DATASET for: "Carotid Ultrasound Boundary Study (CUBS): Technical considerations on an open multi-center analysis of computerized measurement systems for intima-media thickness measurement on common carotid artery longitudinal B-mode ultrasound scans"

Published: 1 March 2022| Version 1 | DOI: 10.17632/m7ndn58sv6.1
Contributors:
Kristen M. Meiburger,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

Description

Here we provide the entire dataset (500 images, conversion factors for images, 3 manual segmentations, 7 computerized segmentations) for the article "Carotid Ultrasound Boundary Study (CUBS): Technical considerations on an open multi-center analysis of computerized measurement systems for intima-media thickness measurement on common carotid artery longitudinal B-mode ultrasound scans" published in Computers in Biology and Medicine, 2022 (DOI: https://doi.org/10.1016/j.compbiomed.2022.105333). Any results obtained using the published dataset MUST cite the original research article (Meiburger K.M. et al, Carotid Ultrasound Boundary Study (CUBS): Technical considerations on an open multi-center analysis of computerized measurement systems for intima-media thickness measurement on common carotid artery longitudinal B-mode ultrasound scans", Computers in Biology and Medicine, 2022, DOI: https://doi.org/10.1016/j.compbiomed.2022.105333. See the ReadMe file "readme.txt" for all details. Abstract: "After publishing an in-depth study that analyzed the ability of computerized methods to assist or replace human experts in obtaining carotid intima-media thickness (CIMT) measurements leading to correct therapeutic decisions, here the same consortium joined to present technical outlooks on computerized CIMT measurement systems and provide considerations for the community regarding the development and comparison of these methods, including considerations to encourage the standardization of computerized CIMT measurements and results presentation. A multi-center database of 500 images was collected, upon which three manual segmentations and seven computerized methods were employed to measure the CIMT, including traditional methods based on dynamic programming, deformable models, the first order absolute moment, anisotropic Gaussian derivative filters and deep learning-based image processing approaches based on Unet convolutional neural networks. An inter- and intra-analyst variability analysis was conducted and segmentation results were analyzed by dividing the database based on carotid morphology, image signal-to-noise ratio, and research center. The computerized methods’ obtained CIMT absolute bias results that were comparable with studies in literature and they generally were similar and often better than the observed inter- and intra-analyst variability. Several computerized methods showed promising segmentation results, including one deep learning method (CIMT absolute bias = 106 ± 89 μm vs. 160 ± 140 μm intra-analyst variability) and three other traditional image processing methods (CIMT absolute bias = 139 ± 119 μm, 143 ± 118 μm and 139 ± 136 μm). The entire database used has been made publicly available for the community to facilitate future studies and to encourage an open comparison and technical analysis."

Files

Categories

Ultrasonography, Image Segmentation, Cardiovascular Disease, Carotid Artery, Deep Learning

Licence