Mouse visual cortex is modulated by distance traveled and by theta oscillations

Published: 6 August 2020| Version 1 | DOI: 10.17632/jk4ggjysgp.1
Julien Fournier


The visual responses of neurons in the primary visual cortex (V1) are influenced by the animal’s position in the environment. V1 responses encode positions that co-fluctuate with those encoded by place cells in hippocampal area CA1. This correlation may reflect a common influence of non-visual spatial signals on both areas. Place cells in CA1, indeed, do not rely only on vision; their place preference depends on the physical distance traveled and on the phase of the 6-9 Hz theta oscillation. Are V1 responses similarly influenced by these non-visual factors? We recorded V1 and CA1 neurons simultaneously while mice performed a spatial task in a virtual corridor by running on a wheel and licking at a reward location. By changing the gain that couples the wheel movement to the virtual environment, we found that ~20% of V1 neurons were influenced by the physical distance traveled, as were ~40% of CA1 place cells. Moreover, the firing rate of ~24% of V1 neurons was modulated by the phase of theta oscillations recorded in CA1 and the response profiles of ~7% of V1 neurons shifted spatially across the theta cycle, analogous to the phase precession observed in ~37% of CA1 place cells. The influence of theta oscillations on V1 responses was more prominent in putative layer 6. These results reveal that in a familiar environment, sensory processing in primary visual cortex is modulated by the key non-visual signals that influence spatial coding in the hippocampus.



Mouse, Virtual Reality, Hippocampus, Navigation, Visual Cortex