Banana Disease Recognition Dataset
Description
1. Bananas are not only nutritious but also delicious. Both raw and ripe bananas are beneficial for health. It is a good source of potassium, vitamin C, vitamin B6, and dietary fiber, according to nutritional guidelines. 2. Potassium in bananas helps regulate blood pressure and supports overall heart health. Its' dietary fiber aids digestion and helps in maintaining gastrointestinal regularity. Natural sugars like glucose, fructose, and sucrose in bananas provide quick and sustained energy. 3. With a low glycemic index, bananas assist in keeping blood sugar levels stable. The fiber content promotes a feeling of fullness, aiding in weight management. It contains serotonin, a neurotransmitter that contributes to a good mood and stress reduction. 4. Vitamin A in bananas supports healthy vision, and they may contribute to age-related macular degeneration prevention. The presence of magnesium and vitamin B6 in bananas helps maintain strong bones. It also contains prebiotic fiber that supports the growth of beneficial gut bacteria, contributing to a healthy digestive system. 5. The prevalence of various diseases associated with bananas highlights the need for proper measures to be taken to mitigate their impact, which may lead to a reduction in banana production on a large scale. Therefore, adopting preventive measures as soon as symptoms of diseases are observed is crucial. 6. Diseases in crops pose a significant challenge to agricultural production, impacting the quality and productivity of the crops. Due to environmental factors, diseases in crops can have adverse effects on both yield and quality. For instance, banana diseases can negatively impact the yield and quality of bananas, leading to significant economic losses for farmers. Traditional methods of identifying and managing crop diseases are often time-consuming, labor-intensive, inefficient, and subjective. 7. Such classification and identification tasks have been a promising area for computer vision in recent years. 8. A large dataset of seven different banana classes—Healthy Leaf, Bract Mosaic Virus Disease, Black Sigatoka, Insect Pest Diseases, Moko Disease, Panama Disease, and Yellow Sigatoka—is shown in order to create machine vision-based algorithms. 9. There are 408 images of bananas in all, taken in actual fields. Then, in order to expand the number of data points, shifting, flipping, zooming, shearing, brightness enhancement, and rotation techniques are used to create a total of 2856 augmented images from these original images.