Filter Results
4338 results
Predictions of airborne allergenic pollen concentrations at fine spatial scales require information on source plant location and pollen production. Such data are lacking at the urban scale, largely because manually mapping allergenic pollen producing plants across large areas is infeasible. However, modest-sized field surveys paired with allometric equations, remote sensing, and habitat distribution models can predict where these plants occur and how much pollen they produce. In this study, common ragweed (Ambrosia artemisiifolia) was mapped in a field survey in Detroit, MI, USA. The relationship between ragweed presence and habitat-related variables derived from aerial imagery, LiDAR, and municipal data were used to create a habitat distribution model, which was then used to predict ragweed presence across the study area (392 km2). The relationship between inflorescence length and pollen production was used to predict pollen production in the city. Ragweed occurs in 1.7% of Detroit and total pollen production is 312 × 1012 pollen grains annually, but ragweed presence was highly heterogeneous across the city. Ragweed was predominantly found in in vacant lots (75%) and near demolished structures (48%), and had varying associations with land cover types (e.g., sparse vegetation, trees, pavement) detected by remote sensing. These findings also suggest several management strategies that could help reduce levels of allergenic pollen, including appropriate post-demolition management practices. Spatially-resolved predictions for pollen production will allow mechanistic modeling of airborne allergenic pollen and improved exposure estimates for use in epidemiological and other applications.
Data Types:
  • Other
  • Image
  • File Set
Motivation: Quality of gene expression analyses using de novo assembled transcripts in species that experienced recent polyploidization remains unexplored. Results: Differential gene expression (DGE) analyses using putative genes inferred by Trinity, Corset and Grouper performed slightly differently across five plant species that experienced various poly-ploidy histories. In species that lack recent polyploidy events that occurred in the past several millions of years, DGE analyses using de novo assembled transcriptomes identified 54–82% of the differen-tially expressed genes recovered by mapping reads to the reference genes. However, in species that experienced more recent polyploidy events, the percentage decreased to 21–65%. Gene co-expression network analyses using de novo assemblies vs. mapping to the reference genes recov-ered the same module that significantly correlated with treatment in one species that lacks recent polyploidization.
Data Types:
  • Other
  • File Set
1. Most studies on the evolution of migration focus on food, mates and/or climate as factors influencing these movements, whereas negative species interactions such as predators, parasites and pathogens are often ignored. Although infection and its associated costs clearly have the potential to influence migration, thoroughly studying these interactions is challenging without a solid theoretical framework from which to develop testable predictions in natural systems. 2. Here, we aim to understand when parasites favour the evolution of migration. 3. We develop a general model which enables us to explore a broad range of biological conditions and to capture population and infection dynamics over both ecological and evolutionary time scales. 4. We show that when migration evolves depends on whether the costs of migration and infection are paid in reduced fecundity or survival. Also important are the parasite transmission mode and spatiotemporal dynamics of infection and recovery (if it occurs). Finally, we find that partial migration (where only a fraction of the population migrates) can evolve but only when parasite transmission is density-dependent. 5. Our results highlight the critical, if overlooked, role of parasites in shaping long-distance movement patterns, and suggest that infection should be considered alongside more traditional drivers of migration in both empirical and theoretical studies.
Data Types:
  • Other
  • File Set
Most of our knowledge on human CNS circuitry and related disorders originates from model organisms. How well such data translate to the human CNS remains largely to be determined. Human brain slice cultures derived from neurosurgical resections may offer novel avenues to approach this translational gap. We now demonstrate robust preservation of the complex neuronal cytoarchitecture and electrophysiological properties of human pyramidal neurons in long-term brain slice cultures. Further experiments delineate the optimal conditions for efficient viral transduction of cultures, enabling "high throughput" fluorescence mediated 3D reconstruction of genetically targeted neurons at comparable quality to state-of-the-art biocytin fillings, and demonstrate feasibility of long term live cell imaging of human cells in vitro. This model system has implications toward a broad spectrum of translational studies, regarding the validation of data obtained in non-human model systems, for therapeutic screening and genetic dissection of human CNS circuitry.
Data Types:
  • File Set
Crocodylomorpha, which includes living crocodylians and their extinct relatives, has a rich fossil record, extending back for more than 200 million years. Unlike modern semi-aquatic crocodylians, extinct crocodylomorphs exhibited more varied lifestyles, ranging from marine to fully terrestrial forms. This ecological diversity was mirrored by a remarkable morphological disparity, particularly in terms of cranial morphology, which seems to be closely associated with ecological roles in the group. Here, I use geometric morphometrics to comprehensively investigate cranial shape variation and disparity in Crocodylomorpha. I quantitatively assess the relationship between cranial shape and ecology (i.e. terrestrial, aquatic, and semi-aquatic lifestyles), as well as possible allometric shape changes. I also characterise patterns of cranial shape evolution and identify regime shifts. I found a strong link between shape and size, and a significant influence of ecology on the observed shape variation. Terrestrial taxa, particularly notosuchians, have significantly higher disparity, and shifts to more longirostrine regimes are associated with large-bodied aquatic or semi-aquatic species. This demonstrates an intricate relationship between cranial shape, body size and lifestyle in crocodylomorph evolutionary history. Additionally, disparity-through-time analyses were highly sensitive to different phylogenetic hypotheses, suggesting the description of overall patterns among distinct trees. For crocodylomorphs, most results agree in an early peak during the Early Jurassic and another in the middle of the Cretaceous, followed by nearly continuous decline until today. Since only crown-group members survived through the Cenozoic, this decrease in disparity was likely the result of habitat loss, which narrowed down the range of crocodylomorph lifestyles.
Data Types:
  • Tabular Data
  • Document
  • File Set
Human and other animal cells deploy three closely related dioxygenases (PHD 1, 2 and 3) to signal oxygen levels by catalysing oxygen regulated prolyl hydroxylation of the transcription factor HIF. The discovery of the HIF prolyl-hydroxylase (PHD) enzymes as oxygen sensors raises a key question as to the existence and nature of non-HIF substrates, potentially transducing other biological responses to hypoxia. Over 20 such substrates are reported. We therefore sought to characterise their reactivity with recombinant PHD enzymes. Unexpectedly, we did not detect prolyl-hydroxylase activity on any reported non-HIF protein or peptide, using conditions supporting robust HIF-α hydroxylation. We cannot exclude PHD-catalysed prolyl hydroxylation occurring under conditions other than those we have examined. However, our findings using recombinant enzymes provide no support for the wide range of non-HIF PHD substrates that have been reported.
Data Types:
  • Other
  • Text
  • File Set
Spectral Induced Polarization spectra were carried out on 3 graphitic schists and 2 graphitic sandstones. The microstructural arrangement of graphite of two graphitic schists was studied with thin sections using transmitted and reflected light optical and electron microscopic methods. Chemical maps of selected areas confirm the presence of carbon. The complex conductivity spectra were measured in the frequency range 10 mHz to 45 kHz and in the temperature range +20°C down to -15°C. The measured spectra are fitted with a double Cole Cole complex conductivity model with one component associated with the polarization of graphite and the second component associated with the Maxwell Wagner polarization. The Cole Cole exponent and the chargeability are observed to be almost independent of temperature including in freezing conditions. The conductivity and relaxation time are dependent on the temperature in a predictable way. As long as the temperature decreases, the electrical conductivity decreases and the relaxation time increases. A finite element model is able to reproduce the observed results. In this model, we consider an intra-grain polarization mechanism for the graphite and a change of the conductivity of the background material modeled with an exponential freezing curve. One of the core sample (a black schist), very rich in graphite, appears to be characterized by a very high conductivity (approximately 30 S m-1). Two induced polarization profiles are discussed in the area of Thorens. The model is applied to the chargeability data to map the volumetric content of graphite.
Data Types:
  • File Set
In large clonal populations, several clones generally compete which results in complex evolutionary and ecological dynamics: experiments show successive selective sweeps of favorable mutations as well as long-term coexistence of multiple clonal strains. The mechanisms underlying either coexistence or fixation of several competing strains have rarely been studied altogether. Conditions for coexistence has mostly been studied by population and community ecology, while rates of invasion and fixation have mostly been studied by population genetics. In order to provide a global understanding of the complexity of the dynamics observed in large clonal populations, we develop a stochastic model where three clones compete. Competitive interactions can be intransitive and we suppose that strains enter the population via mutations or rare immigrations. We first describe all possible final states of the population, including stable coexistence of two or three strains, or the fixation of a single strain. Second, we give estimate of the invasion and fixation times of a favorable mutant (or immigrants) entering the population in a single copy. We especially show that invasion and fixation can be slower or faster when considering complex competitive interactions. Third, we explore the parameter space assuming prior distributions of reproduction, death and competitive rates and we estimate the likeliness of the possible dynamics. We especially show that when mutations can affect competitive interactions, even slightly, stable coexistence is likely. We discuss our results in the context of the evolutionary dynamics of large clonal populations.
Data Types:
  • File Set
We reassessed whether two parapatric non-sister Australian honeyeater species (Aves: Meliphagidae), varied and mangrove honeyeaters (Gavicalis versicolor and G. fasciogularis, respectively), that diverged from a common ancestor c. 2.5 Mya intergrade in the Townsville area of north-eastern Queensland. Consistent with a previous specimenbased study, by using genomics methods we show one-way gene flow for autosomal but not Z-linked markers from varied into mangrove honeyeaters. Introgression barely extends south of the area of parapatry in and around the city of Townsville. While demonstrating the long-term porosity of species boundaries over several million years, our data also suggest a clear role of sex chromosomes in maintaining reproductive isolation.
Data Types:
  • Other
  • File Set
The North Sea is one of the most extensively studied marine regions of the world. Hence, large amounts of molecular data for species identification are available in public repositories, and expectations to find numerous new species in this well-known region are rather low. However, molecular reference data for harpacticoid copepods from this area in particular but also for this group in general is scarce. By assessing COI barcodes and MALDI-TOF mass spectra for this group of small crustaceans, it was discovered that there is a huge unknown diversity in this area. In total, COI sequences for 548 specimens from 115 species of harpacticoid copepods are presented. Over 19% of these were new to science and ten MOTUs were found to be part of cryptic species complexes. MALDI-TOF mass spectra were assessed for 622 specimens from 75 species. Because results were in concordance with species delimitation by COI barcoding and also enabled recognition of possible cryptic species, the discriminative power of this technique for biodiversity assessments is highlighted. Findings imply, species diversity in this group may be largely underestimated and total species number can be expected to be much higher than previously assumed.
Data Types:
  • Other
  • Tabular Data
  • File Set
2