Filter Results
32 results
Recently, we reported evidence for a novel mechanism of peripheral sensory coding based on oscillatory synchrony. Spontaneously oscillating electroreceptors in weakly electric fish (Mormyridae) respond to electrosensory stimuli with a phase reset that results in transient synchrony across the receptor population (Baker et al., 2015). Here, we asked whether the central electrosensory system actually detects the occurrence of synchronous oscillations among receptors. We found that electrosensory stimulation elicited evoked potentials in the midbrain exterolateral nucleus at a short latency following receptor synchronization. Frequency tuning in the midbrain resembled peripheral frequency tuning, which matches the intrinsic oscillation frequencies of the receptors. These frequencies are lower than those in individual conspecific signals, and instead match those found in collective signals produced by groups of conspecifics. Our results provide further support for a novel mechanism for sensory coding based on the detection of oscillatory synchrony among peripheral receptors.
Data Types:
  • Other
  • Dataset
  • File Set
Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other’s phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1, and is likely generalizable to other brain regions and rhythms.
Data Types:
  • Other
  • Dataset
Oscillation and noise filtration
Data Types:
  • Other
  • Dataset
Dispersal in heterogeneous ecosystems, such as coastal metacommunities, is a major driver of diversity and productivity. According to theory, both species richness and spatial averaging shape a unimodal relationship of productivity with dispersal. We experimentally tested the hypothesis that disturbances acting on local patches would buffer the loss of productivity at high dispersal by preventing synchronized species oscillations. To simulate these disturbances, our experimental assemblages involved species that self-organized in isolation under three inflow pulsing frequencies, where hydraulic displacement and nutrient loading affected assemblage diversity and composition. At steady-state, the emerging isolated assemblages were connected at three levels of dispersal creating three metacommunities of different connectivity. Consistent with theory, as dispersal increased, species richness in the metacommunity declined; productivity however remained high. This occurred because the most productive species in our study (which dominated the isolated patch of intermediate inflow pulsing frequency) dominated all three patches (low, intermediate and high inflow pulsing frequencies) after dispersal commenced in our metacommunities. This experimental result provides empirical support for the mechanism of spatial averaging. Furthermore, disturbances, in the form of localized pulsed inflows, prevented population oscillation synchrony caused by homogenization. Overall, our observations suggest that localized environmental fluctuations and the identity of species seem to be more influential than dispersal in shaping the diversity and composition of phytoplankton assemblages and stabilizing productivity.
Data Types:
  • Other
  • Dataset
Datasets with results from all simulations of trajectories in 40 different conditions of oscillating optimum for d = 70.... Datasets with results from all simulations of trajectories in 40 different conditions of oscillating optimum for d = 40.... Dataset with the frequency of chaos at each simulation time point for different values of dimensionality (number of traits) d.
Data Types:
  • Other
  • Software/Code
  • Tabular Data
  • Dataset
Why did the London Millennium Bridge shake when there was a big enough crowd walking on it? What features of human walking dynamics when coupled to a shaky surface produce such shaking? Here, we use a simple biped model capable of walking stably in 3D to examine these questions. We simulate multiple such stable bipeds walking simultaneously on a bridge, showing that they naturally synchronize under certain conditions, but that synchronization is not required to shake the bridge. Under such shaking conditions, the simulated walkers increase their step-widths and expend more metabolic energy than when the bridge does not shake. We also find that such bipeds can walk stably on externally shaken treadmills, synchronizing with the treadmill motion for a range of oscillation amplitudes and frequencies, sometimes performing net positive work on the treadmill. Our simulations illustrate how interactions between (idealized) bipeds through the walking surface can produce emergent collective behavior that may not be exhibited by just a single biped.
Data Types:
  • Other
  • Dataset
The high-frequency wing beat of higher-order insects is driven by self-sustained oscillations of constantly activated flight muscles. However, it remains unknown whether its underlying mechanism is based on flight muscle–specific features or on preexisting contractile functions. Here, we recorded x-ray diffraction movies, at a rate of 5000 frames per second, simultaneously from the two antagonistic flight muscles of bumblebees during wing beat. Signals that occurred at the right timing for triggering each wing-beat stroke were resolved in both muscles. The signals likely reflect stretch-induced myosin deformation, which would also enhance force in vertebrate muscles. The results suggest that insects use a refined preexisting force-enhancing mechanism for high-frequency wing beat, rather than developing a novel mechanism.
Data Types:
  • Tabular Data
  • Dataset
  • Text
  • File Set
Frequency of crater occurrence, basis of analysis of impact periodicity
Data Types:
  • Tabular Data
  • Dataset
  • Document
Sodium channels play multiple roles in the formation of neural membrane properties in mesencephalic trigeminal (Mes V) neurons and in other neural systems. Mes V neurons exhibit conditional robust high-frequency spike discharges. As previously reported, resurgent and persistent sodium currents (INaR and INaP, respectively) may carry small currents at subthreshold voltages that contribute to generation of spike firing. These currents play an important role in maintaining and allowing high-frequency spike discharge during a burst. In the present study, we investigated the developmental changes in tetrodotoxin-sensitive INaR and INaP underlying high-frequency spike discharges in Mes V neurons. Whole-cell patch-clamp recordings showed that both current densities increased one and a half times from postnatal day 0-6 neurons to postnatal day 7-14 neurons. Although these neurons do not exhibit subthreshold oscillations or burst discharges with high-frequency firing, INaR and INaP do exist in Mes V neurons at postnatal day 0-6. When the spike frequency at rheobase was examined in firing Mes V neurons, the developmental change in firing frequency among P7 to P14 neurons was significant. INaR and INaP density at −40 mV also increased significantly among P7 to P14 neurons. The change to an increase in excitability in the P7-14 group could result from this quantitative change in INaP. In neurons older than P7 that exhibit repetitive firing, quantitative increases in INaR and INaP density may be major factors that facilitate and promote high-frequency firing as a function of age in Mes V neurons.
Data Types:
  • Other
  • Dataset
Time-Frequency data of the ASD group, related to Figure 2... Time-Frequency data of the control group, related to Figure 2
Data Types:
  • Software/Code
  • Tabular Data
  • Dataset