Filter Results
4437 results
Analysing genomic variation within and between sister species is a first step towards understanding species boundaries. We focused on two sister species of cold-resistant leaf beetles, Gonioctena quinquepunctata and G. intermedia, whose ranges overlap in the Alps. A previous study of DNA sequence variation had revealed multiple instances of mitochondrial genome introgression in this region, suggesting recent hybridizations between the two species. To evaluate the extent of gene exchange resulting from these hybridization events, we sampled individuals of both species inside and outside the hybrid zone and analysed genomic variation among them using RAD-seq markers. Individual levels of introgression in the nuclear genome were estimated first by defining species-specific SNPs (displaying a fixed difference between species) a priori, and second by using model-based methods. Both types of analyses indicated little gene exchange, if any, between species at the level of the nuclear genome. While the first method suggested slightly more gene flow, we argue that it has likely overestimated introgression in the phylogeographic context of this study. We conclude that strong intrinsic barriers prevent genetic exchange at the level of the nuclear genome between the two species. The apparent discrepancy observed between introgression occurring in the nuclear and mitochondrial genomes could be explained by selection acting in favour of the latter. Also, these results have consequences for the phylogeographic study of each species, since we can assume that genetic diversity in the overlapping portion of their ranges is not the product of introgression.
Data Types:
  • Dataset
  • File Set
Information on how migratory populations are genetically structured during the overwintering season of the annual cycle can improve our understanding of the strength of migratory connectivity and help identify populations as units for management. Here, we use a genotype-by-sequencing approach to investigate whether population genetic structure exists among overwintering aggregations of the Pacific Dunlin subspecies (Calidris alpina pacifica) sampled at two spatial scales (i.e. within and among overwintering sites) in the eastern Pacific Flyway. Genome-wide analyses of 874 single nucleotide polymorphisms across 80 sampled individuals revealed no evidence for genetic differentiation among aggregations overwintering at three locations within the Fraser River Estuary (FRE) of British Columbia. Similarly, comparisons of aggregations in the FRE and those overwintering in southern sites in California and Mexico indicated no genetic segregation between northern and southern overwintering areas. These results suggest that Pacific Dunlin residing within the FRE, Sacramento Valley (California) and Guerrero Negro (Mexico) are genetically homogeneous, with no evident genetic structure between sampled sites or regions across the overwintering range. Despite no evidence for differentiation among aggregations, we identified a significant effect of geographical distance between sites on the distribution of individual genotypes in a redundancy analysis; however, a small proportion of the total genotypic variance (R2 = 0.036, P = 0.011) was explained by the combined effect of latitude and longitude, suggesting weak genomic patterns of isolation-by-distance that are consistent with chain-like migratory connectivity between breeding and overwintering areas. Our study represents the first genome-scale investigation of population structure for a Dunlin subspecies and provides essential baseline estimates of genomic diversity and differentiation within the Pacific Dunlin.
Data Types:
  • Other
  • Dataset
  • File Set
Mathematical models of childhood diseases date back to the early twentieth century. In several cases, models that make the simplifying assumption of homogeneous time-dependent transmission rates give good agreement with data in the absence of secular trends in population demography or transmission. The prime example is afforded by the dynamics of measles in industrialized countries in the pre-vaccine era. Accurate description of the transient dynamics following the introduction of routine vaccination has proved more challenging, however. This is true even in the case of measles which has a well-understood natural history and an effective vaccine that confers long-lasting protection against infection. Here, to shed light on the causes of this problem, we demonstrate that, while the dynamics of homogeneous and age-structured models can be qualitatively similar in the absence of vaccination, they diverge subsequent to vaccine roll-out. In particular, we show that immunization induces changes in transmission rates, which in turn reshapes the age distribution of infection prevalence, which effectively modulates the amplitude of seasonality in such systems. To examine this phenomenon empirically, we fit transmission models to measles notification data from London that span the introduction of the vaccine. We find that a simple age-structured model provides a much better fit to the data than does a homogeneous model, especially in the transition period from the pre-vaccine to the vaccine era. Thus, we propose that age structure and heterogeneities in contact rates are critical features needed to accurately capture transient dynamics in the presence of secular trends.
Data Types:
  • Other
  • Dataset
  • File Set
Aim: The influence of humans on large carnivores, including wolves, is a worldwide conservation concern. In addition, human‐caused changes in carnivore density and distribution might have impacts on prey and, indirectly, on vegetation. We therefore tested wolf responses to infrastructure related to natural resource development (i.e., human footprint). Location: Our study provides one of the most extensive assessments of how predators like wolves select habitat in response to various degrees of footprint across boreal ecosystems encompassing over a million square kilometers of Canada. Methods: We deployed GPS‐collars on 172 wolves, monitored movements and used a generalized functional response (GFR) model of resource selection. A functional response in habitat selection occurs when selection varies as a function of the availability of that habitat. GFRs can clarify how human‐induced habitat changes are influencing wildlife across large, diverse landscapes. Results: Wolves displayed a functional response to footprint. Wolves were more likely to select forest harvest cutblocks in regions with higher cutblock density (i.e., a positive functional response to high‐quality habitats for ungulate prey) and to select for higher road density in regions where road density was high (i.e., a positive functional response to human‐created travel routes). Wolves were more likely to use cutblocks in habitats with low road densities, and more likely to use roads in habitats with low cutblock densities, except in winter when wolves were more likely to use roads regardless of cutblock density. Main conclusions: These interactions suggest that wolves trade‐off among human‐impacted habitats, and adaptively switch from using roads to facilitate movement (while also risking encounters with humans), to using cutblocks that may have higher ungulate densities. We recommend that conservation managers consider the contextual and interacting effects of footprints when assessing impacts on carnivores. These effects likely have indirect impacts on ecosystems too, including on prey species.
Data Types:
  • Dataset
  • File Set
Background: Silkmoths and their relatives constitute the ecologically and taxonomically diverse superfamily Bombycoidea, which includes some of the most charismatic species of Lepidoptera. Despite displaying spectacular forms and diverse ecological traits, relatively little attention has been given to understanding their evolution and drivers of their diversity. To begin to address this problem, we created a new Bombycoidea-specific Anchored Hybrid Enrichment (AHE) probe set and sampled up to 571 loci for 117 taxa across all major lineages of the Bombycoidea, with a newly developed DNA extraction protocol that allows Lepidoptera specimens to be readily sequenced from pinned natural history collections.Results The well-supported tree was overall consistent with prior morphological and molecular studies, although some taxa (e.g., the bombycid, Arotros Schaus) were misplaced and here formally transferred to Apatelodidae. We identified important evolutionary patterns (e.g., morphology, biogeography, and differences in speciation and extinction), and our analysis of diversification rates highlights the stark increases that exist within the Sphingidae (hawkmoths) and Saturniidae (wild silkmoths).Conclusions Our study establishes a backbone for future evolutionary, comparative, and taxonomic studies of Bombycoidea. We postulate that the rate shifts identified are due to the well-documented bat-moth “arms race”. Our research highlights the flexibility of AHE to generate genomic data from a wide range of museum specimens, both age and preservation method, and will allow researchers to tap into the wealth of biological data residing in natural history collections around the globe.
Data Types:
  • Other
  • Dataset
  • Text
  • File Set
Deep understanding of lifelong tooth replacement is hampered by the lack of polyphyodonty or oral dentition in conventional models. Here, we show that the bearded dragon, one of the rare vertebrate species with both polyphyodont and monophyodont teeth, constitutes a key model for filling this gap, allowing direct comparison of extreme dentition types. Our developmental and high-throughput transcriptomic data of microdissected dental cells unveils the critical importance of successional dental lamina patterning, in addition to maintenance, for vertebrate tooth renewal. This patterning process happens at various levels, including directional growth but also gene expression levels, dynamics, and regionalization, and involves a large number of yet uncharacterized dental genes. Furthermore, the alternative renewal mechanism of bearded dragon dentition, with dual location of slow-cycling cells, demonstrates the importance of cell migration and functional specialization of putative epithelial stem/progenitor niches in tissue regeneration, while expanding the diversity of dental replacement strategies in vertebrates.
Data Types:
  • Dataset
  • File Set
1. Habitat connectivity is important for tropical biodiversity conservation. Expansion of commodity crops, such as oil palm, fragments natural habitat areas, and strategies are needed to improve habitat connectivity in agricultural landscapes. The Roundtable on Sustainable Palm Oil (RSPO) voluntary certification system requires that growers identify and conserve forest patches identified as High Conservation Value Areas (HCVAs) before oil palm plantations can be certified as sustainable. We assessed the potential benefits of these conservation set-asides for forest connectivity. 2. We mapped HCVAs and quantified their forest cover in 2015. To assess their contribution to forest connectivity, we modelled range expansion of forest-dependent populations with five dispersal abilities spanning those representative of poor dispersers (e.g., flightless insects) to more mobile species (e.g., large birds or bats) across 70 plantation landscapes in Borneo. 3. Because only 21% of HCVA area was forested in 2015, these conservation set-asides currently provide few connectivity benefits. Compared to a scenario where HCVAs contain no forest (i.e., a no-RSPO scenario), current HCVAs improved connectivity by ~3% across all dispersal abilities. However, if HCVAs were fully reforested, then overall landscape connectivity could improve by ~16%. Reforestation of HCVAs had the greatest benefit for poor to intermediate dispersers (0.5-3 km per generation), generating landscapes that were up to 2.7 times better connected than landscapes without HCVAs. By contrast, connectivity benefits of HCVAs were low for highly mobile populations under current and reforestation scenarios, because range expansion of these populations was generally successful regardless of the amount of forest cover. 4.Synthesis and applications. The RSPO requires that HCVAs be set aside to conserve biodiversity, but HCVAs currently provide few connectivity benefits because they contain relatively little forest. However, reforested HCVAs have the potential to improve landscape connectivity for some forest species (e.g., winged insects), and we recommend active management by plantation companies to improve forest quality of degraded HCVAs (e.g., by enrichment planting). Future revisions to the RSPO’s Principles and Criteria (P&C) should also ensure that large (i.e., with a core area >2 km2) HCVAs are reconnected to continuous tracts of forest to maximise their connectivity benefits.
Data Types:
  • Other
  • Dataset
  • File Set
Background: Geographic speciation is a major force in generating biodiversity. However, how genomes diverge over time after geographic isolation has halted gene flow has remained unclear. We examine genome-wide divergence of putatively single-copy orthologous genes (POGs) from transcriptomes in 20 allopatric species/variety pairs from diverse angiosperm clades. Sixteen of these pairs reflect the well-known eastern Asia – eastern North America floristic disjunction; these species have been isolated for different lengths of time, from the Miocene to Pleistocene. Results: Molecular evolutionary analyses revealed that >90% of the genes examined are under purifying selection and <10% are under positive selection, and this pattern was observed for all taxon pairs, despite differences in divergence time. The divergence level at synonymous sites shared by most POGs in each taxon pair predicts the divergence time between the species/varieties. Divergence time estimates were positively correlated with abundance of genes under moderate purifying selection, but negatively correlated with abundance of genes under strong purifying selection. We identified 200 genes under strong positive selection across the species pairs, with 14 shared by 10-15 pairs and one shared by all taxon pairs. An additional 15 loci annotated to biological processes responding to various stimuli were present in 1-3 pairs.Conclusions: Our results suggest a common “most genes conserved–few genes adaptive” genomic architecture for the taxon pairs, which may be a key for maintaining a balance between the ability to conserve ancestral functions and the ability to evolve new features beneficial for new adaptations. As geographic isolation proceeds through time, the evolutionary trajectory of some genes changed from strong purifying selection to more relaxed selection. The allopatric divergence of these taxon pairs involved both neutral and adaptive evolution of functional genes.
Data Types:
  • Dataset
  • File Set
The genus Corbicula consists of estuarine or freshwater clams native to temperate/tropical regions of Asia, Africa, and Australia that collectively encompass both sexual species and clonal (androgenetic) lineages. The latter have become globally invasive in freshwater systems and they represent some of the most successful aquatic invasive lineages. Previous studies have documented four invasive clonal lineages, Forms A, B, C, and Rlc, with varying known distributions. Form A (R in Europe) occurs globally, Form B is found solely in North America, mainly the western United States, Form C (S in Europe) occurs both in European watersheds and in South America, and Rlc is known from Europe. A putative fifth invasive morph, Form D, was recently described in the New World from the Illinois River (Great Lakes watershed), where it occurs in sympatry with Forms A and B. An initial study showed Form D to be conchologically distinct: possessing rust-colored rays and white nacre with purple teeth. However, its genetic distinctiveness using standard molecular markers (mitochondrial cytochrome c oxidase subunit I and nuclear ribosomal 28S RNA) was ambiguous. To resolve this issue, we performed a phylogenomic analysis using 1,699-30,027 nuclear genomic loci collected via the next generation double digested restriction-site associated DNA sequencing method. Our results confirmed Form D to be a distinct invasive New World lineage with a population genomic profile consistent with clonality. A majority (7/9) of the phylogenomic analyses recovered the four New World invasive Corbicula lineages (Forms A, B, C, and D) as members of a clonal clade, sister to the non-clonal Lake Biwa (Japan) endemic, C. sandai. The age of the clonal clade was estimated at 1.49 million years (my; ± 0.401– 2.955 my) whereas the estimated ages of the four invasive lineage crown clades ranged from 0.27-0.44 my. We recovered no evidence of nuclear genomic admixture among the four invasive lineages in our study populations. In contrast, 2/6 C. sandai individuals displayed partial nuclear genomic Structure assignments with multiple invasive clonal lineages. These results provide new insights into the origin and maintenance of clonality in this complex system.
Data Types:
  • Other
  • Dataset
  • File Set
Fish spawning aggregations (FSA) act as biological hotspots that concentrate food and nutrients across a broad trophic spectrum. In Pohnpei (Federated States of Micronesia), 20 female grey reef sharks (Carcharhinus amblyrhynchos) were acoustically tagged at two multi-species grouper (Epinephelidae) FSA to examine the likelihood that these mesopredators utilize FSA as a seasonal food source. Both FSA sites are within small-scale MPAs, thus providing a secondary opportunity to examine their conservation potential during these ephemeral events. Shark movement and residency was gauged against known spatial and temporal grouper reproductive patterns using an array of 15 and 50 acoustic receivers at Ant Atoll and Pohnpei (Island), respectively. Activity space was investigated using Kernel Density estimates of individual sharks, and residency indices (RI) were analyzed based on daily and monthly occurrence at the array. Three distinct residency patterns were identified: transient, semi-transient, or resident (Daily RI 0.400.80, respectively). Generalized linear mixed models (GLMMs) were used to identify biological and environmental factors influencing shark activity space, including month, temperature, shark size, spawning month, and residency pattern. Findings revealed significant changes in average monthly residency indices and kernel densities during spawning months in support of an opportunistic foraging strategy around FSA. Monthly residency was higher during spawning months among semi-resident and transient sharks, while average monthly activity space was concentrated around FSA. Best-fit models for the GLMM indicated that activity spaces were most influenced by month and grouper spawning month. Seven of 20 sharks demonstrated inter-island movement and wide variations in individual movement and spatial requirements were shown. The concentration of sharks and groupers at unprotected FSA sites increases their vulnerability to fishing and supports the need for combined area and non-area management measures to effectively protect these species.
Data Types:
  • Dataset
  • File Set
5