TrussMe-Fem: A toolbox for symbolic-numerical analysis and solution of structures
Description
Structural mechanics is pivotal in comprehending how structures respond to external forces and imposed displacements. Typically, the analysis of structures is performed numerically using the direct stiffness method, which is an implementation of the finite element method. This method is commonly associated with the numerical solution of large systems of equations. However, the underlying theory can also be conveniently used to perform the analysis of structures either symbolically or in a hybrid symbolic-numerical fashion. This approach is useful to mitigate the computational burden as the obtained partial or full symbolic solution can be simplified and used to generate lean code for efficient simulations. Nonetheless, the symbolic direct stiffness method is also useful for model reduction purposes, as it allows the derivation of small-scale models that can be used for diminishing simulation time. Despite the mentioned advantages, symbolic computation carries intrinsically complex operations. In particular, the symbolic solution of large linear systems of equations is hard to compute, and it may not always be available due to software capabilities. This paper introduces a toolbox named TrussMe-Fem, whose implementation is based on the direct stiffness method. TrussMe-Fem leverages Maple®'s symbolic computation and Matlab®'s numerical capabilities for symbolic and hybrid symbolic-numerical analyses and solutions of structures. Efficient code generation is also possible by exploiting the simplification of the problem's expressions. The challenges posed by symbolic computation on the solution of large linear systems are addressed by introducing novel routines for the symbolic matrix factorization with the hierarchical representation of large expressions. For this purpose, the TrussMe-Fem toolbox optionally uses the Lem and Last Maple® packages, which are also available as open-source software.