QuantumDNA: A python package for analyzing quantum charge dynamics in DNA and exploring its biological relevance
Description
The study of DNA charge dynamics is a highly interdisciplinary field that bridges physics, chemistry, biology, and medicine, and plays a critical role in processes such as DNA damage detection, protein-DNA interactions, and DNA-based nanotechnology. However, despite significant progress in each of these areas, knowledge often remains inaccessible to researchers in other scientific communities, limiting the broader impact of advances across disciplines. To bridge this gap, we present QuantumDNA, an open-source Python package for simulating DNA charge transfer and excited state dynamics using quantum physical methods. QuantumDNA combines an efficient Linear Combination of Atomic Orbitals (LCAO) approach combined with tight-binding models and incorporates open quantum systems techniques to account for environmental effects. This approach allows for a rapid yet sufficiently accurate analysis of large DNA ensembles, enabling statistical studies of genetic and epigenetic phenomena. To ensure accessibility, the package features a graphical user interface, making it suitable for researchers across disciplines.