An OpenFOAM-based solver for modeling low Mach number turbulent flows at high pressure with real-fluid effects
Description
Numerical simulations of non-reacting/reacting flows at supercritical pressure near the critical points with real-fluid models in OpenFOAM often encounter instability and divergence issues unless the solution algorithm incorporates special techniques. In this paper, we develop a novel pressure-based solver, realFluidFoam, tailored for simulations of subsonic turbulent flows at transcritical and supercritical conditions in OpenFOAM. The realFluidFoam solver utilizes unique algorithms to enhance the stability and convergency while taking into account real-fluid effects. Its source code and implementation details are provided to facilitate a comprehensive understanding of integrating real-fluid models into fluid flow simulations in OpenFOAM. The realFluidFoam solver is validated against experimental data by performing large-eddy simulations (LESs) of liquid nitrogen injection and coaxial liquid nitrogen/preheated hydrogen injection under transcritical and supercritical conditions. The LES results show a satisfactory agreement with the experimental data, verifying that the realFluidFoam solver can accurately simulate transcritical and supercritical turbulent fluid flows over the wide range of pressure, especially near the critical points.