PEN-Method: Predictor model and Validation Data
Description
This Data contains the PEN-Predictor-Keras-Model as well as the 100 validation data sets.
Files
Steps to reproduce
With the following steps, the prediction of data (using the predictor and the validation data sets as input) can be reproduced. 1. Extract the zip-files. 2. Run the python code. ```python # Using python 3.9 # Using tensorflow 2.5 import tensorflow as tf import numpy as np # loading the model model_predictor = tf.keras.models.load_model('model_predictor_64x64') # loading input validation datasets d_inp = 8 inputrows = np.load("Validation Data/inputrows_{0}x{0}.npz".format(d_inp))['arr_0'] R_k_val = inputrows[:, :2 * (d_inp + 1)**2] R_s_val = inputrows[:, 2 * (d_inp + 1)**2:4 * (d_inp + 1)**2] M_tar_val = inputrows[:, 4 * (d_inp + 1)**2] # loading output validation dataset (index 0) d = 64 index = 0 np_load = np.load("Validation Data/outputrows_{0}_{1}x{1}.npz".format(index, d)) X_TO_val = np.reshape(np_load['min_Material'], [d, d]) c_TO_val = np.asscalar(np_load['Nachgiebigkeit']) M_TO_val = np.asscalar(np_load['Materialabweichung']) F_TO_val = np.asscalar(np_load['Filter']) P_TO_val = np.asscalar(np_load['Unbestimmtheit']) t_TO_val = np.asscalar(np_load['time_fe']) # predicting outputs (8x8, 16x16, 32x32, 64x64) for all 100 validation input data sets X_pred_val = model_predictor.predict([R_k_val, R_s_val, M_tar_val]) ```