COVID-19 Ventilators: Schematic representation

Published: 01-07-2020| Version 2 | DOI: 10.17632/jkvz7jrwny.2
Lorenzo Fiorineschi


This dataset presents a schematic representation of some of the currently acknowledged solutions from the open-source projects of ventilators, made to challenge the COVID-19 pandemic. The framework is composed by two graphical tools: the Problem-Solution-Network (PSN) and the chart of structural solutions. Red boxes in the PSN represents the rows of the chart. More specifically, it has been hypothesized a framework capable to abstractly model existing solutions, in order to represent them without focusing on mere structural details that can somehow induce bias in designers that will consult them. Indeed, complete information about available open-source ventilators can be found, in terms of electrical scheme, detailed CAD models, videos and photos. However, many of them share the same working principles and differ only in terms of manufacturing-related choices and/or forms. Differently, other solutions implement completely different principles, but are sometimes implemented at a very rough level. It is acknowledged in literature that the way in which a prototype is presented (otherwise said “Fidelity” level) can actually influence the opinion of the audience (in this case, of the stakeholders involved in the development of new ventilators). Therefore, poorly implemented original ideas often risk to be discarded because “not convincing”, if compared to other (maybe old) ideas developed in higher detail. In order to avoid this problem, it has been chosen to model the compressing unit of the ventilators in two ways, i.e. abstractly with schemas, and graphically with generalized CAD models. For the abstract schematization, it has been chosen to apply the Problem-Solution-Network (PSN) approach. In particular, its last version has been taken as a reference, where different abstraction levels are considered to formulate both design problems and solutions. Then, a chart to collect the generalized CAD models of key mechanisms has been used, and directly linked to the PSN. The following paragraphs explain both the PSN and the chart. This particular set of graphical tools allows to represent ventilators by decomposing them into the main design problems and the related solutions used to implement them. Besides the generation of brand new solutions for each problem, the proposal allows to explore different combinations between already explored solutions (not to be confounded with a mere recombination of parts fom acknowledged ventilators). Please note that the file type "graphml" can be open and edited with the software yEd (available at