrometeoroid) are the output of the simulations in which an enhanced micrometeoroid population is added to the production function. Two cases are shown, one in which the resolvable crater production SFD has a slope of η=3.2 (S2) and one in which we modeled a slightly shallower production SFD slope of η=3.0. Movie S2 corresponds to Figure 11 of the main text. Movies S04-S10 (uniform) are the output of the simulations in which with additional extra diffusion added over a uniform region with radius f_e r, with K_(d,1) determined by solving equation (32) of the main text for the equilibrium SFD (n_(eq,1)=0.0084 and β=2) given a value of f_e. Here we have varied f_e from 3 to 50. Movie S4 (f_e=3) corresponds to Figure 14 of the main text, and Movie S8 (f_e=10) corresponds to Figure 15 of the main text.   Movies S11-S12 (ray) are the output of simulations in which additional extra diffusion is added over a spatially heterogeneous region mimicking crater rays. Two ray models are tested (see Figure 16 of the main text for the degradation scale “intensity function” for these two models). Both models use values of K_(d,1) needed to match the observed equilibrium SFD. Movie S12 corresponds to Figure 18 of the main text. Movies S13-S17 (etatest) are the output of simulations testing whether the analytical model given by equation (30) of the main text correctly predicts the dependence on the equilibrium SFD when the production function slope, η, is varied. In these simulations, η is varied between 2.6-3.8. We fix the value of K_(d,1), f_e=3, and ψ=2 for the solution to the observed equilibrium SFD for η=3.2, (see Movie S4). Movies S18-S21 (psitest) are the output of simulations testing whether the analytical model given by equation (30) of the main text correctly predicts the dependence on the equilibrium SFD when the degradation function slope, ψ, is varied. In these simulations, ψ is varied between 1.8-2.4. We fix the value of K_(d,1), f_e=3, and η=3.2 for the solution to the observed equilibrium SFD for ψ=2.0, (see Movie S4).
    Data Types:
    • Dataset
    • File Set
  • Measurements of the 2-4 millimeter-wavelength opacity of sulfuric acid vapor under simulated Venus conditions and the associated conditions for each measurement
    Data Types:
    • Tabular Data
    • Dataset
  • The formation of impact craters in unconsolidated granular materials is a topic of enduring interest in solid-earth geophysics, planetary science, and several branches of engineering science. In particular, a general relationship between crater size, impact parameters, and target material properties is often sought. This paper presents a new empirical relationship, based on dimensional analysis and inspired by gas-dynamic shock physics, for the diameters of low- and high-speed impact craters in dry granular materials based on the hypothesis that surface-gravity- and shock-wave phenomena primarily set crater size. The final relationship involves the impacting object’s kinetic energy and speed; the target material’s density, angle of repose, and sound speed; and the gravitational acceleration at the impact location. It is formulated in terms of a dimensionless crater diameter, an algebraic combination of Froude number, Mach number, and the tangent of the target material’s angle of repose, using an analogy to gas dynamics and an empirical power law for the dependence of granular-material sound speed on gravitational acceleration. The coefficient of determination for the final fit is 0.969 based on experimental impact data from 325 individual impacts spanning parametric ranges of more than 400 in crater diameter, 10^10 in impact energy, 500 in gravitational acceleration, and 40 in target material density for two different angles of repose. The final formula provides insight into how impact energy conversion depends on Mach number and may be useful for predictive and forensic analysis of planetary impact craters and for granular-flow code validation.
    Data Types:
    • Tabular Data
    • Dataset
4