Filter Results
17 results
After the publication of this work [1], we became aware of the fact that the frequency of the ultrasound transmitter that we used for determining the elastic moduli of the trabecular bone specimens was not correctly specified. The oscillation frequency of the ultrasound transmitter was 2 MHz (and not 100 MHz as stated in our work) while we used a sampling rate of 100 MHz. In our publication, the oscillation frequency and sampling rate were confounded. Therefore also the statement in the discussion that we might have determined elastic moduli of trabecular bone tissue rather than the elastic properties of whole specimens because we used an ultrasound frequency > 2 MHz is wrong and has to be omitted.
Data Types:
  • Other
Since January 2004 the High Resolution Stereo Camera (HRSC) is mapping planet Mars. The multi-line sensor on board the ESA Mission Mars Express images the Martian surface with a resolution of up to 1 2 m per pixel in three dimensions and in color. As part of the Photogrammetric/Cartographic Working Group of the HRSC Science Team the Institute of Photogrammetry and GeoInformation (IPI) of the Leibniz Universitat Hannover is involved in photogrammetrically processing the HRSC image data. To derive high quality 3D surface models, color orthoimages or other products, the accuracy of the observed position and attitude information in many cases should be improved. This is carried out via a bundle adjustment. In a considerable number of orbits the results of the bundle adjustment are disturbed by high frequency oscillations. This paper describes the impact of the high frequency angular spacecraft movement to the processing results of the last seven years of image acquisition and how the quality of the HRSC data products is significantly improved by modeling these oscillations.
Data Types:
  • Other
The velocity distribution of the electrons within a plasma shock front is investigated by methods of the kinetic theory arranged in a manner to account for heavy deviations from thermodynamic equilibrium. The distribution function exhibits two peaks and becomes unstable with respect to electron oscillations if the shock wave is sufficiently strong (MACH number M ≳ 6.5). The second peak is formed by run-away-electrons, i. e. those fast electrons which transgress the shock front from the hot region. The frequencies, wave numbers, growing rates, phase and group velocities of the excited oscillations, and the influence of the OHMIC damping are calculated approximatively. The results are applied to the non-thermal radiofrequency radiation of the sun.
Data Types:
  • Other
Spin noise (SN) spectroscopy measurements on delicate semiconductor spin systems, like single (In,Ga) As quantum dots, are currently not limited by optical shot noise but rather by the electronic noise of the detection system. We report on a realization of homodyne SN spectroscopy enabling shot-noise-limited SN measurements. The proof-of-principle measurements on impurities in an isotopically enriched rubidium atom vapor show that homodyne SN spectroscopy can be utilized even in the low-frequency spectrum, which facilitates advanced semiconductor spin research like higher order SN measurements on spin qubits.
Data Types:
  • Other
We propose and investigate a hybrid optomechanical system consisting of a micro-mechanical oscillator coupled to the internal states of a distant ensemble of atoms. The interaction between the systems is mediated by a light field which allows the coupling of the two systems in a modular way over long distances. Coupling to internal degrees of freedom of atoms opens up the possibility to employ high-frequency mechanical resonators in the MHz to GHz regime, such as optomechanical crystal structures, and to benefit from the rich toolbox of quantum control over internal atomic states. Previous schemes involving atomic motional states are rather limited in both of these aspects. We derive a full quantum model for the effective coupling including the main sources of decoherence. As an application we show that sympathetic ground-state cooling and strong coupling between the two systems is possible.
Data Types:
  • Other
Up to now, full tunability of waveforms was possible only in electronics, up to radio-frequencies. Here we propose a new concept of producing few-cycle terahertz (THz) pulses with widely tunable waveforms. It is based on control of the phase delay between different parts of the THz wavefront using linear diffractive optical elements. Suitable subcycle THz wavefronts can be generated via coherent excitation of nonlinear low-frequency oscillators by few-cycle optical pulses. Using this approach it is possible to shape the electric field rather than the slow pulse envelope, obtaining, for instance, rectangular or triangular waveforms in the THz range. The method is upscalable to the optical range if the attosecond pump pulses are used.
Data Types:
  • Other
Zwei-Qubit Gatter... two-qubit gates
Data Types:
  • Other
We couple dual pairs of N=8 superconformal mechanics with conical targets of dimension d and 8−d. The superconformal coupling generates an oscillator-type potential on each of the two target factors, with a frequency depending on the respective dual coordinates. In the case of the inhomogeneous (3,8,5) model, which entails a monopole background, it is necessary to add an extra supermultiplet of constants for half of the supersymmetry. The N=4 analog, joining an inhomogeneous (1,4,3) with a (3,4,1) multiplet, is also analyzed in detail
Data Types:
  • Other
Frequency-dependent squeezed light
Data Types:
  • Other
oscillator
Data Types:
  • Other