Data for: Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis

Published: 23 April 2020| Version 1 | DOI: 10.17632/8w2hb5n36j.1
Contributor:
Ruirui Xiao

Description

Materials:Rice straw, pine sawdust and Phoenix Tree's leaf were selected as the main biomass of this study. Algorithms and methods:Coats-Redfern integral method,Doyle method,Distribution Activation Energy Model (DAEM): The database contains all the original data, intermediate data and final results used in the paper. Fig. 1 was schematic diagram of WRT-3P high temperature TGA and gas flow routes Fig. 2 was influence of particle size on biomass pyrolysis kinetics (a) TG curves of rice straw (b) DTG curves of rice traw (c) TG curves of pine sawdust (d) DTG curves of pine sawdust (e) TG curves of Phoenix Tree's leaf (f) DTG curves of Phoenix Tree's leaf Fig. 3 was influence of heating rate on different biomass (rice straw, pine sawdust and Phoenix Tree's leaf) pyrolysis kinetics (a) TG curves of rice straw (b) DTG curves of rice traw (c) TG curves of pine sawdust (d) DTG curves of pine sawdust (e) TG curves of Phoenix Tree's leaf (f) DTG curves of Phoenix Tree's leaf Fig. 4 was potassium concentration of initial and soaked rice straw Fig. 5 was influence of K+ on rice straw pyrolysis kinetics (a) TG curves (b) DTG curves Fig. 6 was the relationship between and 1/T of three kinds of biomass with a particle size of 0.150 - 0.180 mm at different heating rates. (a) 5℃/min (b) 10℃/min (c) 20℃/min (d) 40℃/min Fig. 7 was the apparent activation energy of biomass pyrolysis obtained by DAEM.

Files

Categories

Biomass, Biomass Conversion

Licence