Filter Results
4505 results
Norway spruce (Picea abies) is a dominant conifer species of major economic importance in Northern Europe. Extensive breeding programs were established to improve phenotypic traits of economic interest. In southern Sweden seeds used to create progeny tests were collected on about 3000 trees of outstanding phenotype (“plus” trees) across the region. In a companion paper (Chen et al., 2019) we showed that some were of local origin but many were recent introductions from the rest of the natural range. The mixed origin of the trees together with partial sequencing of the exome of >1,500 of these trees and phenotypic data retrieved from the Swedish breeding program offered a unique opportunity to dissect the genetic basis of local adaptation of three quantitative traits (height, diameter and budburst) and assess the potential of assisted gene flow. Through a combination of multivariate analyses and genome-wide association studies, we showed that there was a very strong effect of geographical origin on growth (height and diameter) and phenology (budburst) with trees from southern origins outperforming local provenances. Association studies revealed that growth traits were highly polygenic and budburst somewhat less. Hence, our results suggest that assisted gene flow and genomic selection approaches could help to alleviate the effect of climate change on P. abies breeding programs in Sweden.
Data Types:
  • Text
  • File Set
It was once thought that the endemic carnivorous mammals of South America, the metatherian sparassodonts, were driven extinct by North American carnivores through competitive exclusion. However, sparassodonts went extinct before most groups of carnivorans entered South America; only the endemic Cyonasua-group procyonids (Cyonasua and Chapalmalania), which immigrated to South America nearly four million years earlier than other carnivorans, significantly overlapped with sparassodonts in time. In this study, we examine the functional morphology of the dentition of Cyonasua and Chapalmalania through quantitative analysis to determine the dietary habits of these taxa and the degree to which they may have ecologically overlapped sparassodonts and large predatory Neogene didelphimorphians. We find Cyonasua and Chapalmalania to be more carnivorous than extant procyonids other than Bassariscus, in agreement with previous studies, but more omnivorous than most other carnivorans and all meat-eating South American metatherians, including sparassodonts. The extreme ecological dissimilarity between Cyonasua-group procyonids and members of the endemic South American predator guild may explain why procyonids were able to successfully establish themselves in South America several million years earlier than most other northern mammals (including all other carnivorans): they moved into a previously unoccupied ecological niche (large omnivore) and avoided direct competition with incumbent native species, a situation similar to that documented in historical cases of biological invasion. The omnivorous diets and climbing/swimming abilities of procyonids may have increased their chances for a successful over-water dispersal relative to other carnivorans, further favoring their successful establishment in South America.
Data Types:
  • Image
  • Document
Bone healing is an important survival mechanism, allowing vertebrates to recover from injury and disease. Here we describe newly recognized paleopathologies in the hindlimbs of the early tetrapods Crassigyrinus scoticus and Eoherpeton watsoni from the Early Carboniferous of Cowdenbeath, Scotland. These pathologies are among the oldest known instances of bone healing in tetrapod limb bones in the fossil record (about 325 Myr old). X-ray microtomographic imaging of the internal bone structure of these lesions shows that they are characterized by a mass of trabecular bone separated from the shaft’s trabeculae by a layer of cortical bone. We frame these paleopathologies in an evolutionary context, including additional data on bone healing and its pathways across extinct and extant sarcopterygians. These data allowed us to synthesize information on cell-mediated repair of bone and other mineralized tissues in all vertebrates, to reconstruct the evolutionary history of skeletal tissue repair mechanisms. We conclude that bone healing is ancestral for sarcopterygians. Furthermore, other mineralized tissues (aspidin and dentine) were also capable of healing and remodeling early in vertebrate evolution, suggesting that these repair mechanisms are synapomorphies of vertebrate mineralized tissues. The evidence for remodeling and healing in all of these tissues appears concurrently, so in addition to healing these early vertebrates had the capacity to restore structure and strength by remodeling their skeleton. Healing appears to be an inherent property of these mineralized tissues, and its linkage to their remodeling capacity has previously been under-appreciated.
Data Types:
  • Other
  • Document
Purpose: Animal studies have demonstrated anti-inflammatory, and anti-nociceptive properties of hyperbaric oxygen therapy (HBOT). However, physiological data are scarce in humans. In a recent experimental study, the authors used the burn injury (BI) model observing a decrease in secondary hyperalgesia area (SHA) in the HBOT-group compared to a control-group.Surprisingly, a long-lasting neuroplasticity effect mitigating the BI-induced SHA-response was seen in the HBOT-preconditioned group. The objective of the present study, therefore, was to confirm our previous findings using an examiner-blinded, block-randomized, controlled, crossover study design. Patients and methods: Nineteen healthy subjects attended two BI-sessions with an inter-session interval of ≥28 days. The BIs were induced on the lower legs by a contact thermode (12.5 cm2, 47C°, 420 s). The subjects were block-randomized to receive HBOT (2.4 ATA, 100% O2, 90 min) or ambient conditions ([AC]; 1 ATA, 21% O2), dividing cohorts equally into two sequence allocations: HBOT-AC or AC-HBOT. All sensory assessments performed during baseline, BI, and post-intervention phases were at homologous time points irrespective of sequence allocation. The primary outcome was SHA, comparing interventions and sequence allocations. Data are mean (95% CI). Results: During HBOT-sessions a mitigating effect on SHAs was demonstrated compared to AC-sessions, ie, 18.8 (10.5–27.0) cm2 vs 32.0 (20.1–43.9) cm2 (P=0.021), respectively. In subjects allocated to the sequence AC-HBOT a significantly larger mean difference in SHA in the AC-session vs the HBOT-session was seen 25.0 (5.4–44.7) cm2 (P=0.019). In subjects allocated to the reverse sequence, HBOT-AC, no difference in SHA between sessions was observed (P=0.55), confirming a preconditioning, long-lasting (≥28 days) effect of HBOT. Conclusion: Our data demonstrate that a single HBOT-session compared to control is associated with both acute and long-lasting mitigating effects on BI-induced SHA, confirming central anti-inflammatory, neuroplasticity effects of hyperbaric oxygen therapy.
Data Types:
  • Other
  • Video
  • Tabular Data
  • Document
Viability selection yields adult populations that are more genetically variable than those of juveniles, producing a positive correlation between heterozygosity and survival. Viability selection could be the result of decreased heterozygosity across many loci in inbred individuals and a subsequent decrease in survivorship resulting from the expression of the deleterious alleles. Alternatively, locus-specific differences in genetic variability between adults and juveniles may be driven by forms of balancing selection, including heterozygote advantage, frequency-dependent selection or selection across temporal and spatial scales. We use a pooled sequencing approach to compare genome-wide and locus-specific genetic variability between 74 golden eagle (Aquila chrysaetos), 62 imperial eagles (Aquila heliaca) and 69 prairie falcons (Falco mexicanus) juveniles and adults. Although genome-wide genetic variability is comparable between juvenile and adult golden eagles and prairie falcons, imperial eagle adults are significantly more heterozygous than juveniles. This evidence of viability selection may stem from a relatively smaller imperial eagle effective population size and potentially greater genetic load. We additionally identify ~2000 SNPs across the three species with extreme differences in heterozygosity between juveniles and adults. Many of these markers are associated with genes implicated in immune function or olfaction. These loci represent potential targets for studies of how heterozygote advantage, frequency-dependent selection and selection over spatial and temporal scales influence survivorship in avian species. Overall, our genome-wide data extend previous studies that used allozyme or microsatellite markers and indicate that viability selection may be a more common evolutionary phenomenon than often appreciated.
Data Types:
  • Other
  • Sequencing Data
  • Tabular Data
  • Text
Knowledge on the trophic interactions among predators and their prey is important in order to understand ecology and behaviour of animals. Traditionally studies on the diet composition of insectivorous bats have been based on the morphological identification of prey remains, but the accuracy of the results has been hampered due to methodological limitations. Lately, the DNA metabarcoding and High Throughput Sequencing (HTS) techniques have changed the scene since they allows prey identification to the species level, ultimately giving more precision to the results. Nevertheless, the use of one single primer set to amplify faecal DNA produces biases in the assessed dietary composition. Three horseshoe bats overlap extensively in their distribution range in Europe: Rhinolophus euryale, R. hipposideros and R. ferrumequinum. In order to achieve the deepest insight on their prey list we combined two different primers. Results showed that the used primers were complementary at the order and species levels, only 22 out of 135 prey species being amplified by both. The most frequent prey of R. hipposideros belonged to Diptera and Lepidoptera, to Lepidoptera in R. euryale, and Lepidoptera, Diptera and Coleoptera in R. ferrumequinum. The three bats show significant resource partitioning, since their trophic niche overlap is not higher than 34%.
Data Types:
  • Text
In vitro experimental evolution has taught us many lessons on the molecular bases of adaptation. To move towards more natural settings, evolution in the mice gut has been successfully performed. Yet, these experiments suffered from the use of laboratory strains as well as the use of axenic or streptomycin treated mice to maintain the inoculated strains. To circumvent these limitations, we conducted a one-year experimental evolution in vivo using a natural isolate of E. coli, strain 536, in conditions mimicking as much as possible natural environment with mother to offspring microbiota transmission. Mice were then distributed in 24 independent cages and separated in two different diets: a regular one (Chow diet, CD) and high-fat high-sugar one (Western diet, WD). Genome sequences revealed an early and rapid selection during the breast-feeding period that selected the constitutive expression of the well-characterized lactose operon. E. coli was lost significantly more in CD than WD, however, we could not detect any genomic signature of selection, nor any diet specificities during the later part of the experiments. The apparently neutral evolution presumably due to low population size maintained nevertheless at high frequency the early selected mutations affecting lactose regulation. The rapid loss of lactose operon regulation challenges the idea that plastic gene expression is both optimal and stable in the wild.
Data Types:
  • Other
  • Text
  • File Set
Transposable elements (TEs) along with simple sequence repeats (SSRs) are prevalent in eukaryotic genome, especially in mammals. Repetitive sequences form approximately one-third of the camelid genomes, so study on this part of genome can be helpful in providing deeper information from the genome and its evolutionary path. Here, in order to improve our understanding regarding the camel genome architecture, the whole genome of the two dromedaries (Yazdi and Trodi camels) was sequenced. Totally, 92- and 84.3-Gb sequence data were obtained and assembled to 137,772 and 149,997 contigs with a N50 length of 54,626 and 54,031 bp in Yazdi and Trodi camels, respectively. Results showed that 30.58% of Yazdi camel genome and 30.50% of Trodi camel genome were covered by TEs. Contrary to the observed results in the genomes of cattle, sheep, horse, and pig, no endogenous retrovirus-K (ERVK) elements were found in the camel genome. Distribution pattern of DNA transposons in the genomes of dromedary, Bactrian, and cattle was similar in contrast with LINE, SINE, and long terminal repeat (LTR) families. Elements like RTE-BovB belonging to LINEs family in cattle and sheep genomes are dramatically higher than genome of dromedary. However, LINE1 (L1) and LINE2 (L2) elements cover higher percentage of LINE family in dromedary genome compared to genome of cattle. Also, 540,133 and 539,409 microsatellites were identified from the assembled contigs of Yazdi and Trodi dromedary camels, respectively. In both samples, di-(393,196) and tri-(65,313) nucleotide repeats contributed to about 42.5% of the microsatellites. The findings of the present study revealed that non-repetitive content of mammalian genomes is approximately similar. Results showed that 9.1 Mb (0.47% of whole assembled genome) of Iranian dromedary’s genome length is made up of SSRs. Annotation of repetitive content of Iranian dromedary camel genome revealed that 9,068 and 11,544 genes contain different types of TEs and SSRs, respectively. SSR markers identified in the present study can be used as a valuable resource for genetic diversity investigations and marker-assisted selection (MAS) in camel-breeding programs.
Data Types:
  • Text
Cucurbita pepo is an economically important crop, which consists of cultivated C. pepo ssp. pepo, and two wild taxa (C. pepo ssp. fraterna and C. pepo ssp. ovifera). We aimed at understanding the domestication and the diversity of C. pepo in Mexico. We used two chloroplast regions and nine nuclear microsatellite loci to assess levels of genetic variation and structure for C. pepo ssp. pepo’s landraces sampled in 13 locations in Mexico, five improved varieties, one C. pepo ssp. fraterna population and ornamental C. pepo ssp. ovifera. We tested four hypotheses regarding the origin of C. pepo ssp. pepo’s ancestor through Approximate Bayesian Computation: C. pepo ssp. ovifera as the ancestor; C. pepo ssp. fraterna as the ancestor; an unknown extinct lineage as the ancestor; and C. pepo ssp. pepo as hybrid from C. pepo ssp. ovifera and C. pepo ssp. fraterna ancestors. C. pepo ssp. pepo showed high genetic variation and low genetic differentiation. C. pepo ssp. fraterna and C. pepo ssp. pepo shared two chloroplast haplotypes. The three subspecies were well-differentiated for microsatellite loci. C. pepo ssp. fraterna was probably C. pepo ssp. pepo’s wild ancestor, but subsequent hybridization between taxa complicate defining C. pepo ssp. pepo’s ancestor.
Data Types:
  • Text
The adult Hydra polyp continually renews all of its cells using three separate stem cell populations, but the genetic pathways enabling this homeostatic tissue maintenance are not well understood. We sequenced 24,985 Hydra single-cell transcriptomes and identified the molecular signatures of a broad spectrum of cell states, from stem cells to terminally differentiated cells. We constructed differentiation trajectories for each cell lineage and identified gene modules and putative regulators expressed along these trajectories, thus creating a comprehensive molecular map of all developmental lineages in the adult animal. In addition, we built a gene expression map of the Hydra nervous system. Our work constitutes a resource for addressing questions regarding the evolution of metazoan developmental processes and nervous system function.
Data Types:
  • Other
  • Software/Code
  • Text
  • File Set
7