Filter Results
325 results
modENCODE_submission_5008 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: Y cn bw sp; Developmental Stage: L3; Genotype: y[1] oc[R3.2]; Gr22b[1] Gr22d[1] cn[1] CG33964[R4.2] bw[1] sp[1]; LysC[1] lab[R4.2] MstProx[1] GstD5[1] Rh6[1]; Sex: Unknown; EXPERIMENTAL FACTORS: Developmental Stage L3; Strain Y cn bw sp; Antibody MycN (target is fly genes:dm)
Data Types:
  • Text
  • File Set
modENCODE_submission_4974 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: Y cn bw sp; Developmental Stage: White Prepupae (WPP); Genotype: y[1] oc[R3.2]; Gr22b[1] Gr22d[1] cn[1] CG33964[R4.2] bw[1] sp[1]; LysC[1] lab[R4.2] MstProx[1] GstD5[1] Rh6[1]; EXPERIMENTAL FACTORS: Developmental Stage White Prepupae (WPP); Strain Y cn bw sp; Antibody dll (target is DLL)
Data Types:
  • Text
  • File Set
modENCODE_submission_5024 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: Y cn bw sp; Developmental Stage: L3; Genotype: y[1] oc[R3.2]; Gr22b[1] Gr22d[1] cn[1] CG33964[R4.2] bw[1] sp[1]; LysC[1] lab[R4.2] MstProx[1] GstD5[1] Rh6[1]; Sex: Unknown; EXPERIMENTAL FACTORS: Developmental Stage L3; Strain Y cn bw sp; Antibody tgo mouse Crews (target is tango)
Data Types:
  • Text
  • File Set
Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and higher-order chromatin structure. While these proteins are almost certainly important for gene regulation they have been studied far less than the core histone proteins. Here we describe the genomic distributions and functional roles of two chromatin architectural proteins: histone H1 and the high mobility group protein HMGD1, in Drosophila S2 cells. Using ChIP-seq, biochemical and gene specific approaches, we find that HMGD1 binds to highly accessible regulatory chromatin and active promoters. In contrast, H1 is primarily associated with heterochromatic regions marked with repressive histone marks. However, the ratio of HMGD1 to H1 is better correlated with chromatin accessibility, gene expression and nucleosome spacing variation than either protein alone suggesting a competitive mechanism between these proteins. Indeed, we show that HMGD1 and H1 compensate each other’s absence by binding reciprocally to chromatin resulting in changes to nucleosome repeat length and distinct gene expression patterns. Collectively our data suggest that dynamic and mutually exclusive binding of H1 and HMGD1 to nucleosomes and linker sequences may control the fluid chromatin structure that is required for transcriptional regulation. This study thus provides a framework to further study the interplay between chromatin architectural proteins and epigenetics in gene regulation. ChIP-seq of HMGD1 and Histone H1 bound nucleosomes as well as MNase-seq of total nucleosome in Drosophila S2 cells
Data Types:
  • Text
  • File Set
modENCODE_submission_5025 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: Y cn bw sp; Developmental Stage: White Prepupae (WPP); Genotype: y[1] oc[R3.2]; Gr22b[1] Gr22d[1] cn[1] CG33964[R4.2] bw[1] sp[1]; LysC[1] lab[R4.2] MstProx[1] GstD5[1] Rh6[1]; EXPERIMENTAL FACTORS: Developmental Stage White Prepupae (WPP); Strain Y cn bw sp; Antibody tgo mouse Crews (target is tango)
Data Types:
  • Text
  • File Set
modENCODE_submission_4096 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: Y cn bw sp; Developmental Stage: Embryo 0-12h; Genotype: y[1] oc[R3.2]; Gr22b[1] Gr22d[1] cn[1] CG33964[R4.2] bw[1] sp[1]; LysC[1] lab[R4.2] MstProx[1] GstD5[1] Rh6[1]; EXPERIMENTAL FACTORS: Developmental Stage Embryo 0-12h; Strain Y cn bw sp; Antibody anti-Prd RF13 (target is prd)
Data Types:
  • Text
  • File Set
modENCODE_submission_4105 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of many of the non-histone chromosomal proteins on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested chromatin-binding protein. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: Y cn bw sp; Developmental Stage: White Prepupae (WPP); Genotype: y[1] oc[R3.2]; Gr22b[1] Gr22d[1] cn[1] CG33964[R4.2] bw[1] sp[1]; LysC[1] lab[R4.2] MstProx[1] GstD5[1] Rh6[1]; EXPERIMENTAL FACTORS: Developmental Stage White Prepupae (WPP); Strain Y cn bw sp; Antibody Su(Hw)-PG (target is Su(Hw))
Data Types:
  • Text
  • File Set
modENCODE_submission_4089 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: Y cn bw sp; Developmental Stage: Embryo 0-8; Genotype: y[1] oc[R3.2]; Gr22b[1] Gr22d[1] cn[1] CG33964[R4.2] bw[1] sp[1]; LysC[1] lab[R4.2] MstProx[1] GstD5[1] Rh6[1]; Sex: Unknown; EXPERIMENTAL FACTORS: Developmental Stage Embryo 0-8; Strain Y cn bw sp; Antibody anti-Fru (target is fru)
Data Types:
  • Text
  • File Set
modENCODE_submission_4094 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of many of the non-histone chromosomal proteins on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested chromatin-binding protein. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: Y cn bw sp; Developmental Stage: L3; Genotype: y[1] oc[R3.2]; Gr22b[1] Gr22d[1] cn[1] CG33964[R4.2] bw[1] sp[1]; LysC[1] lab[R4.2] MstProx[1] GstD5[1] Rh6[1]; Sex: Unknown; EXPERIMENTAL FACTORS: Developmental Stage L3; Strain Y cn bw sp; Antibody KW4-mod(mdg4)-D2 (target is mod(mdg4))
Data Types:
  • Text
  • File Set
modENCODE_submission_4095 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: Y cn bw sp; Developmental Stage: Embryo 0-12h; Genotype: y[1] oc[R3.2]; Gr22b[1] Gr22d[1] cn[1] CG33964[R4.2] bw[1] sp[1]; LysC[1] lab[R4.2] MstProx[1] GstD5[1] Rh6[1]; EXPERIMENTAL FACTORS: Developmental Stage Embryo 0-12h; Strain Y cn bw sp; Antibody anti-Prd RF12 (target is prd)
Data Types:
  • Text
  • File Set
14