Filter Results
591 results
  • Copyright information:Taken from "Distinguishing low frequency oscillations within the 1/spectral behaviour of electromagnetic brain signals"http://www.behavioralandbrainfunctions.com/content/3/1/62Behavioral and brain functions : BBF 2007;3():62-62.Published online 10 Dec 2007PMCID:PMC2235870. (b) The inverse filter frequency response obtained from the corresponding 6th order MA model.
    Data Types:
    • Image
  • Background: It is believed that the intensity of oscillations in the photoplethysmographic waveform variability reflects the activity of vascular regulatory mechanisms. However, the relationship of such fluctuations with the state of health is poorly understood. Purpose: The aim of our study was to assess the possibility of using spectral indices that reflect the intensity of oscillations of the photoplethysmographic waveform variability at frequencies 0.04-0.4 Hz as markers of hypertension and coronary artery disease. We did not study women to exclude the influence of menopause and sex hormones on the results. Materials and Methods: We compared synchronous 10-minute records of finger photoplethysmogram and respiration at rest in 30 healthy males (48.8 ± 4.5 years; data presented as Mean ± SD) versus 30 patients with hypertension (aged 49.0 ± 4.3 years) versus 30 patients with stable coronary artery disease (49.2 ± 4.8 years). Percentages of high-frequency and low-frequency ranges in the total power of photoplethysmographic waveform variability spectrum (HF% and LF%), and LF/HF ratio were assessed. Results: HF% are subject to by 2- to 5-fold increase in hypertensive patients (p p p Conclusion: Frequency-domain indices of photoplethysmographic waveform variability (in particular, HF%, LF%, and LF/HF) are sufficiently sensitive and specific markers of hypertension and coronary artery disease in adult males.
    Data Types:
    • Document
  • Background: It is believed that the intensity of oscillations in the photoplethysmographic waveform variability reflects the activity of vascular regulatory mechanisms. However, the relationship of such fluctuations with the state of health is poorly understood. Purpose: The aim of our study was to assess the possibility of using spectral indices that reflect the intensity of oscillations of the photoplethysmographic waveform variability at frequencies 0.04-0.4 Hz as markers of hypertension and coronary artery disease. We did not study women to exclude the influence of menopause and sex hormones on the results. Materials and Methods: We compared synchronous 10-minute records of finger photoplethysmogram and respiration at rest in 30 healthy males (48.8 ± 4.5 years; data presented as Mean ± SD) versus 30 patients with hypertension (aged 49.0 ± 4.3 years) versus 30 patients with stable coronary artery disease (49.2 ± 4.8 years). Percentages of high-frequency and low-frequency ranges in the total power of photoplethysmographic waveform variability spectrum (HF% and LF%), and LF/HF ratio were assessed. Results: HF% are subject to by 2- to 5-fold increase in hypertensive patients (p p p Conclusion: Frequency-domain indices of photoplethysmographic waveform variability (in particular, HF%, LF%, and LF/HF) are sufficiently sensitive and specific markers of hypertension and coronary artery disease in adult males.
    Data Types:
    • Document
  • We investigate the dynamics of an array of polystyrene micron-sized spheres in a dual-beam fiber-optic trap. Experimental results show non-uniform equilibrium particle spacing and spontaneous self-sustained oscillation for large particle numbers. Results are analyzed with a Maxwell-Stress Tensor method using the Generalized Multipole Technique, where hydrodynamic interactions between particles are included. The theoretical analysis matches well with the experimentally observed equilibrium particle spacing. The theory shows that an offset in the trapping beams is the underlying mechanism for the oscillations and influences both the oscillation frequency and the damping rate for oscillations. The theory presented is of general interest to other systems involving multi-particle optical interactions.
    Data Types:
    • Collection
  • We investigate the dynamics of an array of polystyrene micron-sized spheres in a dual-beam fiber-optic trap. Experimental results show non-uniform equilibrium particle spacing and spontaneous self-sustained oscillation for large particle numbers. Results are analyzed with a Maxwell-Stress Tensor method using the Generalized Multipole Technique, where hydrodynamic interactions between particles are included. The theoretical analysis matches well with the experimentally observed equilibrium particle spacing. The theory shows that an offset in the trapping beams is the underlying mechanism for the oscillations and influences both the oscillation frequency and the damping rate for oscillations. The theory presented is of general interest to other systems involving multi-particle optical interactions.
    Data Types:
    • Collection
  • We suggest the main principals and functional units of the parallel chemical computer, namely, (i) a generator (which is a network of coupled oscillators) of oscillatory dynamic modes, (ii) a unit which is able to recognize these modes (a ‘reader’) and (iii) a decision-making unit, which analyses the current mode, compares it with the external signal and sends a command to the mode generator to switch it to the other dynamical regime. Three main methods of the functioning of the reader unit are suggested and tested computationally: (a) the polychronization method, which explores the differences between the phases of the generator oscillators; (b) the amplitude method which detects clusters of the generator and (c) the resonance method which is based on the resonances between the frequencies of the generator modes and the internal frequencies of the damped oscillations of the reader cells. Pro and contra of these methods have been analysed.
    Data Types:
    • Collection
  • Recent studies have reported that dim light at night (dLAN) is associated with risks of cardiovascular complications, such as hypertension and carotid atherosclerosis; however, little is known about the underlying mechanism. Here, we evaluated the effect of dLAN on the cerebrovascular system by analyzing cerebral hemodynamic oscillations using near-infrared spectroscopy (NIRS). Fourteen healthy male subjects underwent polysomnography coupled with cerebral NIRS. The data collected during sleep with dim light (10 lux) were compared with those collected during sleep under the control dark conditions for the sleep structure, cerebral hemodynamic oscillations, heart rate variability (HRV), and their electroencephalographic (EEG) power spectrum. Power spectral analysis was applied to oxy-hemoglobin concentrations calculated from the NIRS signal. Spectral densities over endothelial very-low-frequency oscillations (VLFOs) (0.003–0.02 Hz), neurogenic VLFOs (0.02–0.04 Hz), myogenic low-frequency oscillations (LFOs) (0.04–0.15 Hz), and total LFOs (0.003–0.15 Hz) were obtained for each sleep stage. The polysomnographic data revealed an increase in the N2 stage under the dLAN conditions. The spectral analysis of cerebral hemodynamics showed that the total LFOs increased significantly during slow-wave sleep (SWS) and decreased during rapid eye movement (REM) sleep. Specifically, endothelial (median of normalized value, 0.46 vs. 0.72, p = 0.019) and neurogenic (median, 0.58 vs. 0.84, p = 0.019) VLFOs were enhanced during SWS, whereas endothelial VLFOs (median, 1.93 vs. 1.47, p = 0.030) were attenuated during REM sleep. HRV analysis exhibited altered spectral densities during SWS induced by dLAN, including an increase in very-low-frequency and decreases in low-frequency and high-frequency ranges. In the EEG power spectral analysis, no significant difference was detected between the control and dLAN conditions. In conclusion, dLAN can disturb cerebral hemodynamics via the endothelial and autonomic systems without cortical involvement, predominantly during SWS, which might represent an underlying mechanism of the increased cerebrovascular risk associated with light exposure during sleep.
    Data Types:
    • Document
  • Data Types:
    • Software/Code
  • Data Types:
    • Software/Code
  • Parity-time (PT) symmetry breaking provides an excellent tool for single-mode oscillation by exploiting the interplay between gain and loss. Previously, the oscillation mode is fixed because the breaking of PT symmetry cannot be manipulated precisely. In this paper, we propose and experimentally demonstrate a selective PT-symmetry optoelectronic oscillator (OEO), which shows wideband tunability and ultra-high side mode suppression ratio (SMSR). The tunability of the proposed OEO is attributed to selection of different modes to break PT symmetry by using a widely tunable microwave photonic filter (MPF). The large roll-off of the MPF greatly enhances the gain difference between the selected mode and competing modes. Consequently, both the output power and the SMSR of the OEO are increased. In the experiment, the oscillation frequency can be tuned over 40 GHz. The output power of the selected mode is enhanced by 12.91 dB, and the maximal SMSR is as high as 71.41 dB. Further, the measured phase noise of the OEO at 17.74 GHz is -129 dBc/Hz at the 10 kHz offset frequency. Exploration of the selective PT-symmetry breaking provides the possibility of developing classes of widely tunable OEOs with ultra-high SMSR and excellent phase noise performance.
    Data Types:
    • Collection
8