Data-set with the nominal specifications and efficiency estimations of HAWT wind turbines

Published: 8 March 2018| Version 1 | DOI: 10.17632/2h6k9sfb7k.1
Contributors:
,

Description

A data-set of 176 commercialized HAWT Wind Turbines (WTs) was gathered with the intention to explore and validate possible statistical models for estimating efficiency and feasible hub heights. With respect to Small Wind Turbines (SWTs), this work assumes as trustworthy the information related to Power Curves when it is originated from certification reports or third-party testing studies. Certification sources were taken from Intertek Testing Services NA, Inc. (16 WTs); the Small Wind Certification Council (SWCC) (12 WTs); SGS Tecnos (1 WT); GL Garrad Hassan's WINDTEST (1 WT); and the Danish Technical University (DTU) (1 WT). The third-party testing studies were taken from the National Renewable Energy Laboratory (NREL) (5 WTs); the Wulf Test Field study (4 WTs); the Warwick Wind Trials Project (4 WTs); the “Small Wind Turbine Performance in Western North Carolina” study (4 WTs); the Zeeland report (3 WTs); the USDA-Agricultural Research Service (1 WT); and the Sustainable Technologies Evaluation Program (STEP) (1 WT). The other 123 WTs of the data-set were taken from publicly available information delivered by Wind Turbine brands assumed to be trustworthy. These “Trusted” WTs range from a minimum Diameter (D) of 13m to a maximum D=190m (amsc Seatitan 10MW) and with a mean D=78.5m. The information of 93.5% of these WTs was provided by the well-known brands: Vestas Wind Systems (20 WTs); ENERCON GmbH (20 WTs); Fuhrländer AG (11 WTs); Gamesa (10 WTs); Nordex (10 WTs); Siemens Wind Power GmbH (9 WTs); GoldWind (8 WTs); AMSC's Windtec Solutions (7 WTs); General Electric Renewable Energy (7 WTs); Northern Power Systems (5 WTs); NEG Micon (5 WTs); and LagerWey (3 WTs). By exploring the sources described here, a data-set of 176 commercial WTs was developed. For every turbine, the data-set includes the corresponding values of diameter, efficiency and rated efficiency. The value of the hub height was also gathered whenever possible. The data-set was divided into a group of 101 WTs for exploring statistical trends with the efficiency and 75 WTs for validating the models proposed. As the information related to commercialized towers was not always available, the set for exploring trends related to the hub height is composed of 94 WTs for the development of statistical models and 66 WTs for their validation.

Files

Steps to reproduce

Open the file in Microsoft Excel.

Institutions

Universidad EAFIT

Categories

Wind Energy, Wind Turbine, Wind Engineering

Licence