Filter Results
463 results
  • We generated MOF, H4 and H4K16ac ChIP-seq experiments in D.melanogaster male and female wt. All experiments were performed with 3rd instard salivary glands biological material. Raw and processed data are provided here.
    Data Types:
    • Text
  • Transcription and pre-mRNA alternative splicing are highly regulated processes that play major roles in modulating eukaryotic gene expression. It is increasingly apparent that other pathways of RNA metabolism, including small RNA biogenesis, can regulate these processes. However, a direct link between alternative pre- mRNA splicing and small RNA pathways has remained elusive. Here we show that the small RNA pathway protein Argonaute-2 (Ago-2) regulates alternative pre-mRNA splicing patterns of specific transcripts in the Drosophila nucleus using genome-wide methods in conjunction with RNAi in cell culture and Ago-2 deletion or catalytic site mutations in Drosophila adults. Moreover, we show that nuclear Argonaute-2 binds to specific chromatin sites near gene promoters and negatively regulates the transcription of the Ago-2-associated target genes. These transcriptional target genes are also bound by Polycomb group (PcG) transcriptional repressor proteins and change during development, implying that Ago-2 may regulate Drosophila development. Impor- tantly, both of these activities were independent of the catalytic activity of Ago-2, suggesting new roles for Ago-2 in the nucleus. Finally, we determined the nuclear RNA-binding profile of Ago-2, found it bound to several splicing target transcripts, and identified a G-rich RNA-binding site for Ago-2 that was enriched in these transcripts. These results suggest two new nuclear roles for Ago-2: one in pre-mRNA splicing and one in transcriptional repression. Input chromatin, 2 replicates of Ago2 ChIP-seq
    Data Types:
    • Text
  • We report the usage of ChIP-mass spectrometry in identifying proteins and histone modifications involved in Drosophila dosage compensation. We identified a chromatin targeting factor, CG4747, that is involved in recognition of H3K36me3 and robust recruitment of the Drosophila MSL complex to its correct targets on the male X chromosome. ChIP-seq with PAP antibody of Drosophila larvae expressing C-terminally TAP-tagged CG4747.
    Data Types:
    • Text
  • ChIP-seq and mRNA-seq experiments were performed to understand the role of the CLAMP protein in dosage compensation ChIP-seq experiments compared the binding profiles of CLAMP in male and female cells and mRNA-seq data to define the role of CLAMP in regulating genes on the X-chromosome
    Data Types:
    • Text
    • File Set
  • Myc is an important oncogene. It is considered as a transcription factor, but the function of Myc in normal or cancer cells have not been fully understood. In addition, Myc plays a role in cell proliferation and differentiation. It is also important for cell identity and stay on chromatin throughout the cell cycle. However, the inheritance of Myc is still a mystery. Here we study the function and inheritance of Myc in D. melanogaster by mapping the binding sites of Myc during interphase and mitosis using ChIP-seq. DNA sample of ChIP for Myc are collected from Kc cells in interphase or mitosis. Input sequences from previous study in the same cell type (GSM762848, GSM762849) are used as control.
    Data Types:
    • Text
  • High-resolution genome-wide binding of Yan used to confirm the presence of high-density regions seen in ChIP-chip ChIP-Seq of Yan protein in stage 11 Drosophila embryos
    Data Types:
    • Text
  • We use male gonads isolated from a Drosophila strain that allows us to obtain enough cells at their primitive status as the starting material to study the endogenous chromatin structure of undifferentiated cells using ChIP-seq. We integrate the ChIP-seq data with RNA-seq data that measures the transcriptome in a digital manner. Our genome-wide analyses indicate that the majority of differentiation genes in undifferentiated cells lack an active chromatin mark and paused Pol II; instead, they are associated with either the repressive H3K27me3 mark or no detectable mark. In order to address the possibility that distinct techniques are responsible for such a difference, we also use the Drosophila S2 cells to perform ChIP-seq and RNA-seq and compare the results directly with published work using ChIP-chip and microarray on S2 cells. For the S2 cell ChIP-chip data, we used data from the following paper: Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, Zeitlinger J, Adelman K: RNA polymerase is poised for activation across the genome. /Nat Genet /2007, 39(12):1507-1511. The accession number for this data is: GSE6714. ChIP-seq: Profiling chromatin modifications using antibodies against 3 histone modifications and RNA Pol II in S2 cells Profiling chromatin structure in bam testis using antibodies against 3 histone modifications and RNA Pol II RNA-seq: Profiling transcriptome of S2 cells using RNA-seq
    Data Types:
    • Sequencing Data
    • Text
  • ChIP-Seq profiles of MSL1, MSL2, MSl3, MOF, MLE, H4K16ac and RNA Polymerase II phosphorlyated on Serine 5 in Drosophila S2 cells MSL1, MSL2, MSL3, MOF, MLE, H4K16ac and RNA Polymerase II phosphorlyated on Serine 5 ChIP in Drosophila S2 cells. 1-3 biological replicates per experiment. Performed in single-read and paired-end read mode.
    Data Types:
    • Text
  • This SuperSeries is composed of the following subset Series: GSE33546: Polycomb repressive complex 2-dependent and –independent functions of Jarid2 in transcriptional regulation in Drosophila [ChIP-Seq] GSE36038: Polycomb repressive complex 2-dependent and –independent functions of Jarid2 in transcriptional regulation in Drosophila [Affymetrix] Refer to individual Series
    Data Types:
    • Tabular Data
    • Text
    • File Set
  • This submission data was generated in Angela Stathopoulos's lab. Project goal was to map Su(H) associated regions on Drosophila melanogaster genome. In Drosophila embryos, a nuclear gradient of Dorsal (Dl) directs differential gene expression along the dorsoventral (DV) axis, translating it into distinct domains separated by sharp boundaries between future mesodermal, neural and ectodermal territories. However, the mechanisms used to differentially position gene expression boundaries along this axis are not fully understood. Here, we show that the transcription factor Suppressor of Hairless [Su(H)] influences the positioning of dorsal boundaries for many genes expressed along the DV axis. Synthetic reporter constructs provide molecular evidence that Su(H) binding sites support repression and act to counterbalance activation through Dl and the ubiquitous activator Zelda. Overall, our study highlights a role for broadly expressed repressors, like Su(H), and organization of transcription factor binding sites within cis-regulatory modules as important elements controlling spatial domains of gene expression, to facilitate flexible positioning of boundaries across the entire DV axis. 1 g of 2-4 hour yw embryos were used. Two replicate ChIP-seq samples were analyzed using goat (Santa cruz goat polyclonal #sc-15813), and rabbit (Santa cruz rabbit polyclonal #sc-25761) antibodies.
    Data Types:
    • Text
4