SQUIRREL: An open-source software suite for quantum dynamics calculations on complex geometries with time-dependent electric/magnetic fields
Description
We present a general-purpose, open-source software suite, SQUIRREL (Streamlined Quantum Unified Interface for Researching Real-time Excitations with Light), for propagating the time-dependent Schrödinger equation on complex geometries in the presence of time-dependent electric and/or magnetic fields. To handle large systems that can be executed on a conventional desktop computer, the SQUIRREL software suite uses a suite of efficient propagation methods for various quantum dynamics applications, including a new perturbation-based element-dropping algorithm that improves computational performance with minimal loss of accuracy. We analyze the efficacy of these optimizations for Crank-Nicolson, scaled Taylor series approximation, and split-operator propagation methods and discuss the range of their applicability to a variety of quantum dynamics problems. In addition, we provide several examples of time-dependent dynamics calculations and extensive documentation for generating custom geometries, potentials, and time-propagation approaches. Our numerical benchmarks and results demonstrate the versatility of the SQUIRREL software suite for efficiently calculating quantum dynamics in complex nanoscale geometries, particularly in the presence of time-dependent magnetic fields, which have received less attention in previous quantum dynamics studies.