Parallel finite-element codes for the simulation of two-dimensional and three-dimensional solid–liquid phase-change systems with natural convection

Published: 19-08-2020| Version 1 | DOI: 10.17632/dk49rfrz9y.1
Contributors:
Georges Sadaka,
Aina Rakotondrandisa,
Pierre-Henri Tournier,
Francky Luddens,
Corentin Lothode,
Ionut Danaila

Description

We present and distribute a FreeFem++ Toolbox for the parallel computing of two- or three-dimensional liquid–solid phase-change systems involving natural convection. FreeFem++ (www.freefem.org) is a free finite-element software available for all existing operating systems. We use the recent library ffddm that makes available in FreeFem++ state-of-the-art scalable Schwarz domain decomposition methods (DDM). The single domain approach used in our previous contribution (Rakotondrandisa et al., 2020) is adapted for the use of the DDM method. As a result, the computational time is considerably reduced for 2D configurations and furthermore 3D problems become affordable. The numerical method is based on an enthalpy-porosity model. The same set of equations is solved in both liquid and solid phases: the incompressible Navier–Stokes equations with Boussinesq approximation for thermal effects. A Carman-Kozeny-type penalty term is added to the momentum equations to bring progressively the velocity to zero into the solid. Model equations are discretized using Galerkin triangular or tetrahedral finite elements. The coupled system of equations is integrated in time using a second-order Gear implicit scheme. The resulting discrete equations are solved using a Newton algorithm. The DDM approach is based on an overlapping Schwarz method. The mesh is first split in subdomains using Scotch or Metis libraries. The final linear system is then solved in parallel using a GMRES Krylov method, with a Restricted Additive Schwarz (RAS) preconditioner. The mesh is adapted during the computation using metrics control. The 3D-mesh adaptivity uses the mmg (www.mmgtools.org) open source library. Parallel 2D and 3D computations of benchmark cases of increasing difficulty are presented: natural convection of air, natural convection of water, melting or solidification of a phase-change material, and, finally, a water freezing case. For each case, careful validations are provided and the performance of the code is assessed. The robustness of the Toolbox in 3D is also demonstrated by adapting the number of processors to the number of tetrahedra, which can considerably vary after the mesh adaptation.

Files