Filter Results
48 results
simulation data from lattice phase-oscillator model part 2... simulation data from lattice phase-oscillator model part 4... simulation data from lattice phase-oscillator model part 5... simulation data from lattice phase-oscillator model part 6... gamma oscillation... Matlab Code of a ring-shaped phase-oscillator model (Fig.6)
Data Types:
  • Software/Code
  • Dataset
  • Text
  • File Set
Recently, we reported evidence for a novel mechanism of peripheral sensory coding based on oscillatory synchrony. Spontaneously oscillating electroreceptors in weakly electric fish (Mormyridae) respond to electrosensory stimuli with a phase reset that results in transient synchrony across the receptor population (Baker et al., 2015). Here, we asked whether the central electrosensory system actually detects the occurrence of synchronous oscillations among receptors. We found that electrosensory stimulation elicited evoked potentials in the midbrain exterolateral nucleus at a short latency following receptor synchronization. Frequency tuning in the midbrain resembled peripheral frequency tuning, which matches the intrinsic oscillation frequencies of the receptors. These frequencies are lower than those in individual conspecific signals, and instead match those found in collective signals produced by groups of conspecifics. Our results provide further support for a novel mechanism for sensory coding based on the detection of oscillatory synchrony among peripheral receptors.
Data Types:
  • Other
  • Dataset
  • File Set
Processed single unit data and LFP recordings from hippocampal area CA1 of control and epileptic Wistar rats. Matab code for detection of high frequency oscillations. See REAME file for detailed description.... oscillations
Data Types:
  • Dataset
  • File Set
Effect sizes and p-values for group statistics of recomputed cross-frequency amplitude-amplitude correlations.... Cross-frequency coupling
Data Types:
  • Dataset
  • File Set
gamma oscillations... slow oscillations
Data Types:
  • Dataset
  • File Set
Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other’s phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1, and is likely generalizable to other brain regions and rhythms.
Data Types:
  • Other
  • Dataset
Annotated VCF file containing allele frequency and read depths of the 14 samples described in Bergland et al. Annotations include p- and q-values from models of seasonality and clinality; genic annotations; average frequencies; and, quality filters. This VCF file only contains SNPs with average minor allele frequency > 0.15.
Data Types:
  • Dataset
  • File Set
Oscillation and noise filtration
Data Types:
  • Other
  • Dataset
Phase-amplitude coupling between theta and multiple gamma sub-bands is a hallmark of hippocampal activity and believed to take part in information routing. More recently, theta and gamma oscillations were also reported to exhibit phase-phase coupling, or n:m phase-locking, suggesting an important mechanism of neuronal coding that has long received theoretical support. However, by analyzing simulated and actual LFPs, here we question the existence of theta-gamma phase-phase coupling in the rat hippocampus. We show that the quasi-linear phase shifts introduced by filtering lead to spurious coupling levels in both white noise and hippocampal LFPs, which highly depend on epoch length, and that significant coupling may be falsely detected when employing improper surrogate methods. We also show that waveform asymmetry and frequency harmonics may generate artifactual n:m phase-locking. Studies investigating phase-phase coupling should rely on appropriate statistical controls and be aware of confounding factors; otherwise, they could easily fall into analysis pitfalls.
Data Types:
  • Dataset
  • File Set
electrical oscillations
Data Types:
  • Dataset
  • File Set