MicroRNA-dependent suppression of biological pacemaker induced by chemically modified messenger RNA. Sanchez et al

Published: 12 December 2022| Version 1 | DOI: 10.17632/d3d488fj8n.1
Contributor:
Lizbeth Sanchez

Description

Chemically-modified messenger RNA (CMmRNA) with selectively altered nucleotides are used to deliver transgenes, but translation efficiency is variable. We have transfected CMmRNA encoding human T-box transcription factor 18 (CMmTBX18) into heart cells, or the left ventricle of rats with atrioventricular block. TBX18 protein expression from CMmTBX18 is weak and transient, but Acriflavine, an Argonaute 2 inhibitor, boosts TBX18 levels. Small RNA sequencing identified two upregulated microRNAs (miRs) in CMmTBX18 transfected cells. Co-administration of miR-1-3p and miR-1b antagomiRs with CMmTBX18 prolongs TBX18 expression in vitro and in vivo, and is sufficient to generate electrical stimuli capable of pacing the heart. Different suppressive miRs likewise limit the expression of VEGF-A CMmRNA. Cells therefore resist translation of CMmRNA therapeutic transgenes by upregulating suppressive miRs. Blockade of suppressive miRs enhances CMmRNA expression of genes driving biological pacing or angiogenesis. Such counterstrategies constitute an approach to boost the efficacy and efficiency of CMmRNA therapies.

Files

Institutions

Cedars-Sinai Medical Center

Categories

RNA

Licence