Towards personalised early prediction of Intra-Operative Hypotension following anesthesia using Deep Learning and phenotypic heterogeneity

Published: 22 December 2023| Version 2 | DOI: 10.17632/f8bd3djyrd.2


Intra-Operative Hypotension (IOH) is a haemodynamic abnormality that is commonly observed in operating theatres following general anesthesia and associates with life-threatening post-operative complications. Using Long Short Term Memory (LSTM) models applied to Electronic Health Records (EHR) and time-series intra-operative data in 604 patients that underwent colorectal surgery we predicted the instant risk of IOH events within the next five minutes. K-means clustering was used to group patients based on pre-clinical data. As part of a sensitivity analysis, the model was also trained on patients clustered according to Mean artelial Blood Pressure (MBP) time-series trends at the start of the operation using K-means with Dynamic Time Warping. The baseline LSTM model trained on all patients yielded a test set Area Under the Curve (AUC) value of 0.83. In contrast, training the model on smaller sized clusters (grouped by EHR) improved the AUC value (0.85). Similarly, the AUC was increased by 4.8% (0.87) when training the model on clusters grouped by MBP. The encouraging results of the baseline model demonstrate the applicability of the approach in a clinical setting. Furthermore, the increased predictive performance of the model after being trained using a clustering approach first, paves the way for a more personalised patient stratification approach to IOH prediction using clinical data.



Imperial College London, Goldsmiths University of London Department of Computing


Deep Learning, Biomedical Research


H2020 European Institute of Innovation and Technology


H2020 European Institute of Innovation and Technology