Filter Results
321 results
  • The goal of this experiment was to identify genomic dCAP-D3 binding sites in Drosophila S2R+ cells dCAP-D3 was immunoprecipitated in two separate experiments with antibody YZ834 which was developed in the Longworth lab. IgG immunoprecipiation was performed alongside the dCAP-D3 immunoprecipitation to serve as controls for each experiment. Input chromatin was also harvested from each of the two experiments.
    Data Types:
    • Text
    • File Set
  • The patterning of Drosophila retina occurs both very fast and with high precision. This process is driven by the dynamic changes in signalling activity of the conserved Hedgehog (Hh) pathway, which coordinates cell fate determination, cell cycle and tissue morphogenesis. Here we show that during Drosophila retinogenesis, the retinal determination gene dachshund (dac) is not only a target of the Hh signaling pathway, but is also a modulator of its activity. Using developmental genetics techniques, we demonstrate that dac enhances Hh signaling by promoting the accumulation of the Gli transcription factor Cubitus interruptus (Ci) parallel to or downstream of fused. In the absence of dac, all Hh-mediated events associated to the morphogenetic furrow are delayed. One of the consequences is that, posterior to the furrow, dac- cells cannot activate a Roadkill-Cullin3 negative feedback loop that attenuates Hh signaling and which is necessary for retinal cells to continue normal differentiation. Therefore, dac is part of an essential positive feedback loop in the Hh pathway, guaranteeing the speed and the accuracy of Drosophila retinogenesis. ChIP-seq against Dachshund vs input ChIP-seq. Eye-antennal imaginal discs are dissected from Grh-GFP (Bloomington stock 42269) 3rd instar larvae and fixed with formaldehyde. Chromatin is prepared and sonicated until fragments reach an average size of 500 bp. Chromatin is immunoprecipitated with an anti-GFP Ab (ab290, Abcam) and the immunocomplexes are recovered with protein A/G magnetic beads (Millipore).
    Data Types:
    • Text
    • File Set
  • This SuperSeries is composed of the following subset Series: GSE26895: Drosophila LID RNAi gene expression profiling GSE27078: LID ChIP-Seq in wild type, and H3K4me3 ChIP-Seq in wild type and lid RNAi Drosophila melanogaster GSE40599: POLIISER5 and POLIISER2 ChIP-Seq in mutant RNAi LID Drosophila Melanogaster Refer to individual Series
    Data Types:
    • Software/Code
    • Tabular Data
    • Text
    • File Set
  • This data consists of RNA-seq data of whole animal white pre pupa of four Drosophila species: Drosophila melanogaster, Drosophila simulans, Drosophila yakuba, and Drosophila pseudoobscura. The processed RPKM values are calculated following the method in Garber et al 2011 Nature Methods paper. Examination of H3K27me3 in 4 Drosophila species and its correlation with gene expression levels in the same development stage relevant ChIP-seq data can be found in GSE25663, GSE25668
    Data Types:
    • Sequencing Data
    • Text
    • File Set
  • CREB-binding protein (CBP, also known as nejire) is a transcriptional co-activator that is conserved in metazoans. We have generated CBP ChIP-seq data from Drosophila S2 cells and compared it to modENCODE data. This shows that CBP is bound at genomic sites with a wide range of functions. As expected, we find that CBP is bound at active promoters and enhancers. In addition, we find that the strongest CBP sites in the genome are found at Polycomb Response Elements embedded in histone H3 lysine 27 trimethylated (H3K27me3) chromatin, where they correlate with binding of the Pho repressive complex. Interestingly, we find that CBP also binds to most insulators in the genome. At a subset of these, CBP may regulate insulating activity, measured as the ability to prevent repressive H3K27 methylation from spreading into adjacent chromatin. ChIP seq in Drosophila S2 cells using two different antibodies against CBP (nejire), one raised in rabbit against amino acids 2540-3190 (CBP rb), and one raised in guinea-pig against amino acids 1-178 (CBP gp)
    Data Types:
    • Text
    • File Set
  • dLint1 (CG1908) was ChIPseq`d in Drosophila melanogaster KC cells and S2 cells
    Data Types:
    • Text
    • File Set
  • ChIP-Seq peak calling of CP190 in wild-type and Ibf2 mutant Drosophila melanogaster third instar larvae Two wild-type and two Ibf2 mutant Drosophila melanogaster third instar larvae were sequenced.
    Data Types:
    • Text
    • File Set
  • This is a dataset which comprises the following two different kinds of genomic data in Drosophila species: First, triplicate ChIP-seq data of CTCF (CCCTC binding factor) binding profiles in each of the four closely related Drosophila species : Drosophila melanogaster, Drosophila simulans, Drosophila yakuba and Drosophila pseudoobscura at white pre pupa stage; Second, triplicate RNA-seq data of white pre pupa whole animals of three Drosophila species: Drosophila melanogaster, Drosophila simulans and Drosophila yakub. The binding site/region/peaks are called using a modified method of QuEST( please see details in our related publication). The sequence read counts and RPKM values are calculated following the method in Mortazavi et al 2008 Nature Methods paper. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf Examination of CTCF binding in 4 Drosophila species and their correlation with gene expression levels in the same development stages
    Data Types:
    • Text
    • File Set
  • Genomic enhancers regulate spatio-temporal gene expression by recruiting specific combinations of transcription factors (TFs). When TFs are bound to active regulatory regions, they displace canonical nucleosomes, making these regions biochemically detectable as nucleosome-depleted regions or accessible/open chromatin. Here we ask whether open chromatin profiling can be used to identify the entire repertoire of active promoters and enhancers underlying tissue-specific gene expression during normal development and oncogenesis in vivo. To this end, we first compare two different approaches to detect open chromatin in vivo using the Drosophila eye primordium as a model system: FAIRE-seq, based on physical separation of open versus closed chromatin; and ATAC-seq, based on preferential integration of a transposon into open chromatin. We find that both methods reproducibly capture the tissue-specific chromatin activity of regulatory regions, including promoters, enhancers, and insulators. Using both techniques, we screened for regulatory regions that become ectopically active during Ras-dependent oncogenesis, and identified 3778 regions that become (over-)activated during tumor development. Next, we applied motif discovery to search for candidate transcription factors that could bind these regions and identified AP-1 and Stat92E as key regulators. We validated the importance of Stat92E in the development of the tumors by introducing a loss of function Stat92E mutant, which was sufficient to rescue the tumor phenotype. Additionally we tested if the predicted Stat92E responsive regulatory regions are genuine, using ectopic induction of JAK/STAT signaling in developing eye discs, and observed that similar chromatin changes indeed occurred. Finally, we determine that these are functionally significant regulatory changes, as nearby target genes are up- or down-regulated. In conclusion, we show that FAIRE-seq and ATAC-seq based open chromatin profiling, combined with motif discovery, is a straightforward approach to identify functional genomic regulatory regions, master regulators, and gene regulatory networks controlling complex in vivo processes. FAIRE-Seq in Drosophila wild type eye-antennal imaginal discs (2 wt strains); ATAC-Seq in Drosophila wild type eye-antennal imaginal discs (3 wt strains) ; FAIRE-Seq in Drosophila Ras/Scrib induced eye disc tumors (1 early and 1 late); ATAC-Seq in Drosophila Ras/Scrib induced eye disc tumors (1 early and 1 late); ATAC-Seq in Drosophila eye discs with Unpaired over-expression (2 biological replicates); CTCF ChIP-seq in Drosophila eye discs; ChIP-seq input in Drosophila eye discs
    Data Types:
    • Text
    • File Set
  • ChIP-seq study analysing adult Drosophila melanogaster head, glial, neuronal and fat body, as well as embryonic RNA pol II and H2A.v binding by employing the GAL4-UAS system to generate GFP-fusion proteins and ChIP-seq
    Data Types:
    • Text
    • File Set