Vocal learning and flexible rhythm pattern perception are linked: evidence from songbirds (2021) PNAS - Supporting files

Published: 15 November 2021| Version 2 | DOI: 10.17632/fw5f2vrf4k.2
Contributors:
,
,

Description

Rhythm perception is fundamental to speech and music. Humans readily recognize a rhythmic pattern, such as that of a familiar song, independently of the tempo at which it occurs. This shows that our perception of auditory rhythms is flexible, relying on global, relational patterns more than on the absolute durations of specific time intervals. Given that auditory rhythm perception in humans engages a complex auditory-motor cortical network even in the absence of movement, and that the evolution of vocal learning is accompanied by strengthening of forebrain auditory-motor pathways, we hypothesize that vocal learning species share our perceptual facility for relational rhythm processing. We test this by asking whether the best-studied animal model for vocal learning, the zebra finch, can recognize a fundamental rhythmic pattern – equal timing between event onsets (isochrony) – based on temporal relations between intervals rather than on absolute durations. Prior work suggests that vocal non-learners (pigeons and rats) are quite limited in this regard and are biased to attend to absolute durations when listening to rhythmic sequences. In contrast, using naturalistic sounds at multiple stimulus rates, we show that male zebra finches robustly recognize isochrony independent of absolute time intervals, even at rates distant from those used in training. Our findings highlight the importance of comparative studies of rhythmic processing and suggest that vocal learning species are promising animal models for key aspects of human rhythm perception. Such models are needed to understand the neural mechanisms behind the positive effect of rhythm on certain speech and movement disorders. This dataset contains trial data, stimulus files, schematics, diagrams, experiment notes, and analysis code for this experiment. - 2020 Finch Regularity.xlsx is data pertaining to the experiment and birdData.xlsx is a spreadsheet of data on the subjects - Stimulus filenames are source bird number (b1-b4), sound type ('s' for stack and 'i' for intro note) and number (1 or 2), IOI x 10 ms, regular or irregular (reg or ir), and pattern number if irregular (1 or 2) - e.g., b4s1_1800ir1 is bird 4, stack 1, 180 ms IOI, irregular pattern 1 - See Figure 1 of paper for additional examples - Two zebra finch song files used for pre-training are included as well - See data_readme.txt for descriptions of the data files

Files

Steps to reproduce

For the analysis script, the birdTable.xlsx file is used for the subjectFile parameter The code for running the experiment is available on GitHub: https://github.com/arouse01/pyoperant

Institutions

Tufts University Department of Biology, Tufts University

Categories

Animal Cognition, Animal Learning, Animal Models, Operant Conditioning, Animal Perception, Vocal Communication

Licence