FabSim3: An automation toolkit for verified simulations using high performance computing

Published: 29 November 2022| Version 1 | DOI: 10.17632/6nfrwy7ptj.1
Contributors:
,
,
,
,
,
,
,
,

Description

A common feature of computational modelling and simulation research is the need to perform many tasks in complex sequences to achieve a usable result. This will typically involve tasks such as preparing input data, pre-processing, running simulations on a local or remote machine, post-processing, and performing coupling communications, validations and/or optimisations. Tasks like these can involve manual steps which are time and effort intensive, especially when it involves the management of large ensemble runs. Additionally, human errors become more likely and numerous as the research work becomes more complex, increasing the risk of damaging the credibility of simulation results. Automation tools can help ensure the credibility of simulation results by reducing the manual time and effort required to perform these research tasks, by making more rigorous procedures tractable, and by reducing the probability of human error due to a reduced number of manual actions. In addition, efficiency gained through automation can help researchers to perform more research within the budget and effort constraints imposed by their projects. This paper presents the main software release of FabSim3, and explains how our automation toolkit can improve and simplify a range of tasks for researchers and application developers. FabSim3 helps to prepare, submit, execute, retrieve, and analyze simulation workflows. By providing a suitable level of abstraction, FabSim3 reduces the complexity of setting up and managing a large-scale simulation scenario, while still providing transparent access to the underlying layers for effective debugging. The tool also facilitates job submission and management (including staging and curation of files and environments) for a range of different supercomputing environments. Although FabSim3 itself is application-agnostic, it supports a provably extensible plugin system where users automate simulation and analysis workflows for their own application domains. To highlight this, we briefly describe a selection of these plugins and we demonstrate the efficiency of the toolkit in handling large ensemble workflows.

Files

Categories

Computational Physics, High Performance Computing, Computational Modeling

License