Filter Results
18915 results
Crocodylomorpha, which includes living crocodylians and their extinct relatives, has a rich fossil record, extending back for more than 200 million years. Unlike modern semi-aquatic crocodylians, extinct crocodylomorphs exhibited more varied lifestyles, ranging from marine to fully terrestrial forms. This ecological diversity was mirrored by a remarkable morphological disparity, particularly in terms of cranial morphology, which seems to be closely associated with ecological roles in the group. Here, I use geometric morphometrics to comprehensively investigate cranial shape variation and disparity in Crocodylomorpha. I quantitatively assess the relationship between cranial shape and ecology (i.e. terrestrial, aquatic, and semi-aquatic lifestyles), as well as possible allometric shape changes. I also characterise patterns of cranial shape evolution and identify regime shifts. I found a strong link between shape and size, and a significant influence of ecology on the observed shape variation. Terrestrial taxa, particularly notosuchians, have significantly higher disparity, and shifts to more longirostrine regimes are associated with large-bodied aquatic or semi-aquatic species. This demonstrates an intricate relationship between cranial shape, body size and lifestyle in crocodylomorph evolutionary history. Additionally, disparity-through-time analyses were highly sensitive to different phylogenetic hypotheses, suggesting the description of overall patterns among distinct trees. For crocodylomorphs, most results agree in an early peak during the Early Jurassic and another in the middle of the Cretaceous, followed by nearly continuous decline until today. Since only crown-group members survived through the Cenozoic, this decrease in disparity was likely the result of habitat loss, which narrowed down the range of crocodylomorph lifestyles.
Data Types:
  • Tabular Data
  • Dataset
  • Document
  • File Set
Human and other animal cells deploy three closely related dioxygenases (PHD 1, 2 and 3) to signal oxygen levels by catalysing oxygen regulated prolyl hydroxylation of the transcription factor HIF. The discovery of the HIF prolyl-hydroxylase (PHD) enzymes as oxygen sensors raises a key question as to the existence and nature of non-HIF substrates, potentially transducing other biological responses to hypoxia. Over 20 such substrates are reported. We therefore sought to characterise their reactivity with recombinant PHD enzymes. Unexpectedly, we did not detect prolyl-hydroxylase activity on any reported non-HIF protein or peptide, using conditions supporting robust HIF-α hydroxylation. We cannot exclude PHD-catalysed prolyl hydroxylation occurring under conditions other than those we have examined. However, our findings using recombinant enzymes provide no support for the wide range of non-HIF PHD substrates that have been reported.
Data Types:
  • Other
  • Dataset
  • Text
  • File Set
Male mate preferences have been demonstrated across a range of species, including the Malaysian stalk-eyed fly, Teleopsis dalmanni. This species is subject to SR, an X-linked male meiotic driver, that causes the dysfunction of Y-sperm and the production of all-female broods. While there has been work considering female avoidance of meiotic drive males, the mating decisions of drive-bearing males have not been considered previously. Drive males may be less able to bear the cost of choice as SR is associated with a low frequency inversion that causes reduced organismal fitness. Drive males may also experience weaker selection for preference maintenance if they are avoided by females. Using binary choice trials, across two experiments, we confirmed male preference for large (fecund) females but found no evidence that the strength of male preference differs between drive and standard males. We showed that large eyespan males displayed strong preference for large females while small eyespan males showed no preference. Taken together, these results suggest that even though meiotic drive is associated with lower genetic quality it does not directly interfere with mate preference among available females. However, as drive males tend to have smaller eyespan (albeit only ~5% on average), this will to a minor extent weaken their strength of preference.
Data Types:
  • Other
  • Dataset
Chronic hepatic disease can present a diagnostic challenge with different etiologies being associated with similar clinical and laboratory findings. The histopathological assessment of a liver biopsy specimen is usually required in order to make a definitive diagnosis and the availability of non-invasive prognostic biomarkers is limited. The emerging science of metabolomics is used to detect changes in endogenous low molecular weight metabolites in biological samples and offers the possibility of identifying noninvasive markers of disease. The objective of this study was to investigate differences in the urine metabolome between healthy dogs, dogs with chronic hepatitis, dogs with hepatocellular carcinoma, and dogs with a congenital portosystemic shunt. Stored urine samples from 10 healthy dogs, 10 dogs with chronic hepatitis, 6 dogs with hepatocellular carcinoma, and 5 dogs with a congenital portosystemic shunt were analyzed. The urine metabolome was analyzed by gas chromatography – quadrupole time of flight mass spectrometry and 220 known metabolites were identified. Principal component analysis and heat dendrogram plots of the metabolomics data showed clustering between groups. Random forest analysis showed differences in the abundance of various metabolites including putrescine, gluconic acid, sorbitol, and valine. Based on univariate statistics, 37 metabolites were significantly different between groups. In, conclusion, the urine metabolome varies between healthy dogs, dogs with chronic hepatitis, dogs with hepatocellular carcinoma, and dogs with a congenital portosystemic shunt. Further targeted assessment of these metabolites is needed to assess their diagnostic utility.
Data Types:
  • Other
  • Dataset
Objective: To test a possible benefit of dalfampridine on information processing speed (IPS), a key function for cognitive impairment (CogIm) in multiple sclerosis (MS). Methods: In this randomized, double-blind, placebo-controlled trial, we included patients with a score on the Symbol Digit Modalities Test (SDMT) under the 10th percentile of the reference value. Patients were randomized in a 2:1 ratio to receive dalfampridine 10 mg or placebo twice daily for 12 weeks. They underwent a comprehensive neuropsychological evaluation at screening (T0), at the end of treatment (T1), and after a 4-week follow-up (T2). The primary endpoint was improvement in SDMT. Results: Out of 208 patients screened, 120 were randomized to receive either dalfampridine (n = 80) or placebo (n = 40). At T1, the dalfampridine group presented an increase of SDMT scores vs placebo group (mean change 9.9 [95% confidence interval (CI) 8.5–11.4] vs 5.2 [95% CI 2.8–7.6], p = 0.0018; d = 0.60 for raw score; and 0.8 [95% CI 0.6–1] vs 0.3 [95% CI 0.0–0.5], p = 0.0013; d = 0.61 for z scores; by linear mixed model with robust standard error). The improvement was not sustained at T2. A beneficial effect of dalfampridine was observed in the Paced Auditory Serial Addition Test and in cognitive fatigue. Conclusion: Dalfampridine could be considered as an effective treatment option for IPS impairment in MS. Trial registration: 2013-002558-64 EU Clinical Trials Register. Classification of evidence: This study provides Class I evidence that for patients with MS with low scores on the SDMT, dalfampridine improves IPS.
Data Types:
  • Other
  • Dataset
1. The ability to move between habitats has important implications for fitness in many species. In-stream barriers such as culverts can impede movements of riverine fishes and thus reduce connectivity between habitats. The ability of fish to overcome barriers is related to the features of the environment and the barrier itself, but also to physiological, morphological, and behavioural traits of the fish. Among these, body shape varies among and within species and influences swimming ability, a key component of passage performance through culverts. 2. We conducted an experimental study on wild brook trout (Salvelinus fontinalis) to assess the effects of individual body shape on attempt rate and passage success through culverts on six streams. 3. A more streamlined body shape was associated with an increased motivation to enter and ascend the culverts, and, to a lesser extent, with the probability of successful passage once an attempt was staged. Motivation and successful passage were also influenced by the density of conspecifics below the culvert, time of day, fish body size, and water velocity. 4. Policy implications While fish body shape is expected to influence swimming performance, our research shows the most important effect of body shape to be on an individual’s motivation to stage passage attempts at culverts. This study points to an important connection between behaviour and morphological traits that influence passage success and suggests that in-stream barriers may be an important agent of selection on behavior and morphology in wild fish populations.
Data Types:
  • Other
  • Dataset
The bar-headed goose is famed for migratory flight at extreme altitude. To better understand the physiology underlying this remarkable behavior, we imprinted and trained geese, collecting the first cardiorespiratory measurements of bar-headed geese flying at simulated altitude in a wind tunnel. Metabolic rate during flight increased 16-fold from rest, supported by an increase in the estimated amount of O2 transported per heartbeat and a modest increase in heart rate. The geese appear to have ample cardiac reserves, as heart rate during hypoxic flights was not higher than in normoxic flights. We conclude that flight in hypoxia is largely achieved via the reduction in metabolic rate compared to normoxia. Arterial was maintained throughout flights. Mixed venous PO2 decreased during the initial portion of flights in hypoxia, indicative of increased tissue O2 extraction. We also discovered that mixed venous temperature decreased during flight, which may significantly increase oxygen loading to hemoglobin.
Data Types:
  • Other
  • Dataset
Species simultaneously compete with and facilitate one another. Size can mediate transitions along this competition-facilitation continuum, but the consequences for demography are unclear. We orthogonally manipulated the size of a focal species, and the size and density of a heterospecific neighbour, in the field using a model marine system. We then parameterised a size-structured population model with our experimental data. We found that heterospecific size and density interactively altered the population dynamics of the focal species. Size determined whether heterospecifics facilitated (when small) or competed with (when large) the focal species, while density strengthened these interactions. These size-mediated interactions also altered the pace of the focal’s life history. We provide the first demonstration that size and density mediate competition and facilitation from a population dynamical perspective. We suspect such effects are ubiquitous, but currently underappreciated. We reiterate classic cautions against inferences about competitive hierarchies made in the absence of size-specific data.
Data Types:
  • Other
  • Dataset
Elderly people show a decline in the ability to decode facial expressions, but also experience age-related facial structure changes that may render their facial expressions harder to decode. However, to date there is no empirical evidence to support the latter mechanism. The objective of this study was to assess the effects of age on facial morphology at rest and during smiling, in younger (n = 100; age range, 18–32 years) and older (n = 30; age range, 55–65 years) Japanese women. Three-dimensional images of each subject’s face at rest and during smiling were obtained and wire mesh fitting was performed on each image to quantify the facial surface morphology. The mean node coordinates in each facial posture were compared between the groups using t-tests. Further, the node coordinates of the fitted mesh were entered into a principal component analysis (PCA) and a multifactor analysis of variance (MANOVA) to examine the direct interactions of aging and facial postures on the 3D facial morphology. The results indicated that there were significant age-related 3D facial changes in facial expression generation and the transition from resting to smiling produced a smaller amount of soft tissue movement in the older group than in the younger group. Further, 185 surface configuration variables were extracted and the variables were used to create four discriminant functions: the age-group discrimination for each facial expression, and the facial expression discrimination for each age group. For facial expression discrimination, the older group showed 80% accuracy with 2 of 66 significant variables, whereas the younger group showed 99% accuracy with 15 of 144 significant variables. These results indicate that in both facial expressions, the facial morphology was distinctly different in the younger and older subjects, and that in the older group, the facial morphology during smiling could not be as easily discriminated from the morphology at rest as in the younger group. These results may help to explain one aspect of the communication dysfunction observed in older people.
Data Types:
  • Other
  • Dataset
The development of antipredator traits is dependent on the frequency and intensity of predator exposure over evolutionary and ecological time. We hypothesized that prey species would respond with increasing accuracy when exposed to predators across generational, ontogenetic and immediate timescales. We assessed larval Pacific chorus frog (PSRE; Pseudacris regilla) individuals that varied in population sympatry, embryonic conditioning, and immediate exposure to stocked populations of Rainbow Trout (Oncorhynchus mykiss). Using PSRE populations from sites with and without resident Rainbow Trout, we conditioned embryos to trout odor, PSRE alarm cues, trout odor in combination with alarm cues, or control water. After being hatched and reared in control water, individuals were exposed to the four predator cue treatments using a fully factorial design. Tadpoles from populations with resident Rainbow Trout did not behave or develop differently than tadpoles originating from fishless sites. However, we found evidence that PSRE reduced predation risk with a combination of carry-over effect (i.e., transfer of information across life history stages) and within-life stage phenotypically plastic mechanisms. We found both developmental and behavioral carry-over effects: tadpoles conditioned with trout odor as embryos grew more slowly and took refuge more often than control animals. Within-life stage behavioral plasticity was observed in tadpoles from all treatment groups, responding to predator cues with increased refuge use. Potentially additive effects of predator exposure on prey response should be considered when predicting the ability of prey to recognize novel threats.
Data Types:
  • Other
  • Dataset
7