MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver

Published: 16 Jun 2020 | Version 1 | DOI: 10.17632/8y55zscjd3.1
Contributor(s):

Description of this data

MFC is an open-source tool for solving multi-component, multi-phase, and bubbly compressible flows. It is capable of efficiently solving a wide range of flows, including droplet atomization, shock–bubble interaction, and bubble dynamics. We present the 5- and 6-equation thermodynamically-consistent diffuse-interface models we use to handle such flows, which are coupled to high-order interface-capturing methods, HLL-type Riemann solvers, and TVD time-integration schemes that are capable of simulating unsteady flows with strong shocks. The numerical methods are implemented in a flexible, modular framework that is amenable to future development. The methods we employ are validated via comparisons to experimental results for shock–bubble, shock–droplet, and shock–water-cylinder interaction problems and verified to be free of spurious oscillations for material-interface advection and gas–liquid Riemann problems. For smooth solutions, such as the advection of an isentropic vortex, the methods are verified to be high-order accurate. Illustrative examples involving shock–bubble-vessel-wall and acoustic–bubble-net interactions are used to demonstrate the full capabilities of MFC.

Experiment data files

This data is associated with the following publication:

MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver

Published in: Computer Physics Communications

Latest version

  • Version 1

    2020-06-16

    Published: 2020-06-16

    DOI: 10.17632/8y55zscjd3.1

    Cite this dataset

    Bryngelson, Spencer H.; Schmidmayer, Kevin; Coralic, Vedran; Meng, Jomela C.; Maeda, Kazuki; Colonius, Tim (2020), “MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver”, Mendeley Data, v1 http://dx.doi.org/10.17632/8y55zscjd3.1

Statistics

Views: 72
Downloads: 4

Categories

Computational Physics, Computational Fluid Dynamics, Multiphase Flow, Bubble Dynamics, Compressible Flow

Licence

GPLv3 Learn more

The files associated with this dataset are licensed under a GNU Public License Version 3 licence.

What does this mean?
The GNU General Public License is a free, copyleft license for software and other kinds of works.

Report