dmscatter: A fast program for WIMP-nucleus scattering

Published: 6 December 2022| Version 1 | DOI: 10.17632/6fm7d4m2py.1


Recent work [1], [2], using an effective field theory framework, have shown the number of possible couplings between nucleons and the dark-matter-candidate Weakly Interacting Massive Particles (WIMPs) is larger than previously thought. Inspired by an existing Mathematica script that computes the target response [2], we have developed a fast, modern Fortran code, including optional OpenMP parallelization, along with a user-friendly Python wrapper, to swiftly and efficiently explore many scenarios, with output aligned with practices of current dark matter searches. A library of most of the important target nuclides is included; users may also import their own nuclear structure data, in the form of reduced one-body density matrices. The main output is the differential event rate as a function of recoil energy, needed for modeling detector response rates, but intermediate results such as nuclear form factors can be readily accessed.



Nuclear Physics, Particle Physics, Computational Physics, Dark Matter