Filter Results
18915 results
Species’ ecological preferences are often deduced from habitat characteristics thought to represent more or less optimal conditions for physiological functioning. Evolution has led to stenotopic and eurytopic species, the former having decreased niche breadths and lower tolerances to environmental variability. Species inhabiting freshwater springs are often described as being stenotopic specialists, adapted to the stable thermal conditions found in these habitats. Whether due to past local adaptation these species have evolved or have lost intra-generational adaptive mechanisms to cope with increasing thermal variability has, to our knowledge, never been investigated. By studying how the proteome of a stenotopic species changes as a result of increasing temperatures we investigate if the absence or attenuation of molecular mechanisms is indicative of local adaptation to freshwater springs. An understanding of compensatory mechanisms is especially relevant as spring-specialists will experience thermal conditions beyond their physiological limits due to climate change. In this study, the stenotopic species Crunoecia irrorata (Trichoptera: Lepidostomatidae, Curtis 1834) was acclimated to 10, 15 and 20 °C for 168 h. We constructed a homology-based database, and via liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based shotgun proteomics identified 1358 proteins. Differentially abundant proteins and protein norms of reaction revealed candidate proteins and molecular mechanisms facilitating compensatory responses such as trehalose metabolism, tracheal system alteration, and heat shock protein regulation. A species-specific understanding of compensatory physiologies challenges the characterization of species as having narrow tolerances to environmental variability if that characterization is based on occurrences and habitat characteristics alone.
Data Types:
  • Other
  • Sequencing Data
  • Dataset
Species’ geographic range limits often result from maladaptation to the novel environments beyond the range margin. However, we rarely know which aspects of the n-dimensional environment are driving this maladaptation. Especially of interest is the influence of abiotic versus biotic factors in delimiting species’ distributions. We conducted a two-year reciprocal transplant experiment involving manipulations of the biotic environment to explore how spatio-temporal gradients in precipitation, fatal mammalian herbivory, and pollination affected lifetime fitness within and beyond the range of the California annual plant, Clarkia xantiana ssp. xantiana. In the first, drier year of the experiment, fitness outside the range edge was limited mainly by low precipitation, and there was some evidence for local adaptation within the range. In the second, wetter year, we did not observe abiotic limitations to plant fitness outside the range; instead biotic interactions, especially herbivory, limited fitness outside the range. Together, protection from herbivory and supplementation of pollen resulted in 3-7 fold increases in lifetime fitness outside the range margin in the abiotically benign year. Overall, our work demonstrates the importance of biotic interactions, particularly as they interact with the abiotic environment, in determining fitness beyond geographic range boundaries.
Data Types:
  • Other
  • Software/Code
  • Tabular Data
  • Dataset
  • Document
(1) Gynodioecy is a sexual system where females and hermaphrodites co-occur. In most gynodioecious angiosperms, sex is determined by an interaction between mitochondrial male-sterility genes (CMS) that arise via recombination and nuclear restorer alleles that evolve to suppress them. In theory, gynodioecy occurs when multiple CMS types are maintained at equilibrium frequencies by balancing selection. However, some gynodioecious populations contain very high frequencies of females. High female frequencies are not expected under balancing selection, but could be explained by the repeated introduction of novel CMS types. (2) To test for balancing selection and/or the repeated introduction of novel CMS, we characterized cytoplasmic haplotypes from 61 populations of Lobelia siphilitica that vary widely in female frequency. (3) We confirmed that mitotype diversity and female frequency were positively correlated across populations, consistent with balancing selection. However, while low-female populations hosted mostly common mitotypes, high-female populations and female plants hosted mostly rare, recombinant mitotypes likely to carry novel CMS types. (4) Our results suggest that balancing selection maintains established CMS types across this species, but extreme female frequencies result from frequent invasion by novel CMS types. We conclude that balancing selection alone cannot account for extreme population sex-ratio variation within a gynodioecious species.
Data Types:
  • Other
  • Dataset
The origin of the mammalian order Eulipotyphla has been debated intensively with arguments around whether they began diversifying before or after the Cretaceous-Palaeogene (K-Pg) boundary at 66 Ma. Here, we used an in-solution nucleotide capture method and next generation DNA sequencing to determine the sequence of hundreds of ultra-conserved elements (UCEs), and conducted phylogenomic and molecular dating analyses for the four extant eulipotyphlan lineages—Erinaceidae, Solenodontidae, Soricidae, and Talpidae. Concatenated maximum-likelihood analyses with single or partitioned models and a coalescent species-tree analysis showed that divergences among the four major eulipotyphlan lineages occurred within a short period of evolutionary time, but did not resolve the interrelationships among them. Alternative suboptimal phylogenetic hypotheses received consistently the same amount of support from different UCE loci, and were not significantly different from the maximum likelihood tree topology, suggesting the prevalence of stochastic lineage sorting. Molecular dating analyses that incorporated among-lineage evolutionary rate differences supported a scenario where the four eulipotyphlan families diversified between 57.8 and 63.2 Ma. Given short branch lengths with low support values, traces of rampant genome-wide stochastic lineage sorting, and post K-Pg diversification, we concluded that the crown eulipotyphlan lineages arose through a rapid diversification after the K-Pg boundary when novel niches were created by the mass extinction of species.
Data Types:
  • Other
  • Software/Code
  • Dataset
Cerebral white matter lesions are ischemic symptoms caused mainly by microangiopathy; they are diagnosed by MRI because they show up as abnormalities in MRI images. Because patients with white matter lesions do not have any symptoms, MRI often detects the lesions for the first time. Generally, head MRI for the diagnosis and grading of cerebral white matter lesions is performed as an option during medical checkups in Japan. In this study, we develop a mathematical model for the prediction of white matter lesions using data from routine medical evaluations that do not include a head MRI. Linear discriminant analysis, logistic discrimination, Naive Bayes classifier, support vector machine, and random forest were investigated and evaluated by ten-fold cross-validation, using clinical data for 1,904 examinees (988 males and 916 females) from medical checkups that did include the head MRI. The logistic regression model was selected based on a comparison of accuracy and interpretability. The model variables consisted of age, gender, plaque score (PS), LDL, systolic blood pressure (SBP), and administration of antihypertensive medication (odds ratios: 2.99, 1.57, 1.18, 1.06, 1.12, and 1.52, respectively) and showed Areas Under the ROC Curve (AUC) 0.805, the model displayed sensitivity of 72.0%, and specificity 75.1% when the most appropriate cutoff value was used, 0.579 as given by the Youden Index. This model has shown to be useful to identify patients with a high-risk of cerebral white matter lesions, who can then be diagnosed with a head MRI examination in order to prevent dementia, cerebral infarction, and stroke.
Data Types:
  • Other
  • Dataset
Evolutionary potential for adaptation hinges upon the orientation of genetic variation for traits under selection, captured by the additive genetic variance-covariance matrix (G), as well as the evolutionary stability of G. Yet studies that assess both the stability of G and its alignment with selection are extraordinarily rare. We evaluated the stability of G in three Drosophila melanogaster populations that have adapted to local climatic conditions along a latitudinal cline. We estimated population- and sex-specific G matrices for wing size and three climatic stress-resistance traits that diverge adaptively along the cline. To determine how G affects evolutionary potential within these populations, we used simulations to quantify how well G aligns with the direction of trait divergence along the cline (as a proxy for the direction of local selection) and how genetic covariances between traits and sexes influence this alignment. We found that G was stable across the cline, showing no significant divergence overall, or in sex-specific subcomponents, among populations. G also aligned well with the direction of clinal divergence, with genetic covariances strongly elevating evolutionary potential for adaptation to climatic extremes. These results suggest that genetic covariances between both traits and sexes should significantly boost evolutionary responses to environmental change.
Data Types:
  • Other
  • Dataset
The dissection of the mode and tempo of phenotypic evolution is integral to our understanding of global biodiversity. Our ability to infer patterns of phenotypes across phylogenetic clades is essential to how we infer the macroevolutionary processes governing those patterns. Many methods are already available for fitting models of phenotypic evolution to data. However, there is currently no comprehensive non-parametric framework for characterising and comparing patterns of phenotypic evolution. Here we build on a recently introduced approach for using the phylogenetic spectral density profile to compare and characterize patterns of phylogenetic diversification, in order to provide a framework for non-parametric analysis of phylogenetic trait data. We show how to construct the spectral density profile of trait data on a phylogenetic tree from the normalized graph Laplacian. We demonstrate on simulated data the utility of the spectral density profile to successfully cluster phylogenetic trait data into meaningful groups and to characterise the phenotypic patterning within those groups. We furthermore demonstrate how the spectral density profile is a powerful tool for visualising phenotypic space across traits and for assessing whether distinct trait evolution models are distinguishable on a given empirical phylogeny. We illustrate the approach in two empirical datasets: a comprehensive dataset of traits involved in song, plumage and resource-use in tanagers, and a high-dimensional dataset of endocranial landmarks in New World monkeys. Considering the proliferation of morphometric and molecular data collected across the tree of life, we expect this approach will benefit big data analyses requiring a comprehensive and intuitive framework.
Data Types:
  • Other
  • Dataset
Mammals have two types of photoreceptors, rods and cones. While rods are exceptionally sensitive and mediate vision at very low illumination levels, cones operate in daylight and are responsible for the bulk of visual perception in most diurnal animals, including humans. Yet the mechanisms of phototransduction in cones is understudied, largely due to unavailability of pure cone outer segment (COS) preparations. Here we present a novel mathematical model of cone phototransduction that explicitly takes into account complex cone geometry and its multiple physical scales, faithfully reproduces features of the cone response, and is orders of magnitude more efficient than the standard 3D diffusion model. This is accomplished through the mathematical techniques of homogenization and concentrated capacity. The homogenized model is then computationally implemented by finite element method. This homogenized model permits one to analyze the effects of COS geometry on visual transduction and lends itself to performing large numbers of numerical trials, as required for parameter analysis and the stochasticity of rod and cone signal transduction. Agreement between the nonhomogenized, (i.e., standard 3D), and homogenized diffusion models is reported along with their simulation times and memory costs. Virtual expression of rod biochemistry on cone morphology is also presented for understanding some of the characteristic differences between rods and cones. These simulations evidence that 3D cone morphology and ion channel localization contribute to biphasic flash response, i.e undershoot. The 3D nonhomogenized and homogenized models are contrasted with more traditional and coarser well-stirred and 1D longitudinal diffusion models. The latter are single-scale and do not explicitly account for the multi-scale geometry of the COS, unlike the 3D homogenized model. We show that simpler models exaggerate the magnitude of the current suppression, yield accelerated time to peak, and do not predict the local concentration of cGMP at the ionic channels.
Data Types:
  • Other
  • Dataset
  • File Set
Parental care, a component of reproductive effort, should evolve in response to its impact on both offspring and parent fitness. If so, manipulations in brood value should shift levels of care in predictable ways, provided that appropriate cues about the change in offspring value are altered. Prior brood size manipulations in birds have produced considerable variation in responses that have not been fully investigated. We conducted paired, short-term (2h) reductions and enlargements in brood size (+/- 2 nestlings) of house sparrows in each of 4 years. Parents at reduced broods shifted parental care downward in all four seasons. Parents experiencing increased broods responded significantly variably across years; in some they increased care, but in others they decreased care compared to control periods. Nestlings in both treatments gained less mass than during control sessions, with year producing variable effects in enlarged broods. We found evidence that parents experiencing reduced broods behave as if recurring predation is a risk, but we found no evidence that parents with enlarged broods were responding to inappropriate cues. Instead, parent sparrows may be behaving prudently and avoid costs of reproduction when faced with either broods that are too small or too large. We modified a published model of optimal care, mimicked our empirical manipulation, and found that the model replicated our results provided cost and benefit curves were of a particular shape. Variation in ecology among years might affect the exact nature of the relationship between care and either current or residual reproductive value. Other data from the study population support this conclusion.
Data Types:
  • Other
  • Dataset
The Infraorder Mygalomorphae is one of the three main lineages of spiders comprising over 3,000 nominal species. This ancient group has a world-wide distribution that includes among its ranks large and charismatic taxa such as tarantulas, trapdoor spiders, and highly venomous funnel web spiders. Based on past molecular studies using Sanger-sequencing approaches, numerous mygalomorph families (e.g., Hexathelidae, Ctenizidae, Cyrtaucheniidae, Dipluridae and Nemesiidae) have been identified as non-monophyletic. However, these data were unable to sufficiently resolve the higher-level (intra- and interfamilial) relationships such that the necessary changes in classification could be made with confidence. Here we present a comprehensive phylogenomic treatment of the spider infraorder Mygalomorphae. We employ 472 loci obtained through anchored hybrid enrichment to reconstruct relationships among all the mygalomorph spider families and estimate the timeframe of their diversification. We sampled nearly all currently recognized families, which has allowed us to assess their status, and as a result, propose a new classification scheme. Our generic-level sampling has also provided an evolutionary framework for revisiting questions regarding silk use in mygalomorph spiders. The first such analysis for the group within a strict phylogenetic framework shows that a sheet web is likely the plesiomorphic condition for mygalomorphs, as well as providing insights to the ancestral foraging behavior for all spiders. Our divergence time estimates, concomitant with detailed biogeographic analysis, suggest that both ancient continental-level vicariance and more recent dispersal events have played an important role in shaping modern day distributional patterns. Based on our results, we relimit the generic composition of the Ctenizidae, Cyrtaucheniidae, Dipluridae and Nemesiidae. We also elevate five subfamilies to family rank: Anamidae (NEW RANK), Euagridae (NEW RANK), Ischnothelidae (NEW RANK), Pycnothelidae (NEW RANK), and Bemmeridae (NEW RANK). Three families Entypesidae (NEW FAMILY), Microhexuridae (NEW FAMILY), and Stasimopidae (NEW FAMILY), and one subfamily Australothelinae (NEW SUBFAMILY) are newly proposed. Such a major rearrangement in classification, recognizing nine newly established family-level rank taxa, is the largest the group has seen in over three decades.
Data Types:
  • Dataset
  • File Set
2