Filter Results
807 results
  • IEEE Transactions on Ultrasonics, FerroElectrics, and Frequency Control... oscillator
    Data Types:
    • Other
  • IEEE Transactions on Ultrasonics, FerroElectrics, and Frequency Control... oscillator
    Data Types:
    • Other
    • Document
  • High-fidelity qubit initialization is of significance for efficient error correction in fault tolerant quantum algorithms. Combining two best worlds, speed and robustness, to achieve high-fidelity state preparation and manipulation is challenging in quantum systems, where qubits are closely spaced in frequency. Motivated by the concept of shortcut to adiabaticity, we theoretically propose the shortcut pulses via inverse engineering and further optimize the pulses with respect to systematic errors in frequency detuning and Rabi frequency. Such protocol, relevant to frequency selectivity, is applied to rare-earth ions qubit system, where the excitation of frequency-neighboring qubits should be prevented as well. Furthermore, comparison with adiabatic complex hyperbolic secant pulses shows that these dedicated initialization pulses can reduce the time that ions spend in the excited state by a factor of 6, which is important in coherence time limited systems to approach an error rate manageable by quantum error correction. The approach may also be applicable to superconducting qubits, and any other systems where qubits are addressed in frequency.
    Data Types:
    • Other
    • Document
  • This dissertation examines the design, fabrication, and characterization of a superconducting lumped-element tunable LC resonator that is used to vary the coupling between two superconducting qubits. Some level of qubit-qubit coupling is needed to perform gating operations. However, with fixed coupling, single qubit operations become considerably more difficult due to dispersive shifts in their energy levels transitions that depend on the state of the other qubit. Ideally, one wants a system in which the qubit-qubit coupling can be turned off to allow for single qubit operations, and then turned back on to allow for multi-qubit gate operations. I present results on a device that has two fixed-frequency transmon qubits capacitively coupled to a tunable thin-film LC resonator. The resonator can be tuned in situ over a range of 4.14 GHz to 4.94 GHz by applying an external magnetic flux to two single-Josephson junction loops, which are incorporated into the resonator’s inductance. The qubits have 0-to-1 transition frequencies of 5.10 GHz and 4.74 GHz. To isolate the system and provide a means for reading out the state of the qubit readout, the device was mounted in a 3D Al microwave cavity with a TE101 mode resonance frequency of about 6.1 GHz. The flux-dependent transition frequencies of the system were measured and fit to results from a coupled Hamiltonian model. With the LC resonator tuned to its minimum resonance frequency, I observed a qubit-qubit dispersive shift of 2χ_qq≈ 0.1 MHz, which was less than the linewidth of the qubit transitions. This dispersive shift was sufficiently small to consider the coupling “off”, allowing single qubit operations. The qubit-qubit dispersive shift varied with the applied flux up to a maximum dispersive shift of 2χ_qq≈ 6 MHz. As a proof-of-principle, I present preliminary results on performing a CNOT gate operation on the qubits when the coupling was “on” with 2χ_qq≈ 4 MHz. This dissertation also includes observations of the temperature dependence of the relaxation time T1 of three Al/AlOx/Al transmons. We found that, in some cases, T1 increased by almost a factor of two as the temperature increased from 30 mK to 100 mK. We found that this anomalous behavior was consistent with loss due to non-equilibrium quasiparticles in a transmon where one electrode in the tunnel junction had a smaller volume and slightly smaller superconducting energy gap than the other electrode. At sufficiently low temperatures, non-equilibrium quasiparticles accumulate in the electrode with a smaller gap, leading to an increased density of quasiparticles at the junction and a corresponding decrease in the relaxation time. I present a model of this effect, use the model to extract the density of non-equilibrium quasiparticles in the device, and find the values of the two superconducting energy gaps.
    Data Types:
    • Other
  • frequency stability... Colpitts oscillator
    Data Types:
    • Other
    • Document
  • Sources of entangled pairs of photons can be used for encoding signals in quantum-encrypted communications, allowing a sender, Alice, and a receiver, Bob, to exchange keys without the possibility of eavesdropping. In fact, any quantum information system would require single and entangled photons to serve as qubits. For this purpose, semiconductor quantum dots (QD) have been extensively studied for their ability to produce entangled light and function as single photon sources. The quality of such sources is evaluated based on three criteria: high efficiency, small multi-photon probability, and quantum indistinguishability. In this work, a simple quantum dot-based LED (E-LED) was used as a quantum light source for on-demand emission, indicating the potential for use as quantum information devices. Limitations of the device include the fine-structure splitting of the quantum dot excitons, their coherence lengths and charge carrier interactions in the structure. The quantum dot-based light emitting diode was initially shown to operate in pulsed mode under AC bias frequencies of up to several hundreds of MHz, without compromising the quality of emission. In a Hong-ou-Mandel interference type experiment, the quantum dot photons were shown to interfere with dissimilar photons from a laser, achieving high two-photon interference (TPI) visibilities. Quantum entanglement from a QD photon pair was also measured in pulsed mode, where the QD-based entangled-LED (E-LED) was electrically injected at a frequency of 203 MHz. After verifying indistinguishability and good entanglement properties from the QD photons under the above conditions, a quantum relay over 1km of fibre was demonstrated, using input qubits from a laser source. The average relay fidelity was high enough to allow for error correction for this BB84-type scheme. To improve the properties of the QD emission, an E-LED was developed based on droplet epitaxy (D-E) QDs, using a different QD growth technique. The relevant chapter outlines the process of QD growth and finally demonstration of quantum entanglement from an electrically injected diode, yielding improvements compared to previous E-LED devices. For the same reason, an alternative method of E-LED operation based on resonant two-photon excitation of the QD was explored. Analysis of Rabi oscillations in a quantum dot with a bound exciton state demonstrated coupling of the ground state and the biexciton state by the external oscillating field of a laser, therefore allowing the transition between the two states. The results include a considerable improvement in the coherence length of the QD emission, which is crucial for future quantum network applications. We believe that extending this research can find application in quantum cryptography and in realising the interface of a quantum network, based on semiconductor nanotechnology.
    Data Types:
    • Other
    • Document
  • frequency stability... CMOS, x frequency stability, delay time... ring oscillator
    Data Types:
    • Other
    • Document
  • The relation between seizure frequency per month and number of channels with (A) ripples (>1/min), (B) fast ripples (>1/min), and (C) more than 20 fast ripples per minute. There were no patients with 0 channels with ripples (>1/min; A), but there were patients with 0 channels with fast ripples (>1 or >20/min; B and C). The seizure frequency was shown on a logarithmic scale, because of the distribution. As indicated in the text, there was no correlation between seizure frequency per month and the number of channels with more than 1 ripple or fast ripple per minute, but there was a positive correlation between seizure frequency and more than 20 fast ripples per minute. ... This table shows the correlation coefficients Rho for different alternative comparisons: seizure frequency (seizures/month) compared to the number and percentage of channels with ripples, fast ripples, spikes and ripples and fast ripples without spikes (first two lines), seizure frequency compared to number of channels with higher rates of ripples and fast ripples (>5, >10 and >20, lines 3–5) and number of seizure-days/month compared to channels with ripples and fast ripples. All comparisons were done for all patients, all patients with temporal lobe epilepsy and all patients with unilateral mesiotemporal seizure onset.
    Data Types:
    • Slides
    • Image
    • Tabular Data
  • We demonstrate the experimental realization of a two-qubit Mølmer–Sørensen gate on a magnetic field-insensitive hyperfine transition in 9Be+ ions using microwave near-fields emitted by a single microwave conductor embedded in a surface-electrode ion trap. The design of the conductor was optimized to produce a high oscillating magnetic field gradient at the ion position. The measured gate fidelity is determined to be 98.2 ± 1.2% and is limited by technical imperfections, as is confirmed by a comprehensive numerical error analysis. The conductor design can potentially simplify the implementation of multi-qubit gates and represents a self-contained, scalable module for entangling gates within the quantum CCD architecture for an ion-trap quantum computer. © 2019, The Author(s).
    Data Types:
    • Other
  • circular oscillations
    Data Types:
    • Other