Filter Results
6342 results
Aim: To test two prominent, alternate hypotheses that provide explanations for the great accumulation of endemic species in the Kimberley bioregion in north-western Australia, using an extensively sampled, region wide phylogeny of northern Australia’s most speciose freshwater fish family, Terapontidae. Specifically, we test whether the Kimberley may act as (1) a “museum” accumulating taxa and endemic species over time or (2) a “cradle” of more recent diversification and neoendemism. Location: The Australian monsoonal tropics Taxon: Grunters (Terapontidae) Methods: We obtained a robust and well supported Bayesian phylogeny for the family using DNA sequences from mtDNA and nuclear gene regions. We performed molecular phylogenetic analyses using species tree methods including molecular dating analysis, ancestral range reconstruction, and diversification analysis. Results: Based on our phylogeny, the combined molecular clock estimates and likelihood-based historical biogeographic reconstructions suggest that terapontids recently transitioned into the Kimberley from the east during the late-Miocene. We found that 80% of Kimberley terapontids diversified within the Kimberley in the last 3 Ma. Further, diversification analyses identified a single significant shift in diversification rates ~1.4 Ma that corresponds with a change in global climate midway through the Pleistocene that was predominantly driven by speciation in the Kimberley. Main Conclusions: The weight of evidence suggests that the Kimberley has been a “cradle” of evolution for Terapontidae, rather than a “museum”. Our analysis provides strong evidence for a geologically recent transition of terapontids into the Kimberley from regions to the east during the late Miocene followed by a significant increase in speciation rates during the Pleistocene, driven by speciation in the Kimberley. The results provide important insight into the evolutionary and biogeographical processes that have shaped the regions unique biota, which will inform land managers working to protect and conserve both species and the processes responsible for generating and sustaining them.
Data Types:
  • Software/Code
  • Dataset
Background: Allergic reactions to tattoos are amongst the most common side effects occurring with this permanent deposition of pigments into the dermal skin layer. The characterization of such pigments and their distribution has been investigated in recent decades. The health impact of tattoo equipment on the extensive number of people with inked skin has been the focus of neither research nor medical diagnostics. Although tattoo needles contain high amounts of sensitizing elements like nickel (Ni) and chromium (Cr), their influence on metal deposition in skin has never been investigated. Results: Here, we report the deposition of nano- and micrometer sized tattoo needle wear particles in human skin that translocate to lymph nodes. Usually tattoo needles contain nickel (6–8%) and chromium (15–20%) both of which prompt a high rate of sensitization in the general population. As verified in pig skin, wear significantly increased upon tattooing with the suspected abrasive titanium dioxide white when compared to carbon black pigment. Additionally, scanning electron microscopy of the tattoo needle revealed a high wear after tattooing with ink containing titanium dioxide. The investigation of a skin biopsy obtained from a nickel sensitized patient with type IV allergy toward a tattoo showed both wear particles and iron pigments contaminated with nickel. Conclusion: Previously, the virtually inevitable nickel contamination of iron pigments was suspected to be responsible for nickel-driven tattoo allergies. The evidence from our study clearly points to an additional entry of nickel to both skin and lymph nodes originating from tattoo needle wear with an as yet to be assessed impact on tattoo allergy formation and systemic sensitization.
Data Types:
  • Other
  • Dataset
  • File Set
1. Among plant traits, plant secondary metabolites such as tannins mediate plant herbivore interactions but also have after-life effects on litter decomposition and nutrient cycling. We propose that niche construction mechanisms based on positive plant-soil feedbacks (PSF) could influence the evolution of tannin production. 2. By modeling the flow of nitrogen (N) and carbon (C) through plants and soil in a spatially explicit context, we explored the relative contribution of herbivory and positive PSF as drivers of tannin evolution. We assumed soil N to be contained in labile and recalcitrant compartments, the latter made of tannin-protein complexes from which plants can absorb nutrients via associations with mycorrhizal fungi. 3. In infertile environments and for plants with low biomass turnover rates, we show that when tannins modify soil properties locally, positive PSF alone can drive their evolution. We further predict the existence of positive coevolutionary feedbacks between associations with mycorrhizal fungi with a decaying ability and tannins, possibly triggered by the evolution of the latter as protection against herbivores. In line with our theoretical results, empirical evidence suggest that tannins are mostly present in plants with low tissue turnover, associated with mycorrhizal fungi able to decay organic matter and inhabiting infertile environments. 4. Synthesis. Our model proposes that the evolution of tannin production can be triggered by positive PSF, provided that tannins promote the local N retention and that mycorrhizal fungi associated with plants are able to absorb N from tannin-protein complexes. In our model, tannin production evolves only in infertile ecosystems, in agreement with field observations. Our findings highlight that the strength of niche construction depends on the ecological context, hence that global ecological properties constrain local eco-evolutionary dynamics.
Data Types:
  • Software/Code
  • Dataset
Species’ geographic range limits often result from maladaptation to the novel environments beyond the range margin. However, we rarely know which aspects of the n-dimensional environment are driving this maladaptation. Especially of interest is the influence of abiotic versus biotic factors in delimiting species’ distributions. We conducted a two-year reciprocal transplant experiment involving manipulations of the biotic environment to explore how spatio-temporal gradients in precipitation, fatal mammalian herbivory, and pollination affected lifetime fitness within and beyond the range of the California annual plant, Clarkia xantiana ssp. xantiana. In the first, drier year of the experiment, fitness outside the range edge was limited mainly by low precipitation, and there was some evidence for local adaptation within the range. In the second, wetter year, we did not observe abiotic limitations to plant fitness outside the range; instead biotic interactions, especially herbivory, limited fitness outside the range. Together, protection from herbivory and supplementation of pollen resulted in 3-7 fold increases in lifetime fitness outside the range margin in the abiotically benign year. Overall, our work demonstrates the importance of biotic interactions, particularly as they interact with the abiotic environment, in determining fitness beyond geographic range boundaries.
Data Types:
  • Other
  • Software/Code
  • Tabular Data
  • Dataset
  • Document
The origin of the mammalian order Eulipotyphla has been debated intensively with arguments around whether they began diversifying before or after the Cretaceous-Palaeogene (K-Pg) boundary at 66 Ma. Here, we used an in-solution nucleotide capture method and next generation DNA sequencing to determine the sequence of hundreds of ultra-conserved elements (UCEs), and conducted phylogenomic and molecular dating analyses for the four extant eulipotyphlan lineages—Erinaceidae, Solenodontidae, Soricidae, and Talpidae. Concatenated maximum-likelihood analyses with single or partitioned models and a coalescent species-tree analysis showed that divergences among the four major eulipotyphlan lineages occurred within a short period of evolutionary time, but did not resolve the interrelationships among them. Alternative suboptimal phylogenetic hypotheses received consistently the same amount of support from different UCE loci, and were not significantly different from the maximum likelihood tree topology, suggesting the prevalence of stochastic lineage sorting. Molecular dating analyses that incorporated among-lineage evolutionary rate differences supported a scenario where the four eulipotyphlan families diversified between 57.8 and 63.2 Ma. Given short branch lengths with low support values, traces of rampant genome-wide stochastic lineage sorting, and post K-Pg diversification, we concluded that the crown eulipotyphlan lineages arose through a rapid diversification after the K-Pg boundary when novel niches were created by the mass extinction of species.
Data Types:
  • Other
  • Software/Code
  • Dataset
Mammals have two types of photoreceptors, rods and cones. While rods are exceptionally sensitive and mediate vision at very low illumination levels, cones operate in daylight and are responsible for the bulk of visual perception in most diurnal animals, including humans. Yet the mechanisms of phototransduction in cones is understudied, largely due to unavailability of pure cone outer segment (COS) preparations. Here we present a novel mathematical model of cone phototransduction that explicitly takes into account complex cone geometry and its multiple physical scales, faithfully reproduces features of the cone response, and is orders of magnitude more efficient than the standard 3D diffusion model. This is accomplished through the mathematical techniques of homogenization and concentrated capacity. The homogenized model is then computationally implemented by finite element method. This homogenized model permits one to analyze the effects of COS geometry on visual transduction and lends itself to performing large numbers of numerical trials, as required for parameter analysis and the stochasticity of rod and cone signal transduction. Agreement between the nonhomogenized, (i.e., standard 3D), and homogenized diffusion models is reported along with their simulation times and memory costs. Virtual expression of rod biochemistry on cone morphology is also presented for understanding some of the characteristic differences between rods and cones. These simulations evidence that 3D cone morphology and ion channel localization contribute to biphasic flash response, i.e undershoot. The 3D nonhomogenized and homogenized models are contrasted with more traditional and coarser well-stirred and 1D longitudinal diffusion models. The latter are single-scale and do not explicitly account for the multi-scale geometry of the COS, unlike the 3D homogenized model. We show that simpler models exaggerate the magnitude of the current suppression, yield accelerated time to peak, and do not predict the local concentration of cGMP at the ionic channels.
Data Types:
  • Other
  • Dataset
  • File Set
The Infraorder Mygalomorphae is one of the three main lineages of spiders comprising over 3,000 nominal species. This ancient group has a world-wide distribution that includes among its ranks large and charismatic taxa such as tarantulas, trapdoor spiders, and highly venomous funnel web spiders. Based on past molecular studies using Sanger-sequencing approaches, numerous mygalomorph families (e.g., Hexathelidae, Ctenizidae, Cyrtaucheniidae, Dipluridae and Nemesiidae) have been identified as non-monophyletic. However, these data were unable to sufficiently resolve the higher-level (intra- and interfamilial) relationships such that the necessary changes in classification could be made with confidence. Here we present a comprehensive phylogenomic treatment of the spider infraorder Mygalomorphae. We employ 472 loci obtained through anchored hybrid enrichment to reconstruct relationships among all the mygalomorph spider families and estimate the timeframe of their diversification. We sampled nearly all currently recognized families, which has allowed us to assess their status, and as a result, propose a new classification scheme. Our generic-level sampling has also provided an evolutionary framework for revisiting questions regarding silk use in mygalomorph spiders. The first such analysis for the group within a strict phylogenetic framework shows that a sheet web is likely the plesiomorphic condition for mygalomorphs, as well as providing insights to the ancestral foraging behavior for all spiders. Our divergence time estimates, concomitant with detailed biogeographic analysis, suggest that both ancient continental-level vicariance and more recent dispersal events have played an important role in shaping modern day distributional patterns. Based on our results, we relimit the generic composition of the Ctenizidae, Cyrtaucheniidae, Dipluridae and Nemesiidae. We also elevate five subfamilies to family rank: Anamidae (NEW RANK), Euagridae (NEW RANK), Ischnothelidae (NEW RANK), Pycnothelidae (NEW RANK), and Bemmeridae (NEW RANK). Three families Entypesidae (NEW FAMILY), Microhexuridae (NEW FAMILY), and Stasimopidae (NEW FAMILY), and one subfamily Australothelinae (NEW SUBFAMILY) are newly proposed. Such a major rearrangement in classification, recognizing nine newly established family-level rank taxa, is the largest the group has seen in over three decades.
Data Types:
  • Dataset
  • File Set
Fossil sequences provide observations of phenotypes within a lineage over time and represent essential data for increasing our understanding of phyletic evolution beyond microevolutionary timescales. I investigate if fossil times-series of the diatom Stephanodiscus niagarae/yellowstonensis follow evolutionary dynamics compatible with hypotheses for how the adaptive landscape changes when a population enters a new environment. The lineage – which has a remarkably detailed stratigraphic record – invaded Yellowstone Lake immediately after recession of ice from the basin 14,000 years ago. Several phyletic models portraying different types of evolutionary dynamics – both compatible and not compatible with changes in the adaptive landscape following ecological opportunity – were fitted to the fossil times-series of S. niagarae/yellowstonensis. Different models best describe the three analyzed traits. Two of the models (a new model of decelerated evolution and an Ornstein-Uhlenbeck model) capture trait dynamics compatible with an event of ecological opportunity, while the third model (random walk) does not. Entering a new environment may accordingly affect trait dynamics for thousands of years, but the effects can vary across phenotypes. However, tests of model adequacy reveal shortcomings in all three models explaining the trait dynamics, suggesting model development is needed to more fully understand the phyletic evolution in Stephanodiscus niagarae/yellowstonensis.
Data Types:
  • Dataset
  • File Set
Genomics is narrowing uncertainty in the phylogenetic structure for many amniote groups. For one of the most diverse and species-rich groups, the squamate reptiles (lizards and snakes, amphisbaenians), an inverse correlation between the number of taxa and loci sampled still persists across all publications using DNA sequence data and reaching a consensus on the relationships among them has been highly problematic. Here, we use high-throughput sequence data from 289 samples covering 75 families of squamates to address phylogenetic affinities, estimate divergence times, and characterize residual topological uncertainty in the presence of genome scale data. Importantly, we address genomic support for the traditional taxonomic groupings Scleroglossa and Macrostomata using novel machine-learning techniques. We interrogate genes using various metrics inherent to these loci, including parsimony-informative sites, phylogenetic informativeness, length, gaps, number of substitutions, and site concordance to understand why certain loci fail to find previously well-supported molecular clades and how they fail to support species-tree estimates. We show that both incomplete lineage sorting and poor gene-tree estimation (due to a few undesirable gene properties, such as an insufficient number of parsimony informative sites), may account for most gene and species-tree discordance. We find overwhelming signal for Toxicofera, and also show that none of the loci included in this study supports Scleroglossa or Macrostomata. We comment on the origins and diversification of Squamata throughout the Mesozoic and underscore remaining uncertainties that persist in both deeper parts of the tree (e.g., relationships between Dibamia, Gekkota, and remaining squamates; and between the three toxiferan clades Iguania, Serpentes, and Anguiformes) and within specific clades (e.g., affinities among gekkotan, pleurodont iguanians, and colubroid families).
Data Types:
  • Other
  • Software/Code
  • Dataset
  • File Set
Women in STEM are not equally represented across tenure-track career stages, and this extends to grant funding, where women applicants often have lower success rates compared to men. While gender bias in reviewers has been documented, it is currently unknown whether written language in grant applications varies predictably with gender to elicit bias against women. Here we analyse the text of ~2000 public research summaries from the 2016 Natural Sciences and Engineering Research Council (NSERC) individual Discovery Grant (DG) program. We explore the relationship between language variables, inferred gender and career stage, and funding levels. We also analyse aggregated data from the 2012-2018 NSERC DG competitions to determine whether gender impacted the probability of receiving a grant for early-career researchers. We document a marginally significant gender difference in funding levels for successful grants, with women receiving $1756 less than men, and a large and significant difference in rejection rates among early-career applicants (women: 40.4% rejection; men: 33.0% rejection rate). Language variables had little ability to predict gender or funding level using predictive modelling. Our results indicate that NSERC funding levels and success rates differ between men and women, but we find no evidence that gendered language use affected funding outcomes.
Data Types:
  • Dataset
  • File Set