Filter Results
463 results
  • ChiP-seq profiling of Drosophila melanogaster salivary glands to identify targets for NSL1 and MCRS2.
    Data Types:
    • Text
  • We use male gonads isolated from a Drosophila strain that allows us to obtain enough cells at their primitive status as the starting material to study the endogenous chromatin structure of undifferentiated cells using ChIP-seq. We integrate the ChIP-seq data with RNA-seq data that measures the transcriptome in a digital manner. Our genome-wide analyses indicate that the majority of differentiation genes in undifferentiated cells lack an active chromatin mark and paused Pol II; instead, they are associated with either the repressive H3K27me3 mark or no detectable mark. In order to address the possibility that distinct techniques are responsible for such a difference, we also use the Drosophila S2 cells to perform ChIP-seq and RNA-seq and compare the results directly with published work using ChIP-chip and microarray on S2 cells. For the S2 cell ChIP-chip data, we used data from the following paper: Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, Zeitlinger J, Adelman K: RNA polymerase is poised for activation across the genome. /Nat Genet /2007, 39(12):1507-1511. The accession number for this data is: GSE6714. ChIP-seq: Profiling chromatin modifications using antibodies against 3 histone modifications and RNA Pol II in S2 cells Profiling chromatin structure in bam testis using antibodies against 3 histone modifications and RNA Pol II RNA-seq: Profiling transcriptome of S2 cells using RNA-seq
    Data Types:
    • Sequencing Data
    • Text
  • Transcription and pre-mRNA alternative splicing are highly regulated processes that play major roles in modulating eukaryotic gene expression. It is increasingly apparent that other pathways of RNA metabolism, including small RNA biogenesis, can regulate these processes. However, a direct link between alternative pre- mRNA splicing and small RNA pathways has remained elusive. Here we show that the small RNA pathway protein Argonaute-2 (Ago-2) regulates alternative pre-mRNA splicing patterns of specific transcripts in the Drosophila nucleus using genome-wide methods in conjunction with RNAi in cell culture and Ago-2 deletion or catalytic site mutations in Drosophila adults. Moreover, we show that nuclear Argonaute-2 binds to specific chromatin sites near gene promoters and negatively regulates the transcription of the Ago-2-associated target genes. These transcriptional target genes are also bound by Polycomb group (PcG) transcriptional repressor proteins and change during development, implying that Ago-2 may regulate Drosophila development. Impor- tantly, both of these activities were independent of the catalytic activity of Ago-2, suggesting new roles for Ago-2 in the nucleus. Finally, we determined the nuclear RNA-binding profile of Ago-2, found it bound to several splicing target transcripts, and identified a G-rich RNA-binding site for Ago-2 that was enriched in these transcripts. These results suggest two new nuclear roles for Ago-2: one in pre-mRNA splicing and one in transcriptional repression. Input chromatin, 2 replicates of Ago2 ChIP-seq
    Data Types:
    • Text
  • ChIP-Seq profiles of MSL1, MSL2, MSl3, MOF, MLE, H4K16ac and RNA Polymerase II phosphorlyated on Serine 5 in Drosophila S2 cells MSL1, MSL2, MSL3, MOF, MLE, H4K16ac and RNA Polymerase II phosphorlyated on Serine 5 ChIP in Drosophila S2 cells. 1-3 biological replicates per experiment. Performed in single-read and paired-end read mode.
    Data Types:
    • Text
  • ChIP-seq and mRNA-seq experiments were performed to understand the role of the CLAMP protein in dosage compensation ChIP-seq experiments compared the binding profiles of CLAMP in male and female cells and mRNA-seq data to define the role of CLAMP in regulating genes on the X-chromosome
    Data Types:
    • Text
    • File Set
  • We generated MOF, H4 and H4K16ac ChIP-seq experiments in D.melanogaster male and female wt. All experiments were performed with 3rd instard salivary glands biological material. Raw and processed data are provided here.
    Data Types:
    • Text
  • Myc is an important oncogene. It is considered as a transcription factor, but the function of Myc in normal or cancer cells have not been fully understood. In addition, Myc plays a role in cell proliferation and differentiation. It is also important for cell identity and stay on chromatin throughout the cell cycle. However, the inheritance of Myc is still a mystery. Here we study the function and inheritance of Myc in D. melanogaster by mapping the binding sites of Myc during interphase and mitosis using ChIP-seq. DNA sample of ChIP for Myc are collected from Kc cells in interphase or mitosis. Input sequences from previous study in the same cell type (GSM762848, GSM762849) are used as control.
    Data Types:
    • Text
  • High-resolution genome-wide binding of Yan used to confirm the presence of high-density regions seen in ChIP-chip ChIP-Seq of Yan protein in stage 11 Drosophila embryos
    Data Types:
    • Text
  • We applied ChIP-seq to map the chromosomal binding sites for two nucleosome remodeling complexes containing the ATPase ISWI, ACF and RSF, in Drosophila embryos. Employing a panel of polyclonal and monoclonal antibodies directed against their signature subunits, ACF1 and RSF1, robust profiles were obtained indicating that both remodelers co-occupied a large set of active promoters. For further validation we repeated the mapping using chromatin of mutant embryos that do not express ACF1 or RSF1. Surprisingly, the ChIP-seq profiles were unchanged, suggesting that they were not due to specific immunoprecipitation. Conservative analysis lists about 3000 chromosomal loci, mostly active promoters that are prone to non-specific enrichment in ChIP and give rise to ‘Phantom Peaks’. These peaks are not obtained with pre-immune serum and are not prominent in input chromatin. Examination of various ACF1 and RSF1 antibodies in Drosophila melanogaster embryos which are wildtype or mutant for the antibody targets.
    Data Types:
    • Text
  • Nucleosome structure and positioning play pivotal roles in gene regulation, DNA repair and other essential processes in eukaryotic cells. Nucleosomal DNA is thought to be uniformly inaccessible to DNA binding and processing factors, such as MNase. Here, we show, however, that nucleosome accessibility and sensitivity to MNase varies. Digestion of Drosophila chromatin with two distinct concentrations of MNase revealed two types of nucleosomes: sensitive and resistant. MNase-resistant nucleosome arrays are less accessible to low concentrations of MNase, whereas MNase-sensitive arrays are degraded by high concentrations. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C containing dinucleotides. In contrast, MNase-sensitive nucleosomes form on A/T rich sequences represented by transcription start and termination sites, enhancers and DNase hypersensitive sites. Lowering of cell growth temperature to ~10°C stabilizes MNase-sensitive nucleosomes suggesting that variations in sensitivity to MNase are related to either thermal fluctuations in chromatin fiber or the activity of enzymatic machinery. In the vicinity of active genes and DNase hypersensitive sites nucleosomes are organized into synchronous, periodic arrays. These patterns are likely to be caused by “phasing” nucleosomes off a potential barrier formed by DNA-bound factors and we provide an extensive biophysical framework to explain this effect. Mnase-seq, Mnase-ChIP-seq of Drosophila melanogaster embryo and S2 cells chromatin
    Data Types:
    • Text
4