SOL-KiT—Fully implicit code for kinetic simulation of parallel electron transport in the tokamak Scrape-Off Layer

Published: 18 September 2020| Version 1 | DOI: 10.17632/7p44sdfnnp.1


Here we present a new code for modelling electron kinetics in the tokamak Scrape-Off Layer (SOL). SOL-KiT (Scrape-Off Layer Kinetic Transport) is a fully implicit 1D code with kinetic (or fluid) electrons, fluid (or stationary) ions, and diffusive neutrals. The code is designed for fundamental exploration of non-local physics in the SOL and utilizes an arbitrary degree Legendre polynomial decomposition of the electron distribution function, treating both electron–ion and electron–atom collisions. We present a novel method for ensuring particle and energy conservation in inelastic and superelastic collisions, as well as the first full treatment of the logical boundary condition in the Legendre polynomial formalism. To our knowledge, SOL-KiT is the first fully implicit arbitrary degree harmonic kinetic code, offering a conservative and self-consistent approach to fluid–kinetic comparison with its integrated fluid electron mode. In this paper we give the model equations and their discretizations, as well as showing the results of a number of verification/benchmarking simulations.



Computational Physics